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In this article we present a new fixed point theorem for a class of general mixed monotone
operators, which extends the existing corresponding results. Moreover, we establish some
pleasant properties of nonlinear eigenvalue problems for mixed monotone operators. Based
on them the local existence–uniqueness of positive solutions for nonlinear boundary
value problems which include Neumann boundary value problems, three-point boundary
value problems and elliptic boundary value problems for Lane–Emden–Fowler equations
is proved. The theorems for nonlinear boundary value problems obtained here are very
general.
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1. Introduction

It is well known that nonlinear boundary value problems (BVPs for short) arise in a variety of different areas of applied
mathematics, physics, chemistry and biology, which can be found in the theory of nonlinear diffusion generated by nonlinear
sources, in thermal ignition of gases, in the vibrations of a guy wire of a uniform cross-section and composed of N parts
of different densities, and in the theory of elastics stability, in chemical or biological problems (see, for instance, [20,37,38,
54,57,63]). Therefore, nonlinear BVPs have attracted much attention and have been widely studied, see [2–8,10–19,21–25,
28–36,41–45,47–53,55–62,64–66] for some references along this line. The results of these papers are based on the Leray–
Schauder continuation theorem, the nonlinear alternative of Leray–Schauder, the coincidence degree theory of Mawhin,
Krasnosel’skii’s fixed point theorem, Schauder fixed point theorem, fixed point theorems in cones and so on. Different from
these finite methods, in this article we first state and prove new fixed point theorems for mixed monotone operators.
And then we establish some criterions for the local existence–uniqueness of positive solutions to BVPs which include the
Neumann BVPs, three-point BVPs and nonlinear elliptic BVPs for the Lane–Emden–Fowler equations. Let R+ = [0,∞), R++ =
(0,∞), J = [0,1] and Ω be a bounded domain with smooth boundary in RN (N � 1). Our basic assumptions on a nonlinear
function f (t, u, v) here are:

(H1) f : J × R+ × R+ → R+;
(H1)

′ f : Ω × R++ × R++ → R++;
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(H2) f (t, u, v) is nondecreasing in u for each t ∈ J and v ∈ R+, nonincreasing in v for each t ∈ J and u ∈ R+, and for any
γ ∈ (0,1), there exists a constant ϕ(γ ) ∈ (γ ,1] such that

f
(
t, γ u, γ −1 v

)
� ϕ(γ ) f (t, u, v) for any u, v ∈ R+;

(H2)
′ f (x, u, v) is nondecreasing in u for each x ∈ Ω and v ∈ R++, nonincreasing in v for each x ∈ Ω and u ∈ R++, and for

any γ ∈ (0,1), there exists a constant ϕ(γ ) ∈ (γ ,1] such that

f
(
x, γ u, γ −1 v

)
� ϕ(γ ) f (x, u, v) for any u, v ∈ R++.

In the next section, we state and prove a new existence–uniqueness result of positive fixed points for mixed monotone
operators. Moreover, we establish some pleasant properties of nonlinear eigenvalue problems for mixed monotone opera-
tors. In Section 3, using the main results obtained in Section 2, we give the local existence–uniqueness results of positive
solutions for nonlinear BVPs which include the Neumann BVPs, three-point BVPs and nonlinear elliptic BVPs for the Lane–
Emden–Fowler equations. It must be pointed out that the method used in this article can be applied to many nonlinear BVPs.

2. Fixed points and eigenvalue problems for mixed monotone operators

Mixed monotone operators were introduced by Guo and Lakshmikantham [27] in 1987. Thereafter many authors have
investigated these kinds of operators in Banach spaces and obtained a lot of interesting and important results (see [26,46,74]
and the references therein). They are used extensively in nonlinear differential and integral equations. In this section, we
modify the methods in [26,46] to obtain a new existence and uniqueness result of positive fixed point for mixed monotone
operators.

Suppose that (E,‖·‖) is a real Banach space which is partially ordered by a cone P ⊂ E , i.e., x � y if and only if y −x ∈ P .

If x � y and x 	= y, then we denote x < y or y > x. By θ we denote the zero element of E . Recall that a nonempty closed
convex set P ⊂ E is a cone if it satisfies (i) x ∈ P , λ � 0 ⇒ λx ∈ P ; (ii) x ∈ P , −x ∈ P ⇒ x = θ.

Putting P̊ = {x ∈ P | x is an interior point of P }, a cone P is said to be solid if its interior P̊ is nonempty. Moreover, P is
called normal if there exists a constant M > 0 such that, for all x, y ∈ E , θ � x � y implies ‖x‖ � M‖y‖; in this case M is
called the normality constant of P . If x1, x2 ∈ E, the set [x1, x2] = {x ∈ E | x1 � x � x2} is called the order interval between
x1 and x2.

For all x, y ∈ E, the notation x ∼ y means that there exist λ > 0 and μ > 0 such that λx � y � μx. Clearly, ∼ is an
equivalence relation. Given h > θ (i.e., h � θ and h 	= θ ), we denote by Ph the set Ph = {x ∈ E | x ∼ h}. It is easy to see that
Ph ⊂ P is convex and λPh = Ph for all λ > 0. If P̊ 	= ∅ and h ∈ P̊ , it is clear that Ph = P̊ .

Definition 2.1. (See [26,27].) A : P × P → P is said to be a mixed monotone operator if A(x, y) is increasing in x and
decreasing in y, i.e., ui, vi (i = 1,2) ∈ P , u1 � u2, v1 � v2 imply A(u1, v1) � A(u2, v2). Element x ∈ P is called a fixed point
of A if A(x, x) = x.

2.1. Fixed point theorems

Now we consider the mixed monotone operator A : P × P → P . The following conditions will be assumed:

(A1) there exists h ∈ P with h 	= θ such that A(h,h) ∈ Ph ,
(A2) for any u, v ∈ P and t ∈ (0,1), there exists ϕ(t) ∈ (t,1] such that A(tu, t−1 v) � ϕ(t)A(u, v).

Lemma 2.1. Assume (A1), (A2) hold. Then A : Ph × Ph → Ph; and there exist u0, v0 ∈ Ph and r ∈ (0,1) such that rv0 � u0 < v0 ,
u0 � A(u0, v0) � A(v0, u0) � v0.

Proof. Firstly, from condition (A2) we get

A
(
t−1x, ty

)
� 1

ϕ(t)
A(x, y), ∀t ∈ (0,1), x, y ∈ P . (2.1)

For any u, v ∈ Ph, there exist μ1,μ2 ∈ (0,1) such that

μ1h � u � 1

μ1
h, μ2h � v � 1

μ2
h.

Let μ = min{μ1,μ2}. Then μ ∈ (0,1). From (2.1) and the mixed monotone properties of operator A, we have

A(u, v) � A

(
1

μ1
h,μ2h

)
� A

(
1

μ
h,μh

)
� 1

ϕ(μ)
A(h,h),

A(u, v) � A

(
μ1h,

1
h

)
� A

(
μh,

1
h

)
� ϕ(μ)A(h,h).
μ2 μ
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It follows from A(h,h) ∈ Ph that A(u, v) ∈ Ph. Hence we have A : Ph × Ph → Ph. Since A(h,h) ∈ Ph , we can choose a
sufficiently small number t0 ∈ (0,1) such that

t0h � A(h,h) � 1

t0
h. (2.2)

Noting that t0 < ϕ(t0) � 1, we can take a positive integer k such that(
ϕ(t0)

t0

)k

� 1

t0
. (2.3)

Put u0 = t0
kh, v0 = 1

t0
k h. Evidently, u0, v0 ∈ Ph and u0 = t0

2k v0 < v0. Take any r ∈ (0, t0
2k], then r ∈ (0,1) and u0 � rv0.

By the mixed monotone properties of A, we have A(u0, v0) � A(v0, u0). Further, combining condition (A2) with (2.2), (2.3),
we have

A(u0, v0) = A

(
t0

kh,
1

t0
k

h

)
= A

(
t0 · t0

k−1h,
1

t0
· 1

t0
k−1

h

)
� ϕ(t0)A

(
t0

k−1h,
1

t0
k−1

h

)

= ϕ(t0)A

(
t0 · t0

k−2h,
1

t0
· 1

t0
k−2

h

)
� ϕ(t0) · ϕ(t0)A

(
t0

k−2h,
1

t0
k−2

h

)
� · · ·

�
(
ϕ(t0)

)k
A(h,h) �

(
ϕ(t0)

)k
t0h � t0

kh = u0.

From (2.1) we get

A(v0, u0) = A

(
1

t0
k

h, t0
kh

)
= A

(
1

t0
· 1

t0
k−1

h, t0 · t0
k−1h

)

� 1

ϕ(t0)
A

(
1

t0
k−1

h, t0
k−1h

)
= 1

ϕ(t0)
A

(
1

t0
· 1

t0
k−2

h, t0 · t0
k−2h

)

� 1

ϕ(t0)
· 1

ϕ(t0)
A

(
1

t0
k−2

h, t0
k−2h

)
� · · ·

� 1(
ϕ(t0)

)k
A(h,h) � 1

t0
(
ϕ(t0)

)k
h.

