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Abstract

We study certain resonance-counting functions for potential scattering on infinite cylinders

or half-cylinders. Under certain conditions on the potential, we obtain asymptotics of the

counting functions, with an explicit formula for the constant appearing in the leading term.
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1. Introduction

We study potential scattering on infinite cylinders and half-cylinders. In
particular, we give some sharp upper bounds and some asymptotics for resonance-
counting functions in this setting.
Let X ¼ ð�N;NÞ � Y ; or ½0;NÞ � Y ; where Y is a smooth, compact, connected

manifold, with or without boundary. We consider the product metric

ðdxÞ2 þ gY ;

where gY is a smooth metric on Y : Let D be the Laplacian on X ; with Dirichlet or
Neumann boundary conditions if X has a boundary. We consider operators Dþ V ;
where VALN

compðX ;CÞ:
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Let DY be the Laplacian on Y ; with boundary conditions if necessary, and let

fs2j g; s20ps21ps22p? be the set of all eigenvalues of DY ; repeated according to their

multiplicity, and let n20on21on22o? be the distinct eigenvalues of DY : Then the

resolvent of the Laplacian D on X ; or of Dþ V ; for VALN

compðX Þ; has a

meromorphic continuation to the Riemann surface Ẑ on which rjðzÞ ¼ ðz � n2j Þ
1=2

is a single-valued function for all j [10,12]. Thus the resonances, poles of the

meromorphic continuation of the resolvent, are points in Ẑ: In many settings,
resonances correspond to waves which eventually decay. Additionally, they are in
many ways analogous to eigenvalues. Because of this, they have been widely
studied—see [15,17,18] for an introduction to resonances and for further references.
Here, we study a simple case of scattering on manifolds with infinite cylindrical

ends. The spectral and scattering theory of such manifolds exhibits some
characteristics one expects both from one-dimensional scattering and from n-
dimensional spectral theory (if dimX ¼ n). The resonance-counting functions we
consider here demonstrate the one-dimensional nature of the scattering. Evidence of
the n-dimensional nature can be seen, for example, in the Weyl asymptotics or in the
maximal rate of growth of the eigenvalue-counting function [5,13]. It also appears in
some resonance-counting functions, e.g. [3].

For zAC\½n20;NÞ; RV ðzÞ ¼ ðDþ V � zÞ�1 is bounded on L2ðXÞ except, perhaps,
for a (perhaps infinite, if V is complex-valued) set of points corresponding to

eigenvalues. Considered as a map from L2
compðX Þ to H2

locðX Þ; RV has a

meromorphic continuation to the Riemann surface Ẑ described earlier. Let rjðzÞ ¼
ðz � n2j Þ

1=2 and let r̃kðzÞ ¼ rjðzÞ if s2k ¼ n2j :We use the convention that Im rjðzÞ40 for

all j in the region in which RV ðzÞ is bounded on L2ðXÞ:
Let

Px : Rx � Yy{ðx; yÞ/xAR

and for VALNðR� YÞ; let convxðsuppðVÞÞ be the convex hull of PxðsuppðVÞÞ (cf.
[16]).

Theorem 1.1. Let X ¼ ð�N;NÞ � Y and let VALN

compðX ;CÞ: Fix a sheet of Ẑ; and

suppose that Im rj0ðzÞo0 on this sheet. Then, there is a constant cV ;EX0 such that for

any a40;

#fzk : zk is a pole of RV ðzÞ on this sheet;

jrj0ðzkÞjor; Im rj0ðzkÞo� ag ¼ cV ;Er þ oaðrÞ:

The constant cV ;E depends on the potential V and the sheet (indicated by E). Moreover,

if convxðsuppðVÞÞ ¼ ½�b; g�; then

cV ;Ep
2

p
ðgþ bÞ#fl : Im r̃lðzÞo0 when z lies on this sheetg:
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Here, as everywhere, we count resonances with multiplicities. The error term oaðrÞ
depends on V and on the sheet as well as on a; of course.
We remark that this bound on the constant cV ;E is sharp, as can easily be seen by

considering a potential that depends only on x; and using the results of [16] or [9] for
potential scattering on the line.
Although Theorem 1.1 gives, in some sense, asymptotics of a resonance-counting

function, it does not give meaningful lower bounds on the size of cV ;E: In some settings
we are able to actually determine cV ;E; but we need some additional conditions on V :

Let ffjg be an orthonormal set of eigenfunctions of DY associated with s2j : By
translating if necessary, we can, in the case of the full cylinder, arrange that for some
bAR; the support of V is contained in ½�b; b� � Y ; but is not contained in the
product of any smaller interval with Y :

Theorem 1.2. Let X ¼ ð�N;NÞ � Y and suppose that convxðsuppðVÞÞ ¼ ½�b; b�:
Restrict ourselves to a sheet of Ẑ with Im rjðzÞo0 if and only if j ¼ j0: Suppose that n2j0
is a simple eigenvalue of DY ; with n2j0 ¼ s2l0 ; and that

