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Abstract

We study certain resonance-counting functions for potential scattering on infinite cylinders
or half-cylinders. Under certain conditions on the potential, we obtain asymptotics of the
counting functions, with an explicit formula for the constant appearing in the leading term.
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1. Introduction

We study potential scattering on infinite cylinders and half-cylinders. In
particular, we give some sharp upper bounds and some asymptotics for resonance-
counting functions in this setting.

Let X = (—o0,00) % Y, or[0,00) x Y, where Y is a smooth, compact, connected
manifold, with or without boundary. We consider the product metric

(dx)* + gy,

where gy is a smooth metric on Y. Let 4 be the Laplacian on X, with Dirichlet or
Neumann boundary conditions if X has a boundary. We consider operators 4 + V|
where Vel (X;C).
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Let 4y be the Laplacian on Y, with boundary conditions if necessary, and let
{07}, 05<o1<03<--- be the set of all eigenvalues of Ay, repeated according to their

multiplicity, and let v3<vi<vi<..- be the distinct eigenvalues of Ay. Then the
resolvent of the Laplacian 4 on X, or of A+ V, for VelL® (X), has a

comp

meromorphic continuation to the Riemann surface Z on which r;(z) = (z — vf)l/ :
is a single-valued function for all j [10,12]. Thus the resonances, poles of the
meromorphic continuation of the resolvent, are points in Z. In many settings,
resonances correspond to waves which eventually decay. Additionally, they are in
many ways analogous to eigenvalues. Because of this, they have been widely
studied—see [15,17,18] for an introduction to resonances and for further references.

Here, we study a simple case of scattering on manifolds with infinite cylindrical
ends. The spectral and scattering theory of such manifolds exhibits some
characteristics one expects both from one-dimensional scattering and from n-
dimensional spectral theory (if dim X = n). The resonance-counting functions we
consider here demonstrate the one-dimensional nature of the scattering. Evidence of
the n-dimensional nature can be seen, for example, in the Weyl asymptotics or in the
maximal rate of growth of the eigenvalue-counting function [5,13]. It also appears in
some resonance-counting functions, e.g. [3].

For zeC\[W3, ), Ry(z) = (4+ V —z)"" is bounded on L*(X) except, perhaps,
for a (perhaps infinite, if ¥ is complex-valued) set of points corresponding to

eigenvalues. Considered as a map from L% (X) to H{.(X), Ry has a

meromorphic continuation to the Riemann surface Z described earlier. Let ri(z) =
(z— vf)l/2 and let 7 (z) = r;(z) if 6} = v;. We use the convention that Im r;(z) >0 for
all j in the region in which Ry(z) is bounded on L(X).
Let
PRy xY,a(x,y)—>xeR

and for Ve L* (R x Y), let convy(supp(¥)) be the convex hull of P, (supp(V)) (cf.
[16]).
Theorem 1.1. Let X = (— o0, 00) x Y and let VeLZ, _(X;C). Fix a sheet of Z, and

comp
suppose that Imr; (z) <0 on this sheet. Then, there is a constant cy g >0 such that for

any o.>0,

#{z) : zx is a pole of Ry(z) on this sheet,
rjy (zic)| <r, Imrj(z) < — o} = cpgr + 04(r).

The constant cy s depends on the potential V and the sheet (indicated by &). Moreover,
if conv,(supp(V)) = [P, 7], then

2 (y+ B)#{l : Im 7(z) <0 when z lies on this sheet}.

CvesS—
n
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Here, as everywhere, we count resonances with multiplicities. The error term o,/(r)
depends on V' and on the sheet as well as on «, of course.

We remark that this bound on the constant ¢y ¢ is sharp, as can easily be seen by
considering a potential that depends only on x, and using the results of [16] or [9] for
potential scattering on the line.

Although Theorem 1.1 gives, in some sense, asymptotics of a resonance-counting
function, it does not give meaningful lower bounds on the size of ¢y . In some settings
we are able to actually determine cy ¢, but we need some additional conditions on V.

Let {¢;} be an orthonormal set of eigenfunctions of Ay associated with crf. By
translating if necessary, we can, in the case of the full cylinder, arrange that for some
beR, the support of V is contained in [—b,b] x Y, but is not contained in the
product of any smaller interval with Y.

Theorem 1.2. Let X = (— o0, 00) x Y and suppose that convy(supp(V)) = [—b, b].
Restrict ourselves to a sheet of Z with Im rj(2) <0 if'and only if j = jo. Suppose that vfo
is a simple eigenvalue of Ay, with v; = a7, and that

C|V/()l()(x)| = C|/Y V(x,y)|¢/0(y)|2dvoly\Z\V(x7y)|, for |X—b|<8, ‘X+b|<8
(1)
for some C,e>0. Then, for any a.>0,

#{zi : zi is a pole of Ry (z) on this sheet,|r;,(zi)|<r, Imrj(zx)< —a}

4
= Ebr—koa(r).