An application of (2.3) implies that

A(v0, u0) � 1

t0
(
ϕ(t0)

)k
h � 1

t0
k

h = v0.

Thus we have u0 � A(u0, v0) � A(v0, u0) � v0. �
Theorem 2.1. Suppose that P is a normal cone of E, and (A1), (A2) hold. Then operator A has a unique fixed point x∗ in Ph. Moreover,
for any initial x0, y0 ∈ Ph, constructing successively the sequences

xn = A(xn−1, yn−1), yn = A(yn−1, xn−1), n = 1,2, . . . ,

we have ‖xn − x∗‖ → 0 and ‖yn − x∗‖ → 0 as n → ∞.

Proof. From Lemma 2.1, there exist u0, v0 ∈ Ph and r ∈ (0,1) such that rv0 � u0 < v0, u0 � A(u0, v0) � A(v0, u0) � v0.

Construct successively the sequences

un = A(un−1, vn−1), vn = A(vn−1, un−1), n = 1,2, . . . .

Evidently, u1 � v1. By the mixed monotone properties of A, we obtain un � vn , n = 1,2, . . . . It also follows from Lemma 2.1
and the mixed monotone properties of A that

u0 � u1 � · · · � un � · · · � vn � · · · � v1 � v0. (2.4)

Noting that u0 � rv0, we can get un � u0 � rv0 � rvn , n = 1,2, . . . . Let

tn = sup{t > 0 | un � tvn}, n = 1,2, . . . .

Thus we have un � tn vn , n = 1,2, . . . , and then un+1 � un � tn vn � tn vn+1, n = 1,2, . . . . Therefore, tn+1 � tn , i.e., {tn} is
increasing with {tn} ⊂ (0,1]. Suppose tn → t∗ as n → ∞, then t∗ = 1. Otherwise, 0 < t∗ < 1. Then from condition (A2) and
tn � t∗, we have
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un+1 = A(un, vn) � A

(
tn vn,

1

tn
un

)
= A

(
tn

t∗ t∗vn,
t∗

tn

1

t∗ un

)

� tn

t∗ A

(
t∗vn,

1

t∗ un

)
� tn

t∗ ϕ
(
t∗)A(vn, un) = tn

t∗ ϕ
(
t∗)vn+1.

By the definition of tn , tn+1 � tn
t∗ · ϕ(t∗). Let n → ∞, we get t∗ � ϕ(t∗) > t∗, which is a contradiction. Thus, limn→∞ tn = 1.

For any natural number p we have

θ � un+p − un � vn − un � vn − tn vn = (1 − tn)vn � (1 − tn)v0,

θ � vn − vn+p � vn − un � (1 − tn)v0.

Since the cone P is normal, we have

‖un+p − un‖ � M(1 − tn)‖v0‖ → 0, ‖vn − vn+p‖ � M(1 − tn)‖v0‖ → 0 (n → ∞),

where M is the normality constant of P . So we can claim that {un} and {vn} are Cauchy sequences. Because E is complete,
there exist u∗, v∗ such that un → u∗ , vn → v∗ as n → ∞. By (2.4), we know that un � u∗ � v∗ � vn with u∗, v∗ ∈ Ph and
θ � v∗ − u∗ � vn − un � (1 − tn)v0. Further∥∥v∗ − u∗∥∥ � M(1 − tn)‖v0‖ → 0 (n → ∞),

and thus u∗ = v∗. Let x∗ := u∗ = v∗ and then we obtain un+1 = A(un, vn) � A(x∗, x∗) � A(vn, un) = vn+1. Let n → ∞, then
we get x∗ = A(x∗, x∗). That is, x∗ is a fixed point of A in Ph.

In the following, we prove that x∗ is the unique fixed point of A in Ph. In fact, suppose x̄ is a fixed point of A in Ph .
Since x∗, x̄ ∈ Ph, there exist positive numbers μ̄1, μ̄2, λ̄1, λ̄2 > 0 such that

μ̄1h � x∗ � λ̄1h, μ̄2h � x̄ � λ̄2h.

Then we obtain

x̄ � λ̄2h = λ̄2

μ̄1
μ̄1h � λ̄2

μ̄1
x∗, x̄ � μ̄2h = μ̄2

λ̄1
λ̄1h � μ̄2

λ̄1
x∗.

Let e1 = sup{t > 0 | tx∗ � x̄ � t−1x∗}. Evidently, 0 < e1 � 1, e1x∗ � x̄ � 1
e1

x∗. Next we prove e1 = 1. If 0 < e1 < 1, then

x̄ = A(x̄, x̄) � A

(
e1x∗, 1

e1
x∗

)
� ϕ(e1)A

(
x∗, x∗) = ϕ(e1)x∗.

Since ϕ(e1) > e1, this contradicts the definition of e1. Hence e1 = 1, and we get x̄ = x∗. Therefore, A has a unique fixed
point x∗ in Ph . Note that [u0, v0] ⊂ Ph, then we know that x∗ is the unique fixed point of A in [u0, v0].

Now we construct successively the sequences xn = A(xn−1, yn−1), yn = A(yn−1, xn−1), n = 1,2, . . . , for any initial points
x0, y0 ∈ Ph. Since x0, y0 ∈ Ph, we can choose small numbers e2, e3 ∈ (0,1) such that

e2h � x0 � 1

e2
h, e3h � y0 � 1

e3
h.

Let e∗ = min{e2, e3}. Then e∗ ∈ (0,1) and

e∗h � x0, y0 � 1

e∗ h.

We can choose a sufficiently large positive integer m such that[
ϕ(e∗)

e∗

]m

� 1

e∗ .

Put ū0 = e∗mh, v̄0 = 1
e∗m h. It is easy to see that ū0, v̄0 ∈ Ph and ū0 < x0, y0 < v̄0. Let

ūn = A(ūn−1, v̄n−1), v̄n = A(v̄n−1, ūn−1), n = 1,2, . . . .

Similarly, it follows that there exists y∗ ∈ Ph such that A(y∗, y∗) = y∗ , limn→∞ ūn = limn→∞ v̄n = y∗. By the uniqueness of
fixed points of operator A in Ph, we get x∗ = y∗. And by induction, ūn � xn , yn � v̄n , n = 1,2, . . . . Since cone P is normal,
we have limn→∞ xn = limn→∞ yn = x∗. �
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Remark 2.1. Compared with the corresponding results in [46, Theorems 2.1, 2.2], we remove the conditions: there exist
u0, v0 ∈ Ph such that u0 � A(u0, v0) � A(v0, u0) � v0. If we suppose that operator A : Ph × Ph → Ph or A : P̊ × P̊ → P̊
with P is a solid cone, then A(h,h) ∈ Ph is automatically satisfied. When ϕ(t) = tα with α ∈ (0,1) for t ∈ (0,1), the
following result in [26] turns out to be a special case of Theorem 2.1.

Corollary 2.2. (See [26].) Let P be a normal, solid cone of E, and let A : P̊ × P̊ → P̊ be a mixed monotone operator; suppose that:
there exists α ∈ (0,1) such that

A
(
tu, t−1 v

)
� tα A(u, v), ∀u, v ∈ P̊ , t ∈ (0,1).

Then operator A has a unique fixed point x∗ in P̊ . Moreover, for any initial x0, y0 ∈ P̊ , constructing successively the sequences xn =
A(xn−1, yn−1), yn = A(yn−1, xn−1), n = 1,2, . . . , we have ‖xn − x∗‖ → 0 and ‖yn − x∗‖ → 0 as n → ∞.

2.2. Eigenvalue problems

Motivated by the idea of work [72, Theorem 2.4], we study the nonlinear eigenvalue problem A(x, x) = λx. The next
theorem shows that the solution has some pleasant properties.

Theorem 2.3. Assume that operator A satisfies the conditions of Theorem 2.1. Let xλ (λ > 0) denote the unique solution of nonlinear
eigenvalue equation A(x, x) = λx in Ph. Then we have the following conclusions:

(R1) If ϕ(t) > t
1
2 for t ∈ (0,1), then xλ is strictly decreasing in λ, that is, 0 < λ1 < λ2 implies xλ1 > xλ2 ;

(R2) If there exists β ∈ (0,1) such that ϕ(t) � tβ for t ∈ (0,1), then xλ is continuous in λ, that is, λ → λ0 (λ0 > 0) implies ‖xλ −
xλ0‖ → 0;

(R3) If there exists β ∈ (0, 1
2 ) such that ϕ(t) � tβ for t ∈ (0,1), then limλ→∞ ‖xλ‖ = 0, limλ→0+ ‖xλ‖ = ∞.

Proof. Fix λ > 0 and by Lemma 2.1, 1
λ

A : Ph × Ph → Ph is mixed monotone and satisfies(
1

λ
A

)(
tx, t−1 y

) = 1

λ
A
(
tx, t−1 y

)
� 1

λ
ϕ(t)A(x, y) = ϕ(t)

(
1

λ
A

)
(x, y), ∀x, y ∈ Ph, t ∈ (0,1).

So it follows from Theorem 2.1 that 1
λ

A has a unique fixed point xλ in Ph . That is, A(xλ, xλ) = λxλ. For convenience of proof,
we let

α(t) = lnϕ(t)

ln t
, ∀t ∈ (0,1).