CjVl0l0ðxÞj ¼ Cj
Z

Y

Vðx; yÞjfl0
ðyÞj2d volY jXjVðx; yÞj; for jx � bjoe; jx þ bjoe

ð1Þ

for some C; e40: Then, for any a40;

#fzk : zk is a pole of RV ðzÞ on this sheet; jrj0ðzkÞjor; Im rj0ðzkÞo� ag

¼ 4

p
br þ oaðrÞ:

In Section 4, we give an example of a nontrivial complex-valued potential for
which (1) is not satisfied and for which the conclusion of the theorem does not hold.
In fact, this particular potential has no resonances away from the ramification points

of bZZ so that cV ;E ¼ 0 for all sheets. This given an example of some behaviour which

is even asymptotically truly different from that demonstrated by scattering by the
family of potentials VðxÞ: Moreover, this means that potential scattering on
cylinders provides an example of a setting in which even the order of growth of a
resonance-counting function may vary depending on the potential.
In Section 4, we prove a theorem which gives another situation in which we can

determine cV ;E: In Section 5, we give some analogous results for potential scattering
on half-cylinders.
Scattering on cylinders bears some resemblance to potential scattering on the line.

On the line, the distribution of resonances has been studied in [9,14,16]. The

complicated nature of Ẑ makes more difficult the question of bounding the number
of resonances in the cylindrical end setting. Earlier results on resonances for
manifolds with cylindrical ends include [1–3,6–8], and references therein. For general
scattering theory on manifolds with cylindrical ends, references include [10,12].
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2. Preliminaries and notation

Let rjðzÞ ¼ ðz � n2j Þ
1=2 and identify the physical sheet of Ẑ as being the part of Ẑ on

which Im rjðzÞ40 for all j and all z and on which RV ðzÞ is bounded on L2ðXÞ for all
but a discrete set of z: Other sheets will be identified, when necessary, by indicating

for which values of j Im rjðzÞo0: Each sheet can be identified with C\½n20;NÞ: With
this language, there are points in Ẑ which belong to no sheet but which belong to the
boundary of the closure of two sheets, and the ramification points, which correspond

to fn2j g and belong to the closure of four sheets (except for ramification points

corresponding to n20). We note that sheets that meet the physical sheet are

characterized by the existence of a JAN such that

Im rjðzÞo0 for all z on that sheet if and only if jpJ:

We can associate to a fixed sheet of Ẑ a set ECN,f0g ¼ N0;

E ¼ fj : Im rjðzÞo0 on this sheetg:

We shall call E the labeling set and denote the associated sheet by ZE: Let

*E ¼ flAN0 : s2l ¼ n2j for some jAEg:

Let ffjg be an orthonormal set of eigenfunctions of DY associated with fs2j g:
In general, we shall use z to stand for a point in Ẑ and PðzÞ to represent its

projection to C: For wARm; /wS ¼ ð1þ jwj2Þ1=2: We will denote by C a constant
whose value may change from line to line.
Next, we recall some results and language of complex analysis, e.g. [11], and recall

a theorem we shall need on the distribution of zeros of functions which are ‘‘good’’ in
a half-plane.
We shall often work with functions that are holomorphic not in the whole plane

but are holomorphic within an angle ðy1; y2Þ: A function F holomorphic in an angle
ðy1; y2Þ is of order r there if

limr-N

ln ln ðsupyAðy1;y2ÞjFðreiyÞjÞ
ln r

¼ r:

A function of order r in the angle ðy1; y2Þ is of type t there if

limr-N

ln supyAðy1;y2ÞjFðreiyÞj
rr

¼ t:

A function of order 1 and type toN (in an angle ðy1; y2Þ) is said to be of exponential
type there. Of course, r and t can depend on y1 and y2:
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The indicator of a function F holomorphic in an angle y1oarg zoy2 and of order
r is

hF ðyÞ ¼ limr-N

ln jFðreiyÞj
rr

:

A function F is of completely regular growth within the angle ðy1; y2Þ if

lim
r-N

reE

ln jFðreiyÞj
rr

¼ hF ðyÞ;

where the set ECRþ is of zero relative measure and the convergence is uniform for
yAðy1; y2Þ:
We shall abuse notation slightly and also use the language above for a function

that is holomorphic for y1oarg zoy2 and z outside of a compact set.
For a function f defined in the lower half plane, let nf�ðrÞ be the number of zeros

of f ; counted with multiplicity, that lie in the lower half-plane and have norm less
than r:

Theorem 2.1. Suppose f ðzÞ is holomorphic in a neighborhood of the closed lower half-

plane Im zp0;

jf ðzÞjpCeCjzj

there, f ð0Þ ¼ 1; Z
N

�N

d½arg f ðtÞ�
dt

dt

���� ����oN

and Z
N

�N

ln jf ðtÞj
1þ t2

dt

���� ����oN:

Then

lim
r-N

nf�ðrÞ
r

¼ 1

2p

Z 2p

p
hf ðjÞ dj:

The proof of this theorem can be found in [4]. It is an adaptation of arguments of
[11, Chapter III, Section 2] and [11, Theorem 3, Chapter III, Section 3].
We note, moreover, that the assumptions of Theorem 2.1 mean that f is a function

of completely regular growth in the lower half-plane and that hf ðyÞ ¼ cf jsin yj for
poyo2p:
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3. Proof of Theorem 1.1

As in [9], here we find a matrix B so that the poles of the resolvent in the region in
question are included in the zeros of detðI þ BÞ: We study the properties of the
matrix B; and then apply Theorem 2.1. Recall that here X ¼ ð�N;NÞ � Y :
Let

R0ðzÞ ¼ ðD� zÞ�1 ¼
XN
j¼1

i

2rjðzÞ
eijx�x0jrjðzÞ

X
s2

l
¼n2

j

flðyÞ %flðy0Þ: ð2Þ

Then

ðDþ V � zÞR0ðzÞ ¼ I þ VR0ðzÞ: ð3Þ

Since R0ðzÞ has no null space, away from the ramification points of Ẑ; RV ðzÞ has a
pole if and only if I þ VR0ðzÞ has nontrivial null space (and the multiplicities agree).
If ECN0 is a finite set, define wE : Ẑ-Ẑ as follows. To z we may associate the set

of square roots frjðzÞg: Then wEðzÞ may be determined by saying it is the element of
Ẑ associated to the set frjðwEðzÞÞg; with

rjðwEðzÞÞ ¼
�rjðzÞ if jAE;

rjðzÞ if jeE:

�
Suppose we now restrict ourselves to consider only zAZE: Then wEðzÞ lies in the

physical sheet. Moreover,

I þ VR0ðzÞ ¼ ðI þ VR0ðwEðzÞÞÞ I þ I þ VR0ðwEðzÞÞ½ ��1V R0ðzÞ � R0ðwEðzÞÞ½ �
h i

¼ðI þ VR0ðwEðzÞÞÞ I þ I þ VR0ðwEðzÞÞ½ ��1A1ðzÞ
h i

; ð4Þ

where A1ðzÞ has Schwartz kernel

Vðx; yÞ
X
lA *E

i

2r̃lðzÞ
ðeir̃lðzÞðx�x0Þ þ e�ir̃lðzÞðx�x0ÞÞflðyÞflðy0Þ:

If jImPðwEðzÞÞj4jj Vðx; yÞjjLN ; then I þ VR0ðwEðzÞÞ is invertible. If we restrict
ourselves to such z; then, the poles of the resolvent of Dþ V are given by the zeros of

detðI þ A2ðzÞÞ;

where A2ðzÞ is

A2ðzÞ ¼
X
lA *E

i

2r̃lðzÞ
ðjlþ#Cl� þ jl�#ClþÞ
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with

Fl7ðx; y; zÞ ¼ e7ir̃lðzÞxflðyÞ

jl7ðx; y; zÞ ¼ ðI þ VR0ðwEðzÞÞÞ�1ðVFl7Þð; zÞ
� 	

ðx; yÞ

Cl;7ðx; y; zÞ ¼ e7ir̃l ðzÞxflðyÞ:

Here we use the notation

ðf#gÞhðx; yÞ ¼ f ðx; yÞ
Z

X

gðx0; y0Þhðx0; y0Þd volX :

One can then see that the zeros of (I þ A2ðzÞ) are the same as the zeros of ðI þ
A2ðzÞwÞ; where wALN

compðXÞ is one on the support of V : The zeros of ðI þ A2ðzÞwÞ are
the same as the zeros of detðI þ BðzÞÞ; where

BðzÞ ¼
Bþ�ðzÞ B� �ðzÞ
BþþðzÞ B�þðzÞ


 �
; ð5Þ

Bþ7 ¼ ðbþ7ljÞl;jA *E; B�7 ¼ ðb�7ljÞl;jA *E; and

bþ8ljðzÞ ¼
i

2r̃lðzÞ

Z
X

jjþðx; y; zÞwðx; yÞCl8ðx; y; zÞ d volX ;

b�8ljðzÞ ¼
i

2r̃lðzÞ

Z
X

jj�ðx; y; zÞwðx; yÞCl8ðx; y; zÞ d volX : ð6Þ

We shall first obtain upper bounds on the entries in the matrix B; and thus on
detðI þ BðzÞÞ: To do so, we will use the following lemma.