In Section 4, we give an example of a nontrivial complex-valued potential for
which (1) is not satisfied and for which the conclusion of the theorem does not hold.
In fact, this particular potential has no resonances away from the ramification points

of Z so that cy ¢ = 0 for all sheets. This given an example of some behaviour which
is even asymptotically truly different from that demonstrated by scattering by the
family of potentials V' (x). Moreover, this means that potential scattering on
cylinders provides an example of a setting in which even the order of growth of a
resonance-counting function may vary depending on the potential.

In Section 4, we prove a theorem which gives another situation in which we can
determine cy ¢. In Section 5, we give some analogous results for potential scattering
on half-cylinders.

Scattering on cylinders bears some resemblance to potential scattering on the line.
On the line, the distribution of resonances has been studied in [9,14,16]. The
complicated nature of Z makes more difficult the question of bounding the number
of resonances in the cylindrical end setting. Earlier results on resonances for
manifolds with cylindrical ends include [1-3,6-8], and references therein. For general
scattering theory on manifolds with cylindrical ends, references include [10,12].
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2. Preliminaries and notation

Letri(z) = (z — vf)l/ ? and identify the physical sheet of Z as being the part of Z on
which Im r;(z) >0 for all j and all z and on which Ry (z) is bounded on L*(X) for all
but a discrete set of z. Other sheets will be identified, when necessary, by indicating
for which values of j Im r;(z) <0. Each sheet can be identified with C\[v, c0). With

this language, there are points in Z which belong to no sheet but which belong to the
boundary of the closure of two sheets, and the ramification points, which correspond
to {vjz} and belong to the closure of four sheets (except for ramification points

corresponding to v(%). We note that sheets that meet the physical sheet are
characterized by the existence of a Je N such that

Imr;(z) <0 for all z on that sheet if and only if j<J.
We can associate to a fixed sheet of Z a set §NuU{0} = Ny,
6 ={j:Imr;(z)<0 on this sheet}.
We shall call & the labeling set and denote the associated sheet by Zs. Let
&={leNy: ol = vf for some je&}.

Let {¢;} be an orthonormal set of eigenfunctions of 4y associated with {a}}.
In general, we shall use z to stand for a point in Z and II(z) to represent its

projection to C. For weR™, {w) = (1 + |w|]*)"/>. We will denote by C a constant
whose value may change from line to line.

Next, we recall some results and language of complex analysis, e.g. [11], and recall
a theorem we shall need on the distribution of zeros of functions which are “good’ in
a half-plane.

We shall often work with functions that are holomorphic not in the whole plane
but are holomorphic within an angle (61, 6,). A function F holomorphic in an angle
(61,0,) is of order p there if

In In (supyc (g, o) [F (re?)])
Inr

lim, -, o

= p.
A function of order p in the angle (0;,0,) is of type t there if

T In supye (g, g,) | F (re”)]
1M, - o 0 =1
r

A function of order 1 and type 1< oo (in an angle (6}, 6,)) is said to be of exponential
type there. Of course, p and 7 can depend on 6, and 6,.
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The indicator of a function F holomorphic in an angle 6, <arg { <0, and of order
pis

In |F(re)|

hi(0) = Tim, o ——2

A function F is of completely regular growth within the angle (6, 0,) if

. In|F(re?))|
tim ™,
r¢ E

where the set £ R, is of zero relative measure and the convergence is uniform for
Oe (01 s 92)

We shall abuse notation slightly and also use the language above for a function
that is holomorphic for 6, <arg { <68, and { outside of a compact set.

For a function f defined in the lower half plane, let n,_(r) be the number of zeros
of f, counted with multiplicity, that lie in the lower half-plane and have norm less
than r.

Theorem 2.1. Suppose f({) is holomorphic in a neighborhood of the closed lower half-
plane Im (<0,

()< Ce

there, f(0) =
[ sy,
. dt
and
‘ / lr11 lj: g =
Then

F— o0 r 27'[

. 2n
lim nf(r)—l/ hy (@) de.

The proof of this theorem can be found in [4]. It is an adaptation of arguments of
[11, Chapter III, Section 2] and [11, Theorem 3, Chapter III, Section 3].

We note, moreover, that the assumptions of Theorem 2.1 mean that f is a function
of completely regular growth in the lower half-plane and that /s (0) = ¢,|sin 0| for
n<0<2m.



T. Christiansen | Journal of Functional Analysis 216 (2004) 172190 177
3. Proof of Theorem 1.1

As in [9], here we find a matrix B so that the poles of the resolvent in the region in
question are included in the zeros of det(Z + B). We study the properties of the
matrix B, and then apply Theorem 2.1. Recall that here X = (— o0, c0) X Y.

Let

R =(4-2" =3 S BB @)
j=1 ,2:v/?
Then
(A4 V —2)Ro(z) = I + VR(2). (3)

Since Ry(z) has no null space, away from the ramification points of Z, Ry (z) has a
pole if and only if 7 + VRy(z) has nontrivial null space (and the multiplicities agree).

If & =N is a finite set, define wg : Z— Z as follows. To z we may associate the set
of square roots {r;(z)}. Then ws(z) may be determined by saying it is the element of

Z associated to the set {r;(wg(z))}, with

{—rj(z) if jeé,

ri(we(z)) = r(z) if j¢é.