Then α(t) ∈ [0,1) and ϕ(t) = tα(t). Thus A(tx, t−1 y) � tα(t) A(x, y), ∀x, y ∈ Ph , t ∈ (0,1).

(1) Proof of (R1). Suppose 0 < λ1 < λ2 and let t0 = sup{t > 0 | xλ1 � txλ2 , xλ2 � txλ1 }, then we have 0 < t0 < 1 and

xλ1 � t0xλ2 , xλ2 � t0xλ1 . (2.5)

By the mixed monotone properties of A,

λ1xλ1 = A(xλ1 , xλ1) � A
(
t0xλ2 , t0

−1xλ2

)
� t0

α(t0) A(xλ2 , xλ2) = t0
α(t0)λ2xλ2 ,

λ2xλ2 = A(xλ2 , xλ2) � A
(
t0xλ1 , t0

−1xλ1

)
� t0

α(t0) A(xλ1 , xλ1) = t0
α(t0)λ1xλ1 .

Further

xλ1 � λ1
−1λ2t0

α(t0)xλ2 , xλ2 � λ2
−1λ1t0

α(t0)xλ1 . (2.6)

Noting that λ1
−1λ2t0

α(t0) > t0, from the definition of t0 and (2.6), we know that λ2
−1λ1t0

α(t0) � t0, which in turn yields

t0 �
(

λ1

λ2

) 1
1−α(t0)

. (2.7)

Hence

xλ1 � λ1
−1λ2

(
λ1

λ2

) α(t0)

1−α(t0)

xλ2 =
(

λ2

λ1

) 1−2α(t0)

1−α(t0)

xλ2 . (2.8)

Noting that ϕ(t0) > t0
1
2 , we have α(t0) < 1 and in consequence,
2
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(
λ2

λ1

) 1−2α(t0)

1−α(t0)

> 1.

Thus, xλ1 > xλ2 .

(2) Proof of (R2). Since ϕ(t) � tβ for t ∈ (0,1), we have α(t) � β for t ∈ (0,1). By (2.5), (2.7),(
λ1

λ2

) 1
1−β

xλ2 �
(

λ1

λ2

) 1
1−α(t0)

xλ2 � xλ1 � 1

t0
xλ2 �

(
λ2

λ1

) 1
1−α(t0)

xλ2 �
(

λ2

λ1

) 1
1−β

xλ2 , (2.9)

(
λ1

λ2

) 1
1−β

xλ1 �
(

λ1

λ2

) 1
1−α(t0)

xλ1 � xλ2 � 1

t0
xλ1 �

(
λ2

λ1

) 1
1−α(t0)

xλ1 �
(

λ2

λ1

) 1
1−β

xλ1 . (2.10)

Further

θ � xλ1 −
(

λ1

λ2

) 1
1−β

xλ2 �
[(

λ2

λ1

) 1
1−β

−
(

λ1

λ2

) 1
1−β

]
xλ2 .

Consequently, from the normality of cone P ,

‖xλ1 − xλ2‖ �
∥∥∥∥xλ1 −

(
λ1

λ2

) 1
1−β

xλ2

∥∥∥∥ +
∥∥∥∥
(

λ1

λ2

) 1
1−β

xλ2 − xλ2

∥∥∥∥
� M

[(
λ2

λ1

) 1
1−β

−
(

λ1

λ2

) 1
1−β

]
‖xλ2‖ +

∣∣∣∣
(

λ1

λ2

) 1
1−β

− 1

∣∣∣∣‖xλ2‖,
where M is the normality constant. Let λ1 → λ2

−, we have ‖xλ1 − xλ2‖ → 0. Similarly, let λ2 → λ1
+, from (2.10) we can

also prove ‖xλ2 − xλ1‖ → 0. So the conclusion (R2) holds.
(3) Proof of (R3). Since ϕ(t) � tβ for t ∈ (0,1), we have α(t) � β < 1

2 for t ∈ (0,1). Let λ1 = 1, λ2 = λ in (2.8), then we
have

x1 � λ
1−2α(t0)

1−α(t0) xλ � λ
1−2β
1−β xλ, ∀λ > 1.

Thus we can easily obtain

‖xλ‖ � M

λ
1−2β
1−β

‖x1‖, ∀λ > 1,

where M is the normality constant. Let λ → ∞, then ‖xλ‖ → 0. Similarly, let λ1 = λ, λ2 = 1 in (2.8), then

xλ � λ
− 1−2α(t0)

1−α(t0) x1 � λ
− 1−2β

1−β x1, ∀0 < λ < 1.

Thus

‖xλ‖ � M−1λ
− 1−2β

1−β ‖x1‖, ∀0 < λ < 1,

where M is the normality constant. Let λ → 0+, then we have ‖xλ‖ → ∞. �
3. Local existence–uniqueness of positive solutions for nonlinear BVPs

In this section, we will apply Theorem 2.1 and Theorem 2.3 to study nonlinear BVPs which include the Neumann BVPs,
three-point BVPs and nonlinear elliptic BVPs for the Lane–Emden–Fowler equations. And then we will obtain new results on
the local existence–uniqueness of positive solutions for these problems, which are not the consequences of the correspond-
ing fixed point theorems in [26,46,74].

3.1. Two-point BVPs

First we are interested in the local existence–uniqueness of positive solutions for the following nonlinear Neumann
boundary value problems (NBVPs for short){−u′′(t) + m2u(t) = λ f

(
t, u(t), u(t)

)
, 0 < t < 1,

u′(0) = u′(1) = 0,
(3.1)

and {
u′′(t) + m2u(t) = λ f

(
t, u(t), u(t)

)
, 0 < t < 1,

u′(0) = u′(1) = 0,
(3.2)

where m is a positive constant, λ is a positive parameter, f (t, u, v) is continuous.
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It is well known that NBVPs for the ordinary differential equations and elliptic equations is an important kind of bound-
ary value problems. During the last two decades, NBVPs have deserved the attention of many researchers [8,10–12,35,43,
60–62,70]. By using fixed point theorems in cone, in [8,35,60–62], the authors discussed the existence of positive solutions
to ordinary differential equation NBVPs.

Recently, the authors [12] discussed second-order superlinear repulsive singular NBVPs by using a nonlinear alternative of
Leray–Schauder and Krasnosel’skii’s fixed point theorem on compression and expansion of cones, and obtained the existence
of at least two positive solutions under reasonable conditions. In [43], the authors established the existence of sign-changing
solutions and positive solutions for fourth-order NBVPs by using the fixed point index and the critical group. Besides the
above mentioned methods, the method of upper and lower solutions is also used in the literature [10,11,70]. However, to
the best of our knowledge, few papers can be found in the literature on the existence–uniqueness of positive solutions for
the NBVPs (3.1) and (3.2) by mixed monotone method. The objective here is to fill this gap.

By a positive solution of (3.1) (or (3.2)) we understand a function u(t) ∈ C2[0,1] which is positive on 0 < t < 1 and
satisfies the differential equation and the boundary conditions in (3.1) (or (3.2)).

In the following we will work in the Banach space C[0,1] and only the sup-norm is used. Set P = {x ∈ C[0,1] | x(t) � 0,

t ∈ [0,1]}, the standard cone. It is easy to see that P is a normal cone of which the normality constant is 1. Let G(t, s) be
the Green function for the boundary value problem{−u′′(t) + m2u(t) = 0, 0 < t < 1,

u′(0) = u′(1) = 0.
(3.3)

Then

G(t, s) = 1

ρ

{
ψ(s)ψ(1 − t), 0 � s � t � 1,

ψ(t)ψ(1 − s), 0 � t � s � 1,

where ρ = 1
2 m(em − e−m), ψ(t) = 1

2 (emt + e−mt). It is obvious that ψ(t) is increasing on [0,1], and

0 < G(t, s) � G(t, t), 0 � t, s � 1. (3.4)

Lemma 3.1. (See [62].) Let G(t, s) be the Green function for the NBVP (3.3). Then

G(t, s) � Cψ(t)ψ(1 − t)G(t0, s), t, t0, s ∈ [0,1],
where C = 1/ψ2(1).

Theorem 3.1. Assume that the function f (t, u, v) satisfies (H1), (H2) and

(H3) for any t ∈ [0,1], f (t,a,b) > 0, where

a = 1

4

(
em + e−m + 2

)
, b = 1

2

(
em + e−m)

.

Then the NBVP (3.1) has a unique positive solution u∗
λ in Ph, where h(t) = ψ(t)ψ(1 − t), t ∈ [0,1]. Moreover, if ϕ(t) > t

1
2 for

t ∈ (0,1), then u∗
λ is strictly decreasing in λ, that is, 0 < λ1 < λ2 implies u∗

λ1
� u∗

λ2
, u∗

λ1
	= u∗

λ2
. If there exists β ∈ (0,1) such that

ϕ(t) � tβ for t ∈ (0,1), then u∗
λ is continuous in λ, that is, λ → λ0 (λ0 > 0) implies ‖u∗

λ − u∗
λ0

‖ → 0. If there exists β ∈ (0, 1
2 ) such

that ϕ(t) � tβ for t ∈ (0,1), then limλ→∞ ‖u∗
λ‖ = 0, limλ→0+ ‖u∗

λ‖ = ∞.