Lemma 3.1. Let f7ðx; zÞ ¼ e7ir̃jðzÞx; and let w1; w2ACN

c ðX Þ: If z lies on the physical

sheet of Ẑ and Im r̃jðzÞ ¼ t040; then

w1
1

f7
R0ðzÞf7w2

���� �������� ����
L2ðXÞ-L2ðXÞ

p
C

jRe r̃jðzÞj7=12

when jr̃jðzÞj is sufficiently large. Moreover, for Im r̃jðzÞXt040;

w1
1

f7
R0ðzÞf7w2

���� �������� ����
L2ðX Þ-L2ðX Þ

p
C

jr̃jðzÞj5=12

when jr̃jðzÞj is sufficiently large.
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Proof. Without loss of generality we can assume w1 and w2 are independent of y and
thus it is suffices to consider, for lAN;

w1
1

f7
R0lðzÞf7w2

���� �������� ����
L2ðXÞ-L2ðXÞ

;

where R0lðzÞ has Schwartz kernel

i

2r̃lðzÞ
eir̃lðzÞjx�x0jflðyÞ %flðy0Þ:

The Schwartz kernel of w1ðf7Þ�1R0lðzÞf7w2 is

Kl7ðx; y; x0; y0; zÞ ¼

i

2r̃lðzÞ
eiðr̃lðzÞ8r̃jðzÞÞðx�x0ÞflðyÞ %flðy0Þw1ðxÞw2ðx0Þ if x4x0

i

2r̃lðzÞ
eið�r̃lðzÞ8r̃jðzÞÞðx�x0ÞflðyÞ %flðy0Þw1ðxÞw2ðx0Þ if xox0:

8>><>>:
We shall show that when Im r̃jðzÞ ¼ t0Z

X

Z
X

jKl7ðx; y; x0; y0; zÞj2 d volX d volXp
C

jRe r̃jðzÞj7=6

with constant C independent of l; which will prove the first part of the lemma.
First, notice that on the support of w1ðxÞw2ðx0Þ; the exponential function in Kl7 is

bounded independent of l: This is because Im r̃lðzÞ40 and jIm r̃jðzÞðx � x0Þj is
bounded for xAsupp w1; x0Asupp w2: Thus,

jjKl7ðzÞjj2L2p
C

jr̃lðzÞj2
: ð7Þ

When r̃lar̃j; we may integrate by parts to see that

jjKl7ðzÞjj2L2p
C

jIm ðr̃jðzÞ � *rlðzÞÞj
1

jr̃lðzÞj2

so that

jjKl7ðzÞjj2L2p
C

jr̃lðzÞj2
minð1; ðjIm ðr̃jðzÞ � *rlðzÞÞjÞ�1Þ:

Let r̃j ¼ s þ it0: Then if r̃lðzÞ ¼ u þ iv; a computation shows that, with

g ¼ s2j þ s2 � t20 � s2l ; u2 ¼ 1
2
ðg þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 4s2t20

q
Þ; and v2 ¼ 1

2
ð�g þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 4s2t20

q
Þ:
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If gpðjsjt0Þ7=6; then

v2X
1

2
�ðjsjt0Þ7=6 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjsjt0Þ7=3 þ 4ðjsjt0Þ2

q
 �
¼ðjsjt0Þ5=6 þ Oððjsjt0Þ1=2Þ: ð8Þ

Then

jjKl7ðzÞjj2L2p
C

jr̃lðzÞj2jv � t0j
p

C

ðjsjt0Þ5=6ðjsjt0Þ5=12
p

C

jsj5=4

when jsj is sufficiently large and Im r̃jðzÞ ¼ t0:

If, on the other hand, gXðjsjt0Þ7=6; then we use

u2 ¼ 1

2
g þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 4ðst0Þ2

q
 �
XgXðjsjt0Þ7=6 ð9Þ

and

jjKl7ðzÞjj2L2p
C

jr̃lðzÞj2
p

C

u2
p

C

ðjsjt0Þ7=6
:

This finishes the proof of the first part of the lemma.
To prove the second part of the lemma, first notice that if r̃jðzÞ ¼ s þ it and jsjo1;

then 1

jr̃lðzÞj2
pC

t2
when t is sufficiently large, so that

jjKl7ðzÞjj2L2p
C

t2

in this region. On the other hand, if jsjX1; inequalities (7)–(9) together show that
when tXt0;

jjKl7ðzÞjj2L2p
C

js þ itj5=6
: &

Fix j0AE: We shall eventually use k ¼ rj0ðzÞ to identify our fixed sheet ZE of Ẑ

with the lower half-plane. However, we shall continue to use z as a coordinate as
well, when it is more convenient. In any case, we restrict ourselves to ZE:

Lemma 3.2. Fix a sheet ZE of Ẑ and let j0AE; l; jA *E: If zAZE;�Im rj0ðzÞXa40; then

for jrj0ðzÞj sufficiently large (depending on a),

jbþ�ljðzÞjp
C

jr̃lðzÞj
; jb�þljðzÞjp

C

jr̃lðzÞj
:
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Proof. First we show that in this region, for jA *E and wALN

compðXÞ;

jje8ir̃jðzÞxðI þ VR0ðwEðzÞÞÞ�1we7ir̃jðzÞxjjpC ð10Þ

when jrj0ðzÞj is sufficiently large.
When jrj0ðzÞj is sufficiently large, and *wALN

compðXÞ is one on the support of V ;

jje8ir̃jðzÞxðI þ VR0ðwEðzÞÞÞ�1we7ir̃jðzÞxjj

¼ jj
XN
m¼0

e8ir̃jðzÞxð�1ÞmðVR0ðwEðzÞÞ*wÞmwe7ir̃jðzÞxjj

¼ jj
XN
m¼0

ð�1Þmðe8ir̃jðzÞxVR0ðwEðzÞÞ*we7ir̃jðzÞxÞmwjj

pC; ð11Þ

where we are using Lemma 3.1. Using this estimate and the definition of bþ�lj ; b�þlj ;

we obtain the desired estimates. &

We shall need the following bound on the bþþljðzÞ and b� �ljðzÞ:

Lemma 3.3. Fix a sheet ZE of Ẑ; and let j0AE: If zAZE; Im rj0ðzÞp� ao0; l; jA *E;

and convxðsuppðVÞÞ ¼ ½�b; g�; then for jrj0ðzÞj sufficiently large (depending on a),

jbþþljðzÞjp
Ce2gjIm r̃jðzÞj

jr̃lðzÞj
; jb� �ljðzÞjp

Ce2bjIm r̃jðzÞj

jr̃lðzÞj
:

Proof. We give the proof for bþþlj: Recall that Fj7ðx; y; zÞ ¼ e7ir̃jðzÞxfjðyÞ: Then we
obtain that

jjjjþjj ¼ jjðI þ VR0ðwEðzÞÞÞ�1VFjþjjpCegjIm r̃jðzÞj:

Note that if supp fCsuppV ; then suppðI þ VR0ðwEðzÞÞÞ�1fCsupp V : We use this
fact and the bound above to obtain

jbþþljðzÞj ¼
1

2r̃lðzÞ

Z
X

jjþðx; y; zÞwðx; yÞClþðx; y; zÞ d volX

���� ����
p

C

jr̃lðzÞj
e2gjIm r̃jðzÞj

for jrj0ðzÞj sufficiently large, Im rj0ðzÞp� a: For the last inequality we have also used
that r̃iðzÞ-r̃jðzÞ as PðzÞ-N:

A similar argument yields the proof of the bound for b� �ljðzÞ: &
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Proof of Theorem 1.1. We use the coordinate k ¼ rj0ðzÞ to identify our fixed sheet
with the lower half-plane. Let g1ðkÞ ¼ detðI þ BðzðkÞÞÞ; where PðzðkÞÞ ¼ k2 þ n2j0
and z lies on our sheet. Here BðzÞ is as defined in (5) and (6). Then g1ðkÞ has at most
a finite number of poles, k1; k2;y; kma ; listed with multiplicity, in Im kp� a: Let

g2ðkÞ ¼ g1ðkÞðk � k1Þðk � k2Þ?ðk � kmaÞ

and, if g2ð�iaÞa0; let

g3ðkÞ ¼
g2ðkÞ

g2ð�iaÞ:

If g2ð�iaÞ ¼ 0; let

g3ðkÞ ¼
g2ðkÞl!

ðk þ iaÞl
g
ðlÞ
2 ð�iaÞ

;

where l is chosen so that g
ðmÞ
2 ð�iaÞ ¼ 0 if mol but g

ðlÞ
2 ð�iaÞa0: Then Lemmas 3.2

and 3.3 show that the hypotheses of Theorem 2.1 are satisfied for g4ðkÞ ¼ g3ðk � iaÞ;
with

jhg4ðjÞjp2ðgþ bÞcardð *EÞjsin jj:

Recalling that, except possibly for a finite number, the zeros of g3ðkÞ correspond to
the poles of RV ðzÞ in this region, an application of Theorem 2.1 finishes the
proof. &

4. Determining cV ;E and a counterexample

In this section we prove Theorem 1.2, give a counterexample, and give another
example of a setting in which cV ;E can be determined.

We shall need the following lemma, which is Lemma 4.1 of [9].

Lemma 4.1. Suppose vALNðRÞ has compact support contained in ½�1; 1�; but in no

smaller interval. Suppose f ðx; kÞ is analytic for k in the lower half-plane, and for real k

we have f ðx; kÞAL2ð½�1; 1� dx;RdkÞ: Then
R

e7ikxvðxÞð1� f ðx; kÞÞ dx has exponential

type at least 1 for k in the lower half-plane.

In the next lemma, we use k ¼ r̃lðzÞ as a coordinate, and, fixing a sheet of Ẑ; let

zðkÞ be the corresponding point on Ẑ:

Lemma 4.2. Let X ¼ ð�N;NÞ � Y and suppose that convxðsuppðVÞÞ ¼ ½�b; b�:
Suppose that

CjVllðxÞj ¼ Cj
Z

Y

Vðx; yÞjflðyÞj
2

d volY jXjVðx; yÞj; for jx � bjoe; jx þ bjoe
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for some C; e40: Fix a sheet ZE of Ẑ with lA *E; and choose a so that there are no poles

of bþþll ; b� �ll on ZE with Im rlðzÞp� a: Then bþþllðzðkÞÞ; b� �llðzðkÞÞ are functions

of type at least 2b for the half-plane Im kp� a; k ¼ r̃lðzÞ:

Proof. We give the proof for bþþll ; as the proof for b� �ll is similar.