Remark 3.1. It is easy to check that a = min{h(t): t ∈ [0,1]}, b = max{h(t): t ∈ [0,1]}, where a, b are given as in (H3).

Proof of Theorem 3.1. It is well known that u is a solution of the NBVP (3.1) if and only if

u(t) = λ

1∫
0

G(t, s) f
(
s, u(s), u(s)

)
ds,

where G(t, s) is the Green function for the NBVP (3.3). For any u, v ∈ P , we define

Aλ(u, v)(t) = λ

1∫
0

G(t, s) f
(
s, u(s), v(s)

)
ds.

From (H1), it is easy to check that Aλ : P × P → P . From (H2), we know that Aλ : P × P → P is a mixed monotone operator.
Next we show that Aλ satisfies the conditions in Theorem 2.1. From (H2), for any γ ∈ (0,1) and u, v ∈ P , we obtain
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Aλ

(
γ u, γ −1 v

)
(t) = λ

1∫
0

G(t, s) f
(
s, γ u(s), γ −1 v(s)

)
ds

� λ

1∫
0

G(t, s)ϕ(γ ) f
(
s, u(s), v(s)

)
ds

= ϕ(γ )Aλ(u, v)(t), t ∈ [0,1].
That is, Aλ(γ u, γ −1 v) � ϕ(γ )Aλ(u, v), ∀u, v ∈ P , γ ∈ (0,1). So the condition (A2) in Theorem 2.1 is satisfied. On the one
hand, it follows from (H2), (H3), Lemma 3.1 and Remark 3.1 that

Aλ(h,h)(t) = λ

1∫
0

G(t, s) f
(
s,h(s),h(s)

)
ds

� λ

1∫
0

Cψ(t)ψ(1 − t)G(t0, s) f (s,a,b)ds

= λCh(t)

1∫
0

G(t0, s) f (s,a,b)ds, t ∈ [0,1].

On the other hand, from (3.4), (H2) and Remark 3.1, we obtain

Aλ(h,h)(t) = λ

1∫
0

G(t, s) f
(
s,h(s),h(s)

)
ds

� λ

1∫
0

G(t, t) f (s,b,a)ds

= λ
1

ρ
h(t)

1∫
0

f (s,b,a)ds, t ∈ [0,1].

Let

r1 = min
t∈[0,1] f (t,a,b), r2 = max

t∈[0,1] f (t,b,a).

Then 0 < r1 � r2. Consequently,

Aλ(h,h)(t) � r1λC

1∫
0

G(t0, s)ds · h(t), Aλ(h,h)(t) � r2λ
1

ρ
h(t), t ∈ [0,1].

Note that

1∫
0

G(t0, s)ds = 1

ρ

t0∫
0

ψ(s)ψ(1 − t0)ds + 1

ρ

1∫
t0

ψ(t0)ψ(1 − s)ds = 1

m2
,

then we have r1λC
∫ 1

0 G(t0, s)ds > 0. Hence Aλ(h,h) ∈ Ph, the condition (A1) in Theorem 2.1 is satisfied. Therefore, by
Theorem 2.1, there exists a unique u∗

λ ∈ Ph such that Aλ(u∗
λ, u∗

λ) = u∗
λ. It is easy to check that u∗

λ is a unique positive

solution of the NBVP (3.1) for given λ > 0. Moreover, if ϕ(t) > t
1
2 for t ∈ (0,1), then Theorem 2.3(R1) means that u∗

λ is
strictly decreasing in λ, that is, 0 < λ1 < λ2 implies u∗

λ1
� u∗

λ2
, u∗

λ1
	= u∗

λ2
. If there exists β ∈ (0,1) such that ϕ(t) � tβ for

t ∈ (0,1), then Theorem 2.3(R2) means that u∗
λ is continuous in λ, that is, λ → λ0 (λ0 > 0) implies ‖u∗

λ − u∗
λ0

‖ → 0. If there

exists β ∈ (0, 1
2 ) such that ϕ(t) � tβ for t ∈ (0,1), then Theorem 2.3(R3) means limλ→∞ ‖u∗

λ‖ = 0, limλ→0+ ‖u∗
λ‖ = ∞. �
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Example 3.1. Consider the following NBVP{
−u′′(t) + (ln 2)2u(t) = λ

[
u

1
3 (t) + u− 1

4 (t)
]
, 0 < t < 1,

u′(0) = u′(1) = 0,
(3.5)

where λ is a positive parameter. In this example, we let m = ln 2, f (t, x, y) := f (x, y) = x
1
3 + y− 1

4 . After a simple calculation,
we get a = 9

8 , b = 5
4 and

h(t) = 5

8
+ 1

4

(
21−2t + 22t−1), t ∈ [0,1].

Evidently, f (x, y) is increasing in x for y � 0, decreasing in y for x � 0.

f (a,b) =
(

9

8

) 1
3

+
(

5

4

)− 1
4

> 0.

Moreover, set ϕ(γ ) = γ
5

12 , γ ∈ (0,1). Then

f
(
γ x, γ −1 y

) = γ
1
3 x

1
3 + γ

1
4 y− 1

4 � ϕ(γ ) f (x, y), x, y � 0.

Hence, all the conditions of Theorem 3.1 are satisfied. An application of Theorem 3.1 implies that the NBVP (3.5) has

a unique positive solution u∗
λ in Ph. Moreover, note that ϕ(t) > t

1
2 for t ∈ (0,1), then from Theorem 3.1, u∗

λ is strictly
decreasing in λ, that is, 0 < λ1 < λ2 implies u∗

λ1
� u∗

λ2
, u∗

λ1
	= u∗

λ2
. Taking β ∈ [ 5

12 , 1
2 ) and applying Theorem 3.1, we know

that u∗
λ is continuous in λ and limλ→∞ ‖u∗

λ‖ = 0, limλ→0+ ‖u∗
λ‖ = ∞. �

In the following, using the same technique, we study general NBVP (3.2) with m ∈ (0, π
2 ). Let G(t, s) be the Green

function for the boundary value problem{
u′′(t) + m2u(t) = 0, 0 < t < 1,

u′(0) = u′(1) = 0.
(3.6)

Then

G(t, s) = 1

m sin m

{
cos ms cos m(1 − t), 0 � s � t � 1,

cos mt cosm(1 − s), 0 � t � s � 1.

It is obvious that cos mt is decreasing on [0,1], and

G(t, s) � G(t, t), 0 � t, s � 1. (3.7)

Lemma 3.2. Let G(t, s) be the Green function for the NBVP (3.6). Then

G(t, s) � C · cosmt cos m(1 − t) · G(t0, s), t, t0, s ∈ [0,1],
where C = 1/ cos2 m.

Proof. When t, t0 � s,

G(t, s)

G(t0, s)
= cosm(1 − s) cos mt

cosm(1 − s) cos mt0
= cosm(1 − t) cos mt

cos m(1 − t) cosmt0

� 1

cos2 m
cosm(1 − t) cos mt = C cos m(1 − t) cosmt.

If t � s � t0,

G(t, s)

G(t0, s)
= cosm(1 − s) cos mt

cosm(1 − t0) cos ms
= cos m(1 − t) cosmt

cos m(1 − t) cosms
· cosm(1 − s)

cosm(1 − t0)

� 1

cos2 m
cosm(1 − t) cos mt = C cos m(1 − t) cosmt.

If t0 � s � t ,

G(t, s)

G(t0, s)
= cosm(1 − t) cos ms

cosm(1 − s) cos mt0
= cos m(1 − t) cosmt

cos m(1 − s) cos mt
· cosms

cosmt0

� 1
2

cosm(1 − t) cos mt = C cos m(1 − t) cosmt.

cos m
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For s � t, t0,

G(t, s)

G(t0, s)
= cosm(1 − t) cos ms

cosm(1 − t0) cos ms
= cosm(1 − t) cos mt

cosm(1 − t0) cos mt

� 1

cos2 m
cosm(1 − t) cos mt = C cos m(1 − t) cosmt.

Therefore,

G(t, s) � C · cosm(1 − t) cos mt · G(t0, s), t, t0, s ∈ [0,1].
This completes the proof. �
Theorem 3.2. Assume (H1), (H2) hold and f (t, cos2 m,1) > 0 for any t ∈ [0,1]. Then the NBVP (3.2) has a unique positive solution

u∗
λ in Ph, where h(t) = cos m(1 − t) cos mt, t ∈ [0,1]. Moreover, if ϕ(t) > t

1
2 for t ∈ (0,1), then u∗

λ is strictly decreasing in λ, that
is, 0 < λ1 < λ2 implies u∗

λ1
� u∗

λ2
, u∗

λ1
	= u∗

λ2
. If there exists β ∈ (0,1) such that ϕ(t) � tβ for t ∈ (0,1), then u∗

λ is continuous in λ,

that is, λ → λ0 (λ0 > 0) implies ‖u∗
λ − u∗

λ0
‖ → 0. If there exists β ∈ (0, 1

2 ) such that ϕ(t) � tβ for t ∈ (0,1), then limλ→∞ ‖u∗
λ‖ = 0,

limλ→0+ ‖u∗
λ‖ = ∞.

Remark 3.2. It is easy to check that cos2m � h(t) � 1 for ∀t ∈ [0,1].

Proof of Theorem 3.2. It is well known that u is a solution of the NBVP (3.2) if and only if

u(t) = λ

1∫
0

G(t, s) f
(
s, u(s), u(s)

)
ds,

where G(t, s) is the Green function for the NBVP (3.6). For any u, v ∈ P , we define

Aλ(u, v)(t) = λ

1∫
0

G(t, s) f
(
s, u(s), v(s)

)
ds.

Similarly to the proof of Theorem 3.1, we know that Aλ : P × P → P is a mixed monotone operator and satisfies the
condition (A2) in Theorem 2.1. That is,

Aλ

(
γ u, γ −1 v

)
� ϕ(γ )Aλ(u, v), ∀u, v ∈ P , γ ∈ (0,1).

It follows from condition (H2), Lemma 3.2 and Remark 3.2 that

Aλ(h,h)(t) = λ

1∫
0

G(t, s) f
(
s,h(s),h(s)

)
ds

� λ

1∫
0

C · cos mt cosm(1 − t) · G(t0, s) f
(
s,1, cos2 m

)
ds

= λCh(t)

1∫
0

G(t0, s) f
(
s,1, cos2 m

)
ds, t ∈ [0,1].

From (3.7), (H2) and Remark 3.2, we obtain

Aλ(h,h)(t) = λ

1∫
0

G(t, s) f
(
s,h(s),h(s)

)
ds

� λ

1∫
0

G(t, t) f
(
s, cos2 m,1

)
ds

= λ
1

m sinm
h(t)

1∫
f
(
s, cos2 m,1

)
ds, t ∈ [0,1].
0
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Let

r1 = min
t∈[0,1] f

(
t, cos2 m,1

)
, r2 = max

t∈[0,1] f
(
t,1, cos2 m

)
.

Then 0 < r1 � r2. Consequently,

Aλ(h,h)(t) � r2λC

1∫
0

G(t0, s)ds · h(t), Aλ(h,h)(t) � r1λ
1

m sinm
h(t), t ∈ [0,1].

Note that

1∫
0

G(t0, s)ds = 1

m sinm

t0∫
0

cosm(1 − t0) cos ms ds + 1

m sinm

1∫
t0

cosm(1 − s) cos mt0 ds = 1

m2
,

then we have r2λC
∫ 1

0 G(t0, s)ds > 0. Hence Aλ(h,h) ∈ Ph, the condition (A1) in Theorem 2.1 is satisfied. Therefore, by
Theorem 2.1, there exists a unique u∗

λ ∈ Ph such that Aλ(u∗
λ, u∗

λ) = u∗
λ. It is easy to check that u∗

λ is a unique positive

solution of the NBVP (3.2) for given λ > 0. Moreover, if ϕ(t) > t
1
2 for t ∈ (0,1), then Theorem 2.3(R1) means that u∗

λ is
strictly decreasing in λ, that is, 0 < λ1 < λ2 implies u∗

λ1
� u∗

λ2
, u∗

λ1
	= u∗

λ2
. If there exists β ∈ (0,1) such that ϕ(t) � tβ for

t ∈ (0,1), then Theorem 2.3(R2) means that u∗
λ is continuous in λ, that is, λ → λ0 (λ0 > 0) implies ‖u∗

λ − u∗
λ0

‖ → 0. If there

exists β ∈ (0, 1
2 ) such that ϕ(t) � tβ for t ∈ (0,1), then Theorem 2.3(R3) means limλ→∞ ‖u∗

λ‖ = 0, limλ→0+ ‖u∗
λ‖ = ∞. �

Example 3.2. Consider the following NBVP⎧⎪⎨
⎪⎩

u′′(t) +
(

π

3

)2

u(t) = λ
[
u

1
3 (t) + u− 1

4 (t)
]
, 0 < t < 1,

u′(0) = u′(1) = 0,

(3.8)

where λ is a positive parameter. In this example, we let m = π
3 , f (t, x, y) := f (x, y) = x

1
3 + y− 1

4 . Then m ∈ (0, π
2 ) and

h(t) = cos
π

3
t cos

π

3
(1 − t), t ∈ [0,1].

Evidently, f (x, y) is increasing in x for y � 0, decreasing in y for x � 0.

f

(
cos2 π

3
,1

)
=

(
1

4

) 1
3

+ 1 > 0.

Moreover, set ϕ(γ ) = γ
5

12 , γ ∈ (0,1). Then

f
(
γ x, γ −1 y

) = γ
1
3 x

1
3 + γ

1
4 y− 1

4 � ϕ(γ ) f (x, y), x, y � 0.

Hence, all the conditions of Theorem 3.2 are satisfied. An application of Theorem 3.2 implies that the NBVP (3.8) has

a unique positive solution u∗
λ in Ph. Moreover, note that ϕ(t) > t

1
2 for t ∈ (0,1), then from Theorem 3.2, u∗

λ is strictly
decreasing in λ, that is, 0 < λ1 < λ2 implies u∗

λ1
� u∗

λ2
, u∗

λ1
	= u∗

λ2
. Taking β ∈ [ 5

12 , 1
2 ) and applying Theorem 3.2, we know

that u∗
λ is continuous in λ and limλ→∞ ‖u∗

λ‖ = 0, limλ→0+ ‖u∗
λ‖ = ∞. �

Next we consider the following two-point BVPs:{
u′′ + λ f (t, u, u) = 0, t ∈ (0,1),

u(0) = u(1) = 0,
(ς1)

{
u′′ + λ f (t, u, u) = 0, t ∈ (0,1),

u(0) = u′(1) = 0,
(ς2)

{
u′′ + λ f (t, u, u) = 0, t ∈ (0,1),

u′(0) = u(1) = 0,
(ς3)

{
u′′′ + λ f (t, u, u) = 0, t ∈ (0,1),

u(0) = u′(0) = u′′(1) = 0,
(ς4)

where λ is a positive parameter and f (t, u, v) is continuous.
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It is well known that u is the solution of the problem (ςi), i = 1,2,3,4, if and only if

u(t) = λ

1∫
0

Gi(t, s) f
(
s, u(s), u(s)

)
ds, t ∈ [0,1], i = 1,2,3,4,

where

G1(t, s) =
{

t(1 − s), 0 � t � s � 1,

s(1 − t), 0 � s � t � 1,
G2(t, s) =

{
t, 0 � t � s � 1,

s, 0 � s � t � 1,

G3(t, s) =
{

1 − s, 0 � t � s � 1,

1 − t, 0 � s � t � 1,
G4(t, s) =

{
1
2 t2, 0 � t � s � 1,

1
2 t2 − 1

2 (t − s)2, 0 � s � t � 1.

Theorem 3.3. Assume that the function f (t, u, v) satisfies (H1), (H2) and

(H4) for any t ∈ [0,1], f (t,0,bi) > 0, i = 1,2,3,4, where

b1 = 1

8
, b2 = b3 = b4 = 1

2
.

Then the BVP (ςi), i = 1,2,3,4, has a unique positive solution u∗
λ in Phi , where

h1(t) = 1

2
t(1 − t), h2(t) = 1

2
t(2 − t), h3(t) = 1

2

(
1 − t2), h4(t) = 1

2
t2, t ∈ [0,1].

Moreover, if ϕ(t) > t
1
2 for t ∈ (0,1), then u∗

λ is strictly decreasing in λ, that is, 0 < λ1 < λ2 implies u∗
λ1

� u∗
λ2

, u∗
λ1

	= u∗
λ2

. If there

exists β ∈ (0,1) such that ϕ(t) � tβ for t ∈ (0,1), then u∗
λ is continuous in λ, that is, λ → λ0 (λ0 > 0) implies ‖u∗

λ − u∗
λ0

‖ → 0. If

there exists β ∈ (0, 1
2 ) such that ϕ(t) � tβ for t ∈ (0,1), then limλ→∞ ‖u∗

λ‖ = 0, limλ→0+ ‖u∗
λ‖ = ∞.

Sketch of the proof. For any u, v ∈ P , we define

Aλ(u, v)(t) = λ

1∫
0

Gi(t, s) f
(
s, u(s), v(s)

)
ds, i = 1,2,3,4.