Let gðk; xÞ ¼ eikx and let

f1ðx; y; kÞ ¼ %flðyÞ
1

Vðx; yÞ
1

g
½I � ½I þ VR0ðwEðzðkÞÞÞ��1�VFlþð�; zðkÞÞ

� �
ðx; yÞ

¼ %flðyÞ
XN
m¼1

ð�1Þmþ1 ððgÞ�1R0ðwEðzðkÞÞÞVgÞmfl

h i
ðx; yÞ;

where the second equality holds when jkj is sufficiently large. Then

bþþllðzðkÞÞ ¼
i

2k

Z
e2ikxVðx; yÞðjfl j

2ðyÞ � f1ðx; y; kÞÞ d volX :

Let

weðxÞ ¼
0 if jxjob � e or jxj4b;

1 if b � epjxjpb:

�

Let

vðxÞ ¼
Z

Y

Vðx; yÞjfl j
2ðyÞ d volY ¼ VllðxÞ;

and

f ðx; kÞ ¼ 1

VllðxÞ
weðxÞ

Z
Y

Vðx; yÞ f1ðx; y; kÞ d volY :

Note that

bþþllðzðkÞÞ ¼
i

2k

Z
e2ikxvðxÞð1� f ðx; kÞÞ dx

� i

2k

Z
X

e2ikxð1� weÞVðx; yÞ f1ðx; y; kÞ d volX :

Using (10) and the support properties of Vð1� weÞ; the last term on the right is of
type at most 2b � 2e; and so we need only show that the first integral on the right is
of type at least 2b: To do this, we will apply Lemma 4.1 to bþþllðzðk þ iaÞÞ:
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We must show that f ðx; kÞAL2ð½�b; b� dx;R dkÞ when Im k ¼ �a: We haveZ
jf ðx; kÞj2 dx ¼

Z
jxjpb

jVllðxÞj�2weðxÞ
Z

Y

Vðx; yÞ f1ðk; x; yÞ d volY

���� ����2 dx

p
Z
jxjpb

Z
Y

jVllðxÞj�2weðxÞjVðx; yÞj2 d volY

�
Z

Y

j f1ðk; x; yÞj2 d volY dx

pC

Z
X

j f1ðk; x; yÞj2 d volX :

By Lemma 3.1, when jRe kj is sufficiently large, this is bounded by CjRe kj�7=6:
When jRe kj is in a compact set (with Im k ¼ �a), it is enough to note thatR
j f1ðk; x; yÞj2dvolX is bounded, so that f ðx; kÞAL2ð½�b; b� dx;R dkÞ: Then, applying

Lemma 4.1 after appropriately rescaling, we finish the proof. &

Proof of Theorem 1.2. We use k ¼ rj0ðzÞ ¼ r̃l0ðzÞ as the coordinate. The simplicity of
n2j0 as an eigenvalue of DY means that the matrix B is a 2� 2 matrix

B ¼
bþ�l0l0 b� �l0l0

bþþl0l0 b�þl0l0


 �
:

Thus detðI þ BÞðzðkÞÞ ¼ ½ð1þ bþ�l0l0Þð1þ b�þl0l0Þ � b� �l0l0bþþl0l0 �ðzðkÞÞ ¼ j1ðkÞ:
Suppose first that j1ðkÞ has no poles in the region Im kp� a: If j1ð�iaÞa0; let

j2ðkÞ ¼
j1ðkÞ

j1ð�iaÞ:

If j1ð�iaÞ ¼ 0; let

j2ðkÞ ¼
j1ðkÞl!

ðk þ iaÞljðlÞ
1 ð�iaÞ

;

where l is chosen so that jðmÞ
1 ð�iaÞ ¼ 0 if mol but jðlÞ

1 ð�iaÞa0:

Note that by Lemmas 3.2 and 3.3, for sAR; j2ðs � iaÞ ¼ c0ð1þ Oðjsj�1ÞÞ when
jsj-N; for some nonzero constant c0: Moreover, by Lemmas 3.2, 3.3, and 4.2,
j2ðkÞ is a function of type 4b in the half-plane Im kp� a: Then applying Theorem
2.1 to j2ðkÞ in the half-plane Im kp� a; we obtain the result.
If j1ðkÞ has poles in the region Im kp� a; they can be handled in the same

manner as in the proof of Theorem 1.1. &

We give a counterexample for Theorem 1.2. Let X ¼ R� S1; and let Vðx; yÞ ¼
V1ðxÞeimy with V1ðxÞALN

compðRÞ nontrivial and m40 an integer.
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In fact, this potential has no resonances away from the ramification points of Ẑ:
To see this, note that if z is resonance and not a ramification point, there is a

nontrivial function uðx; yÞ ¼
P

N

�N
ujðxÞeijyAL2ðXÞ; with

ðI þ V1ðxÞeimyR0ðzÞÞu ¼ 0

(see (3)). The function u is necessarily supported on the support of V : Then

ujþmðxÞ ¼ �V1ðxÞðR0jðzÞujÞðxÞ; ð12Þ

where

R0jðzÞ ¼
i

2rjðzÞ
eijx�x0 jrjðzÞ:

The operator R0j is bounded from L2
compðRÞ to L2

compðRÞ: For a fixed z; when jjj is
sufficiently large we have

jjV1ðxÞR0jðzÞjjpCj j j�1: ð13Þ

For u to be in L2ðXÞ; we must have jjujjj-0 when j-7N: But, using (12) and (13),

when jjj is sufficiently large,

jjujþmjjp
C

jjjjjujjj:

Thus, we cannot have jjujjj-0 when j-�N unless there is a j0 so that uj ¼ 0

whenever joj0: In this case, using (12), uj ¼ 0 for all j: Thus we have a contradiction.

In Theorem 1.2 we used some knowledge of the potential near the boundary of its
support to allow us to find cV ;E: In the following theorem we again make use of the

fact that the potential is ‘‘controlled’’ near the boundary of its support.

Theorem 4.1. Suppose for some potential V0ALN

compðX ;CÞ; with supp V0C½�b0; b0� �
Y and for some sheet ZE of Ẑ with j0AE we have

#fzk : zkAZE; zk is a pole of RV0
ðzÞ; jrj0ðzkÞjor; Im rj0ðzkÞo� ag

¼ 4b0

p
#fl : lA *Egr þ oaðrÞ

for some a40: Suppose in addition WALN

compðX ;CÞ with supp WC½�b0 þ e; b0 �
e� � Y for some e40: Then

#fzk : zkAZE; zk is a pole of RV0þW ðzÞ; jrj0ðzkÞjor; Im rj0ðzkÞo� ag

¼ 4b0

p
#fl : lA *Egr þ oaðrÞ:
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That is, if the resonance-counting function for Dþ V0 has maximal growth rate, so
does that for Dþ V0 þ W :

Proof. In the proof of this theorem, we will add a superscript to the matrix B from
Section 3 and its entries to indicate to which potential it is associated. That is, when
jrj0ðzÞj is sufficiently large, the poles of the resolvent of Dþ V correspond to the

zeros of detðI þ BV ðzÞÞ and likewise for V0: We shall also add a superscript to jl7:

In this proof, as previously, we shall sometimes use as coordinate on our sheet
k ¼ rj0ðzÞ; and then zðkÞ is the corresponding point on our sheet.
Let V ¼ V0 þ W : We shall show that BV ðzÞ ¼ BV0ðzÞ þ DðzÞ; with the entries

dljðzÞ of DðzÞ satisfying

jdljðzÞjp
C

jr̃lðzÞj
eð2b0�eÞjIm r̃jðzÞj: ð14Þ

Because of the assumption on the distribution of resonances for Dþ V0; detðI þ
BV0ðzðkÞÞÞ is of type 4b0#fl : lA *Eg in Im ko� ao0: Moreover, each entry of

BV0ðzðkÞÞ has type at most 2b0 and is bounded by Ce2b0jIm kj: Then

detðI þ BV ðzðkÞÞÞ ¼ detðI þ BV0ðzðkÞÞ þ DðzðkÞÞÞ

¼ detðI þ BV0ðzðkÞÞÞ þ O
ejIm kjð4b0#fl:lAEg�eÞ

jkj


 �
:

Applying Theorem 2.1 as in the proof of Theorems 1.1 and 1.2 finishes the proof.
It remains to show (14). Note that we may write, when jrj0ðzÞj is sufficiently large,

½I þ ðV0 þ WÞR0ðwEðzÞÞ��1

¼ I þ
XN
m¼1

ð�1Þm ðI þ V0R0ðwEðzÞÞÞ�1WR0ðwEðzÞÞ
h im

 !
½I þ V0R0ðwEðzÞÞ��1:

Then

jV
lþðzÞ ¼ ðI þ VR0ðwEðzÞÞÞ�1ðV0 þ WÞFlþð; zÞÞ

¼ ðI þ V0R0ðwEðzÞÞÞ�1ðV0Flþð; zÞÞ þ ðI þ V0R0ðwEðzÞÞÞ�1ðWFl7ð; zÞÞ

þ
XN
m¼1

ð�1Þm ðI þ V0R0ðwEðzÞÞÞ�1WR0ðwEðzÞÞ
h im

½I þ V0R0ðwEðzÞÞ��1Flþð; zÞ:

The first term on the right is jV0

lþðzÞ: The second term is, as in (11), bounded by

Ceðb0�eÞjIm rl ðzÞj: Again as in (11), the third term is also bounded by Ceðb0�eÞjIm rlðzÞj:
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Putting all this into the definition of bV
þþljðzÞ; we see that

bV
þþljðzÞ ¼ bV0

þþljðzÞ þ O
eð2b0�eÞjIm rj0

ðzÞj

jrj0ðzÞj


 �
:

A similar argument works for the other entries of BV ðzÞ; proving (14). &

Combining the previous theorem with the results for potential scattering in one
dimension [9,16], we obtain the following corollary.