Similarly to the proof of Theorem 3.1, we know that Aλ : P × P → P is a mixed monotone operator and satisfies the
condition (A2) in Theorem 2.1. Using the same argument as in Lemma 3.2, we can easily prove that G4(t, s) � h4(t)G4(t0, s),
t, s ∈ [0,1], t0 ∈ (0,1]. Moreover, note that hi(t) = ∫ 1

0 Gi(t, s)ds, i = 1,2,3, and G4(t, s) � h4(t), t, s ∈ [0,1]; then we can
prove that the condition (A1) in Theorem 2.1 is satisfied. Therefore, the conclusion follows from Theorems 2.1 and 2.3. �
3.2. Three-point BVPs

Three-point BVPs for differential equations or difference equations arise in a variety of different areas of applied math-
ematics and physics. The study of multi-point BVPs for linear second-order ordinary differential equations was initiated
by Il’in and Moiseev [33,34]. Motivated by the study of Il’in and Moiseev, Gupta [28] studied certain three-point BVPs for
nonlinear ordinary differential equations. Since then, more general nonlinear three-point BVPs have been studied by many
authors with much of the attention given to positive solutions. For a small sample of such work, we refer the reader to
works by Ahmad and Nieto [6], Gupta and Trofimchuk [29], Karaca [36], Ma [51], Raffoul [56], Xu [68], Yang, Zhai and
Yan [69] and Zhai [71]. However, few papers have been reported on the existence–uniqueness for three-point BVPs. In this
subsection we consider the following two classes of three-point BVPs for second-order differential equation:{

u′′ + λ f (t, u, u) = 0, t ∈ (0,1),

u(0) = 0, u(1) − βu(η) = 0,
(3.9)

where η ∈ (0,1), β > 0, 1 − βη > 0;{
u′′ + λ f (t, u, u) = 0, t ∈ (0,1),

u′(0) = 0, u(1) − βu(η) = 0,
(3.10)

where η ∈ (0,1), 0 < β < 1; λ is a positive parameter and f (t, u, v) is continuous.
Different from the above mentioned works, here we will use Theorems 2.1 and 2.3 to show the existence–uniqueness of

positive solutions for the problems (3.9) and (3.10).
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By a positive solution of (3.9) or (3.10) we understand a function u(t) which is positive on 0 < t < 1 and satisfies
differential equation and boundary conditions.

We also work in the space C[0,1]. P = {u ∈ C[0,1] | u(t) � 0, t ∈ [0,1]}, the standard cone.

Theorem 3.4. Assume (H1), (H2) hold and

(H5) for any t ∈ [0,1], f (t,0,h(t0)) > 0, where

t0 = 1 − βη2

2(1 − βη)
, h(t) = −1

2
t2 + 1 − βη2

2(1 − βη)
t, t ∈ [0,1].

Then the three-point BVP (3.9) has a unique positive solution u∗
λ in Ph. Moreover, if ϕ(t) > t

1
2 for t ∈ (0,1), then u∗

λ is strictly
decreasing in λ, that is, 0 < λ1 < λ2 implies u∗

λ1
� u∗

λ2
, u∗

λ1
	= u∗

λ2
. If there exists β ∈ (0,1) such that ϕ(t) � tβ for t ∈ (0,1), then u∗

λ

is continuous in λ, that is, λ → λ0 (λ0 > 0) implies ‖u∗
λ − u∗

λ0
‖ → 0. If there exists β ∈ (0, 1

2 ) such that ϕ(t) � tβ for t ∈ (0,1), then
limλ→∞ ‖u∗

λ‖ = 0, limλ→0+ ‖u∗
λ‖ = ∞.

Remark 3.3. Function h(t) satisfies h(0) = 0, βh(η) = h(1), h′′(t) ≡ −1 and for t ∈ [0,1],

h(t) = −
t∫

0

(t − s)ds − βt

1 − βη

η∫
0

(η − s)ds + t

1 − βη

1∫
0

(1 − s)ds.

It is easy to prove that h(t) � 0, h(t) 	≡ 0 and 0 � h(t) � h(t0) for t ∈ [0,1].

Proof of Theorem 3.4. It is well known that u is the solution of the problem (3.9) if and only if u = Aλ(u, u), where

Aλ(u, v)(t) = −
t∫

0

(t − s)λ f
(
s, u(s), v(s)

)
ds

− βt

1 − βη

η∫
0

(η − s)λ f
(
s, u(s), v(s)

)
ds + t

1 − βη

1∫
0

(1 − s)λ f
(
s, u(s), v(s)

)
ds.

Next we show that Aλ is mixed monotone and satisfies (A1), (A2). To illuminate this, we divide into two cases: (i) for any
t ∈ [0, η], we have

Aλ(u, v)(t) = −
t∫

0

(t − s)λ f
(
s, u(s), v(s)

)
ds

− βt

1 − βη

η∫
0

(η − s)λ f
(
s, u(s), v(s)

)
ds + t

1 − βη

1∫
0

(1 − s)λ f
(
s, u(s), v(s)

)
ds

= t

1 − βη

1∫
η

(1 − s)λ f
(
s, u(s), v(s)

)
ds

+ t

1 − βη

η∫
t

(1 − s − βη + βs)λ f
(
s, u(s), v(s)

)
ds

+ 1

1 − βη

t∫
0

(s − ts + βts − βsη)λ f
(
s, u(s), v(s)

)
ds,

(ii) for any t ∈ (η,1], we have

Aλ(u, v)(t) = −
t∫
(t − s)λ f

(
s, u(s), v(s)

)
ds
0
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− βt

1 − βη

η∫
0

(η − s)λ f
(
s, u(s), v(s)

)
ds + t

1 − βη

1∫
0

(1 − s)λ f
(
s, u(s), v(s)

)
ds

= t

1 − βη

1∫
t

(1 − s)λ f
(
s, u(s), v(s)

)
ds

+ 1

1 − βη

t∫
η

(s − st + βηt − βηs)λ f
(
s, u(s), v(s)

)
ds

+ 1

1 − βη

η∫
0

(s − st + sβt − sβη)λ f
(
s, u(s), v(s)

)
ds.

For case (i), we can easily get 1 − s − βη + βs � 0 for s ∈ [t, η] and s − ts + βts − βsη � 0 for s ∈ [0, t]. For case (ii), we can
easily get s− st +βηt −βηs � 0 for s ∈ [η, t] and s− st + sβt − sβη � 0 for s ∈ [0, η]. Note that 1−βη > 0 and from (H1), we
obtain Aλ(u, v)(t) � 0, for u, v ∈ P , t ∈ [0,1]. Further, also from the above two cases (i), (ii) and that f (t, x, y) is increasing
in x, decreasing in y, we can easily prove that Aλ : P × P → P is mixed monotone. For any γ ∈ (0,1) and u, v ∈ P , we have

Aλ

(
γ u, γ −1 v

)
(t) = −

t∫
0

(t − s)λ f
(
s, γ u(s), γ −1 v(s)

)
ds

− βt

1 − βη

η∫
0

(η − s)λ f
(
s, γ u(s), γ −1 v(s)

)
ds

+ t

1 − βη

1∫
0

(1 − s)λ f
(
s, γ u(s), γ −1 v(s)

)
ds.

It follows from the above two cases (i), (ii) and (H2) that

Aλ

(
γ u, γ −1 v

)
(t) � ϕ(γ )

[
−

t∫
0

(t − s)λ f
(
s, u(s), v(s)

)
ds − βt

1 − βη

η∫
0

(η − s)λ f
(
s, u(s), v(s)

)
ds

+ t

1 − βη

1∫
0

(1 − s)λ f
(
s, u(s), v(s)

)
ds

]
= ϕ(γ )Aλ(u, v)(t).

In the following we show that Aλ(h,h) ∈ Ph. Let

r1 = min
t∈[0,1] f

(
t,0,h(t0)

)
, r2 = max

t∈[0,1] f
(
t,h(t0),0

)
,

then 0 < r1 � r2. From the above two cases (i), (ii), we have

Aλ(h,h)(t) = −
t∫

0

(t − s)λ f
(
s,h(s),h(s)

)
ds

− βt

1 − βη

η∫
0

(η − s)λ f
(
s,h(s),h(s)

)
ds + t

1 − βη

1∫
0

(1 − s)λ f
(
s,h(s),h(s)

)
ds

� r1λ

[
−

t∫
0

(t − s)ds − βt

1 − βη

η∫
0

(η − s)ds + t

1 − βη

1∫
0

(1 − s)ds

]
= r1λh(t),

and
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Aλ(h,h)(t) = −
t∫

0

(t − s)λ f
(
s,h(s),h(s)

)
ds

− βt

1 − βη

η∫
0

(η − s)λ f
(
s,h(s),h(s)

)
ds + t

1 − βη

1∫
0

(1 − s)λ f
(
s,h(s),h(s)

)
ds

� r2λ

[
−

t∫
0

(t − s)ds − βt

1 − βη

η∫
0

(η − s)ds + t

1 − βη

1∫
0

(1 − s)ds

]
= r2λh(t).

Hence Aλ(h,h) ∈ Ph. Therefore, the conclusion follows from Theorems 2.1 and 2.3. �
Theorem 3.5. Assume (H1), (H2) hold and

(H6) for any t ∈ [0,1], f (t,h(1),h(0)) > 0, where

h(t) = −1

2
t2 + 1 − βη2

2(1 − β)
, t ∈ [0,1].

Then the three-point BVP (3.10) has a unique positive solution u∗
λ in Ph. Moreover, if ϕ(t) > t

1
2 for t ∈ (0,1), then u∗

λ is strictly
decreasing in λ, that is, 0 < λ1 < λ2 implies u∗

λ1
� u∗

λ2
, u∗

λ1
	= u∗

λ2
. If there exists β ∈ (0,1) such that ϕ(t) � tβ for t ∈ (0,1), then u∗

λ

is continuous in λ, that is, λ → λ0 (λ0 > 0) implies ‖u∗
λ − u∗

λ0
‖ → 0. If there exists β ∈ (0, 1

2 ) such that ϕ(t) � tβ for t ∈ (0,1), then
limλ→∞ ‖u∗

λ‖ = 0, limλ→0+ ‖u∗
λ‖ = ∞.

Remark 3.4. Function h(t) satisfies h′(0) = 0, βh(η) = h(1), h′′(t) ≡ −1 and for t ∈ [0,1],

h(t) = 1

1 − β

1∫
0

(1 − s)ds − β

1 − β

η∫
0

(η − s)ds −
t∫

0

(t − s)ds.

It is easy to prove that h(t) � 0, h(t) 	≡ 0 and h(1) � h(t) � h(0) for t ∈ [0,1].

Proof of Theorem 3.5. It is easy to see that u is the solution of the problem (3.10) if and only if u is a solution of the
operator equation

Aλ(u, v)(t) = 1

1 − β

1∫
0

(1 − s)λ f
(
s, u(s), v(s)

)
ds − β

1 − β

η∫
0

(η − s)λ f
(
s, u(s), v(s)

)
ds

−
t∫

0

(t − s)λ f
(
s, u(s), v(s)

)
ds.

Next we show that Aλ is mixed monotone and satisfies (A1), (A2). Firstly, we also divide into two cases: (i) for any t ∈ [0, η],
we have

Aλ(u, v)(t) = 1

1 − β

1∫
0

(1 − s)λ f
(
s, u(s), v(s)

)
ds − β

1 − β

η∫
0

(η − s)λ f
(
s, u(s), v(s)

)
ds

−
t∫

0

(t − s)λ f
(
s, u(s), v(s)

)
ds

= 1

1 − β

[ t∫
0

(1 − s)λ f
(
s, u(s), v(s)

)
ds +

η∫
t

(1 − s)λ f
(
s, u(s), v(s)

)
ds

+
1∫
(1 − s)λ f

(
s, u(s), v(s)

)
ds

]

η
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− β

1 − β

[ t∫
0

(η − t)λ f
(
s, u(s), v(s)

)
ds +

η∫
t

(η − s)λ f
(
s, u(s), v(s)

)
ds

]

−
t∫

0

(t − s)λ f
(
s, u(s), v(s)

)
ds

= 1

1 − β

[ t∫
0

(1 − t − βη + βt)λ f
(
s, u(s), v(s)

)
ds +

η∫
t

(
1 − s − β(η − s)

)
λ f

(
s, u(s), v(s)

)
ds

+
1∫

η

(1 − s)λ f
(
s, u(s), v(s)

)
ds

]
,

(ii) for any t ∈ (η,1], we have

Aλ(u, v)(t) = 1

1 − β

1∫
0

(1 − s)λ f
(
s, u(s), v(s)

)
ds − β

1 − β

η∫
0

(η − s)λ f
(
s, u(s), v(s)

)
ds

−
t∫

0

(t − s)λ f
(
s, u(s), v(s)

)
ds

= 1

1 − β

[ η∫
0

(1 − s)λ f
(
s, u(s), v(s)

)
ds +

t∫
η

(1 − s)λ f
(
s, u(s), v(s)

)
ds

+
1∫

t

(1 − s)λ f
(
s, u(s), v(s)

)
ds

]
− β

1 − β

η∫
0

(η − s)λ f
(
s, u(s), v(s)

)
ds

−
[ η∫

0

(t − s)λ f
(
s, u(s), v(s)

)
ds +

t∫
η

(t − s)λ f
(
s, u(s), v(s)

)
ds

]

= 1

1 − β

[ η∫
0

(1 − t − βη + βt)λ f
(
s, u(s), v(s)

)
ds +

t∫
η

(
1 − t + β(t − s)

)
λ f

(
s, u(s), v(s)

)
ds

+
1∫

t

(1 − s)λ f
(
s, u(s), v(s)

)
ds

]
.

From η ∈ (0,1), 0 < β < 1, the condition (H1) and the above two cases (i), (ii), we have Aλ(u, v)(t) � 0 for u, v ∈ P ,
t ∈ [0,1]. Secondly, from (H2), we know that Aλ : P × P → P is mixed monotone. Finally, using the same reasoning as in
Theorem 3.4, we have Aλ(h,h) ∈ Ph. The conclusion follows from Theorems 2.1 and 2.3. �
Example 3.3. Consider the following three-point BVP⎧⎪⎨

⎪⎩
u′′ + λ

[
uα + u−τ

] = 0, t ∈ (0,1),

u(0) = 0, u(1) − 1

2
u

(
1

4

)
= 0,

(3.11)

where α,τ ∈ (0,1) and λ is a positive parameter.
In this example, η = 1

4 , β = 1
2 . Evidently, 1 − βη > 0. Set f (t, u, v) = uα + v−τ and ϕ(γ ) = γ min{α,τ }, then f (t, u, v)

satisfies (H1) and (H2). In addition,

t0 = 31
, h(t) = −1

t2 + 1 − βη2

t = −1
t2 + 31

t � 0, t ∈ [0,1].

56 2 2(1 − βη) 2 56
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For t ∈ [0,1], we have f (t,0,h(t0)) = [h(t0)]−τ > 0. Hence, all the conditions of Theorem 3.4 are satisfied. An application of
Theorem 3.4 implies that the BVP (3.11) has a unique positive solution in Ph. �
Example 3.4. Consider the following three-point BVP⎧⎪⎨

⎪⎩
u′′ + λ

[
uα + u−τ

] = 0, t ∈ (0,1),

u′(0) = 0, u(1) − 1

2
u

(
1

4

)
= 0,

(3.12)

where α,τ ∈ (0,1) and λ is a positive parameter.
In this example, η = 1

4 , β = 1
2 . Set f (t, u, v) = uα + v−τ and ϕ(γ ) = γ min{α,τ }. In addition,

h(t) = −1

2
t2 + 1 − βη2

2(1 − β)
= −1

2
t2 + 31

32
� 0, t ∈ [0,1].

For t ∈ [0,1], we have f (t,h(1),h(0)) > 0. An application of Theorem 3.5 implies that the BVP (3.12) has a unique positive
solution in Ph.

3.3. Nonlinear elliptic BVPs for the Lane–Emden–Fowler equations

Let Ω be a bounded domain with smooth boundary in RN (N � 1). Consider the following singular Dirichlet problem for
the Lane–Emden–Fowler equation:⎧⎨

⎩
−�u = λ f (x, u, u), x ∈ Ω,

u(x) > 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

(3.13)

where λ > 0 and the nonlinear term f (x, u, u) is allowed to be singular on ∂Ω.

The problem (3.13) arises in the study of non-Newtonian fluids, boundary layer phenomena for viscous fluids, chemical
heterogeneous catalysts, as well as in the theory of heat conduction in electrically materials (see [15,21,22,55,59]). The the-
ory of singular BVPs has become an important area of investigation in the past three decades, see [2–5,13,15–17,21–24,31,
32,40,41,48,52,55,58,64,67,73] and references therein. Among these singular elliptic boundary value problems for partial dif-
ferential equations, papers [13,15,16,22,24,31,32,41,52,58,73] established some existence and nonexistence results, a unique
positive solution by means of sub-supersolutions and various techniques related to the maximum principle for elliptic
equations. For one-dimensional case, the corresponding singular boundary problems for second-order ordinary differential
equations have been studied extensively in the literature (see for instance [2–5,48] and references therein). However, to our
knowledge, the results on the existence–uniqueness of positive solutions for the general singular elliptic equation are still
very few. The purpose here is to establish the existence–uniqueness of positive solutions to the singular Dirichlet problem
for the Lane–Emden–Fowler equation (3.13). Different from the works mentioned above, we will use Theorem 2.1 and 2.3
to show the existence–uniqueness of positive solutions for the problem (3.13).

Throughout this subsection, denote by W k,l(Ω) the Sobolev space (see [1]), where l > 1 and k is a nonnegative integer.
And denote by h1 the first eigenfunction of the following eigenvalue problem −�ϕ = λϕ in Ω, and ϕ|∂Ω = 0. For con-
venience, we assume that h1(x) � 0 in Ω̄. Moreover, it is well known that (see for instance [67]) there exist two positive
constants C2, C3 such that the first eigenvalue function satisfies

0 < C2 � h1(x)
[
d(x)

]−1 � C3, x ∈ Ω, (3.14)

where d(x) = dist(x, ∂Ω).

Lemma 3.3. (See [9].) Let Ω be a bounded domain with smooth boundary in RN (N � 1). If the operator −� + k is coercive and
u ∈ L1

loc(Ω) satisfies{−�u + ku � 0, x ∈ Ω,

u(x) � 0, x ∈ Ω̄,

then either u(x) ≡ 0 or u(x) � C0d(x), x ∈ Ω, where d(x) = dist(x, ∂Ω) and C0 is a positive constant depending only upon N, Ω

and k.

The above result is originally due to G. Stampacchia, which plays an important role in the proof of the following main
result.
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Lemma 3.4 (From the proof of Theorem 3.1 in [42]). Let Ω be a bounded domain with smooth boundary in RN (N � 1). If w ∈ W 2,l(Ω)

and w(x) = 0 for x ∈ ∂Ω , then there exists a constant M1 > 0 such that∣∣w(x)
∣∣ � M1h1(x), x ∈ Ω,

where M1 depends only upon N and Ω.