Corollary 4.1. Let Vðx; yÞ ¼ V0ðxÞ þ Wðx; yÞALN

compðX ;CÞ; convxðsuppðVÞÞ ¼
½�b; b�; and supp WC½�b þ e; b � e� � Y for some e40: Then on any sheet ZE of

Ẑ with j0AE;

#fzk : zkAZE; zk is a pole of the resolvent of Dþ V ; jrj0ðzkÞjor; Im rj0ðzkÞo� ag

¼ 4b

p
#fl : lA *Egr þ oaðrÞ

for any a40:

5. Results for half-cylinders

In this section, we consider half-cylinders X ¼ ½0;NÞ � Y ; with D either the

Dirichlet or Neumann Laplacian on X : Let VALN

compðX ;CÞ: The resolvent ðDþ
V � zÞ�1 has a meromorphic continuation to Ẑ just as in the full cylinder case. We
give several results analogous to the results for full cylinders. Since the proofs are so
similar, we only sketch them.

Let R07ðzÞ ¼ ðD� zÞ�1 be the resolvent for the Neumann ðþÞ or Dirichlet ð�Þ
Laplacian on X ; for zAẐ: Restrict z to Ze: Then, following the same argument as in
the beginning of Section 3, we can show that when jImPðwEðzÞÞj4jjV jjLN ; the poles
of the resolvent of Dþ V correspond to the zeros of detðI þ B7ðzÞÞ: Here we are
again using ‘‘þ’’ for the Neumann Laplacian and ‘‘�’’ for the Dirichlet Laplacian.
To define B7ðzÞ; let

F7lðx; y; zÞ ¼ ðeir̃l ðzÞx7e�ir̃lðzÞxÞflðyÞ;

j7lðx; y; zÞ ¼ ððI þ VR07ðwEðzÞÞÞ�1ðVF7lÞð; zÞÞðx; yÞ:
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Then B7ðzÞ ¼ ðb7jkðzÞÞj;kA *E; with

b7jkðzÞ ¼
i

2r̃jðzÞ

Z
X

j7jðx; y; zÞ %F7kðx; y; zÞ d volX :

We obtain the following analog of Theorem 1.1.

Theorem 5.1. Let X ¼ ½0;NÞ � Y and let VALN

compðX ;CÞ; with suppVC½0; b� � Y :

Fix a sheet ZE of Ẑ; and suppose that j0AE: Then, there is a constant cV ;EX0 such that

for any a40;

#fzk : zkAZE; zk is a pole of the resolvent; jrj0ðzkÞjor; Im rj0ðzkÞo� ag

¼ cV ;Er þ oaðrÞ:

The constant cV ;E depends on the potential V and the sheet. Moreover,

cV ;Ep
2b

p
#fl : Im r̃lðzÞo0 when zAZEg:

Proof. Just as in the proof of Lemmas 3.2 and 3.3, we can show that on ZE

jb7jkðzÞjp
C

jr̃jðzÞj
e2bjIm r̃kðzÞj:

Then the proof follows just as the proof of Theorem 1.1. &

Theorem 5.2. Let X ¼ ½0;NÞ � Y and suppose that the support of V is contained in

½0; b� � Y and the number b cannot be replaced by a smaller one. Suppose that n2j0 is a

simple eigenvalue of DY ; with n2j0 ¼ s2l0 : Suppose, in addition, that

CjVl0l0ðxÞj ¼ Cj
Z

Y

Vðx; yÞjfl0
ðyÞj2 d volY jXjVðx; yÞj; for jx � bjoe

for some C; e40: Then, for any a40;

#fzk : zkAZfj0g; zk is a pole of the resolvent; jrj0ðzkÞjor; Im rj0ðzkÞo� ag

¼ 2

p
br þ oaðrÞ:
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Proof. Let zAZfj0g: In this case B7ðzÞ is a single function, b7l0l0 : Let k ¼ r̃l0ðzÞ and
let zðkÞ be the corresponding point on Zfj0g: We have

b7l0l0ðzðkÞÞ ¼
i

2k

Z
X

ðeikx7e�ikxÞ %fl0 ½½I þ VR0ðwEðzðkÞÞÞ��1VFl7ð; zðkÞÞ� d volX

¼ i

2k

Z
X

eikx %fl0 ½I þ VR0ðwEðzðkÞÞÞ��1V fl0ð; zðkÞÞ d volX

þ OðebjIm kjÞ:

Here fl0ðx; y; zÞ ¼ eir̃l0
ðzÞxfl0

ðyÞ; and we have used a bound similar to that of Lemma
3.1 to obtain the bound OðebjIm kjÞ on the rest. Following the technique of Lemmas
3.2 and 4.2 shows that b7l0l0ðzðkÞÞ is an exponential function of type 2b for Im kp�
a: The proof is completed as in the proof of Theorem 1.2. &
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