Theorem 3.6. Assume that (H1)
′ , (H2)

′ hold and

(H7) f (x, u, v) is Hölder continuous in the variable x with the Hölder exponent γ ∈ (0,1) for each u, v ∈ R++ and is continuous in
the variables u, v for each x ∈ Ω;

(H8) f (x, u, v) satisfies the condition of integrability, i.e.,∫
Ω

f
(
x,h1(x),h1(x)

)l
dx < +∞ for some l > N.

Then the problem (3.13) has a unique positive solution u∗
λ ∈ C1,β (Ω̄) with respect to λ > 0, where β = 1 − N

l . Moreover, if ϕ(t) > t
1
2

for t ∈ (0,1), then u∗
λ is strictly decreasing in λ, that is, 0 < λ1 < λ2 implies u∗

λ1
� u∗

λ2
, u∗

λ1
	= u∗

λ2
. If there exists β∗ ∈ (0,1) such that

ϕ(t) � tβ∗
for t ∈ (0,1), then u∗

λ is continuous in λ, that is, λ → λ0 (λ0 > 0) implies ‖u∗
λ − u∗

λ0
‖ → 0. If there exists β∗ ∈ (0, 1

2 ) such

that ϕ(t) � tβ∗
for t ∈ (0,1), then limλ→∞ ‖u∗

λ‖ = 0, limλ→0+ ‖u∗
λ‖ = ∞.

Remark 3.5. Compared with the corresponding result in [42, Theorem 3.1], the above result is very general. Some examples
of the functions which satisfy the conditions (H1)

′ , (H2)
′ , (H7), (H8) are:

(1) f (x, u, v) = g(x)[r(u) + ζ(v)], where r : R++ → R++ is increasing, ζ : R++ → R++ is decreasing, g(x) � 0, and
g(x) ∈ Cγ (Ω̄) with γ ∈ (0,1). r, ζ satisfy

∫
Ω

[r(h1(x)) + ζ(h1(x))]l dx < +∞ and for any t ∈ (0,1), there exist con-
stants ϕ1(t),ϕ2(t) ∈ (t,1] such that r(tu) � ϕ1(t)r(u), ζ(tu) � ϕ2(t)ζ(u), u ∈ R++ . Here we take ϕ(t) = min{ϕ1(t),ϕ2(t)},
t ∈ (0,1).

(2) f (x, u, v) = a(x)[up + v−τ ], where p, τ ∈ (0,1) and a is a Hölder continuous function in Ω such that c1d(x)q �
a(x) � c2d(x)q in Ω, here c1, c2 > 0, q is a real number and d(x) = dist(x, ∂Ω). Moreover, if N(p + q) > −1, then∫
Ω

[h1
p(x)]l dx < +∞; if 0 < τ < 1

N , then
∫
Ω

[h1
−τ (x)]l dx < +∞, where l > N. Here we take ϕ(t) = min{t p, tτ },

t ∈ (0,1).

Proof of Theorem 3.6. For the sake of convenience, set E = C(Ω̄), the Banach space of continuous functions on Ω̄ with the
norm ‖u‖ = max{|u(x)|: x ∈ Ω̄}. Set P = {u ∈ C(Ω̄) | u(x) � 0, x ∈ Ω̄}, the standard cone. It is clear that P is a normal cone
in E and the normality constant is 1.

Firstly, we show that, for any u, v ∈ Ph1 , the following linear elliptic boundary value problem⎧⎨
⎩

−�w = λ f (x, u, v), x ∈ Ω,

w(x) > 0, x ∈ Ω,

w(x) = 0, x ∈ ∂Ω,

(3.15)

admits a unique strong solution. Since u, v ∈ Ph1 , we can choose sufficiently small numbers ru, rv ∈ (0,1) such that

ruh1(x) � u(x) � 1

ru
h1(x), rvh1(x) � v(x) � 1

rv
h1(x), x ∈ Ω̄.

Let r0 = min{ru, rv}. Then from (H2)
′ , there exists ϕ(r0) ∈ (r0,1] such that

f
(
x, u(x), v(x)

)
� f

(
x, r0h1(x),

1

r0
h1(x)

)
� ϕ(r0) f

(
x,h1(x),h1(x)

)
, x ∈ Ω,

f
(
x, u(x), v(x)

)
� f

(
x,

1

r0
h1(x), r0h1(x)

)
� 1

ϕ(r0)
f
(
x,h1(x),h1(x)

)
, x ∈ Ω.

Thus we get by applying the integrability condition (H8) that∫
Ω

[
f
(
x, u(x), v(x)

)]l
dx < +∞,

namely, f (x, u, v) ∈ Ll(Ω). By the classical theory of linear elliptic equations (see [39]), the problem (3.15) admits a unique
strong solution wu,v ∈ W 2,l(Ω) ∩ W 1,l

0 (Ω). Recall that l > N. Using the Sobolev imbedding theory, wu,v ∈ C1,β (Ω̄) with
β = 1 − N . Now we define an operator Aλ : Ph × Ph → E by
l 1 1
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Aλ(u, v)(x) = wu,v(x), u, v ∈ Ph1 ,

where wu,v is the unique strong solution of (3.15) for u ∈ Ph1 . Evidently, Aλ : Ph1 × Ph1 → P . Next we prove that
Aλ(h1,h1) ∈ Ph1 . Suppose that φ is the solution of (3.15) with u = v = h1, then Aλ(h1,h1) = φ ∈ C1,β (Ω̄). Then from
Lemma 3.4, there exists a positive constant Cφ such that

φ(x) � Cφh1(x), x ∈ Ω̄.

Note that f (x,h1(x),h1(x)) � 0. By the maximal principle, φ(x) � 0. Since φ(x) > 0 for x ∈ Ω, an application of Lemma 3.3
implies that

φ(x) � C0d(x), x ∈ Ω̄. (3.16)

Combining (3.14) and (3.16), there exists a positive constant cφ such that

φ(x) � cφh1(x), x ∈ Ω̄.

Hence, φ = Aλ(h1,h1) ∈ Ph1 . From (H2)
′ and the comparison principle, we can easily prove that Aλ : Ph1 × Ph1 → P is

mixed monotone.
Secondly, we prove that Aλ satisfies (A2). For any u, v ∈ Ph1 and t ∈ (0,1), we have{−�Aλ

(
tu, t−1 v

) = λ f
(
x, tu, t−1 v

)
, x ∈ Ω,

Aλ

(
tu, t−1 v

)
(x) = 0, x ∈ ∂Ω,

and {−�ϕ(t)Aλ(u, v) = λϕ(t) f (x, u, v), x ∈ Ω,

ϕ(t)Aλ(u, v)(x) = 0, x ∈ ∂Ω.

From (H2)
′ we get f (x, tu(x), t−1 v(x)) − ϕ(t) f (x, u(x), v(x)) � 0 for any x ∈ Ω̄. Therefore,{−�

(
Aλ

(
tu, t−1 v

) − ϕ(t)Aλ(u, v)
)
� 0, x ∈ Ω,

Aλ

(
tu, t−1 v

)
(x) − ϕ(t)Aλ(u, v)(x) = 0, x ∈ ∂Ω.

Using the comparison principle again, we can obtain Aλ(tu, t−1 v) � ϕ(t)Aλ(u, v) immediately. Finally, using Theorem 2.1,
operator Aλ has a unique fixed point u∗

λ in Ph1 , i.e., Aλ(u∗
λ, u∗

λ) = u∗
λ. This implies that the problem (3.13) admits a unique

solution u∗
λ ∈ Ph1 . By the theory of the linear elliptic equation, for fixed u = v = u∗

λ, the problem (3.15) admits a unique

solution ū∗
λ ∈ W 2,l(Ω) ∩ W 1,l

0 (Ω), and hence ū∗
λ ∈ C1,β (Ω). Recalling the uniqueness of the solution of (3.13), one can see

that ū∗
λ = u∗

λ . Thus the problem (3.13) has a unique classical solution u∗
λ ∈ C1,β (Ω̄). Moreover, by using Theorem 2.3 and

the theory of the linear elliptic equation, if ϕ(t) > t
1
2 for t ∈ (0,1), then u∗

λ is strictly decreasing in λ, that is, 0 < λ1 < λ2

implies u∗
λ1

� u∗
λ2

, u∗
λ1

	= u∗
λ2

. If there exists β∗ ∈ (0,1) such that ϕ(t) � tβ∗
for t ∈ (0,1), then u∗

λ is continuous in λ, that is,

λ → λ0 (λ0 > 0) implies ‖u∗
λ −u∗

λ0
‖ → 0. If there exists β∗ ∈ (0, 1

2 ) such that ϕ(t) � tβ∗
for t ∈ (0,1), then limλ→∞ ‖u∗

λ‖ = 0,
limλ→0+ ‖u∗

λ‖ = ∞. �
Remark 3.6. The method used here is new to the literature and so is the existence–uniqueness result to the singular Dirichlet
problem for the Lane–Emden–Fowler equation. This is also the main motivation for the study of (3.13) in the present work.
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