Suppose we now restrict ourselves to consider only ze Zs. Then wg(z) lies in the
physical sheet. Moreover,

I+ VRy(z) = + VRo(we(2))) [I + [T+ VRy(we(2))]" ' V[Ro(2) — Ro(we(2))]
= (I + VRy(ws(2))) [1 I+ VRo(we(2)] ' 4 (z)] , (4)

where A;(z) has Schwartz kernel
i N (e —ifi(z _— —_
V00) Y gy (€70 4 g 0 (),
le&

If Im I (wg(2))|>]| V(x,9)|| =, then I+ VRy(wg(z)) is invertible. If we restrict
ourselves to such z, then, the poles of the resolvent of A4 + V" are given by the zeros of

det(I + As(z)),

where A>(z) is

) =3 5 (01, O + 01 @)

le

¥
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with
Br (x,y,2) = =My (v)
012 (x.2,2) = (I + VRo(we ()™ (V@11 )(0,2) ) (x.)
s (x,9,7) = G (),

Here we use the notation
(F@ahx.9) =(x.3) [ g (K5 vol

One can then see that the zeros of (I 4+ A»(z)) are the same as the zeros of (I +
Ay(2)y), where ye L. (X) is one on the support of V. The zeros of (I + A,(z)y) are

comp

the same as the zeros of det(I 4+ B(z)), where

59= (50 5.00) )

@j1-(%,3,2)2(%, ») Wiz (x,,2) d voly,

S
+
+
=
—~
[N
~
Il
[\
i
c o~ =
[\
~

X
b_;[/(Z) = 2}711(2) /X (pj?(xvyv Z)X(X,)/)‘P[; (X,y, Z) dvoly. (6)

We shall first obtain upper bounds on the entries in the matrix B, and thus on
det(Z + B(z)). To do so, we will use the following lemma.

Lemma 3.1. Let f4 (x,z) = e™* and let y,, y,€ C¥(X). If z lies on the physical
sheet of Z and Im 7;(z) = ty>0, then

__c
- |Re #(z)|?

1 )
1 "~ Ro(2)f+ 12

when |7;(z)| is sufficiently large. Moreover, for Im7j(z) = ty>0,

1
‘ XIERO(Z)fiXZ

C

< 5/12
r)-2x)  |75(2)]

when |F;(z)| is sufficiently large.
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Proof. Without loss of generality we can assume y; and y, are independent of y and
thus it is suffices to consider, for /e N,

|

where Ry;(z) has Schwartz kernel

1
7 Ro(2)f+ 12
S+

LZ(X)—>L2(X)7

#(Z)e""'@'H"¢,<y>¢3,<y’>.

The Schwartz kernel of 7,(f+) "' Ro/(2)f s 15 is

ST G D) i X
Kli (xvyv x/vylvz) =

2}71 (Z)

We shall show that when Im 7(z) = #,

C
K xvyvx/7ylyz 2dV01 dvoly <{———M—
| [ P dvolrdvolas

with constant C independent of /, which will prove the first part of the lemma.

First, notice that on the support of y;(x)y,(x'), the exponential function in Kj4 is
bounded independent of /. This is because Im7;(z)>0 and |Im7j(z)(x — x')| is
bounded for xesupp y;, X' esupp y,. Thus,

2 €
ST
7(2)]?

When 7;#7;, we may integrate by parts to see that

1K1+ (2) (7)

C 1
[tm (75(2) = Fi(2)| |7 (2)

1Ki+ ()72 <
so that

IKAM@<E%FMMLMm®@—ﬁ@ml)

Let 7 =s+itgp. Then if 7(z) =u+iv, a computation shows that, with

g=0;+5 —t5—0f, ¥ =5(g+\/¢* +4523), and v* =1(—g+/g* +45°8).
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7/6

If g<(|s|ty)""", then

2> %( (Islt0)"® + / (Islt0) " +4(\s|z0))
= (Isl0)** + O((lslt0)'"?).
Then

C < C <C
7 (2)Plo— to]  (Islt0)* (|slt0)*™ |5

2
1K+ (2)]] 72 <

when |s| is sufficiently large and Im 7;(z) = t.
If, on the other hand, g (|s|f)”/®, then we use

and

C C C
2SS 7/6°
7)1 u (Islt)

This finishes the proof of the first part of the lemma.

2
1K+ (2)]]22 <

To prove the second part of the lemma, first notice that if 7;(z) = s+ it and |s| <1,

then ( P <z € when ¢ is sufficiently large, so that

C
2
1K ()11 <5

in this region. On the other hand, if |s| >, inequalities (7)—(9) together show that

when =1,

C
1K ()< ——.
S sl

Fix joe&. We shall eventually use k = r;,(z) to identify our fixed sheet Zs of 4
with the lower half-plane. However, we shall continue to use z as a coordinate as

well, when it is more convenient. In any case, we restrict ourselves to Zy.

Lemma 3.2. Fix a sheet Zs of Z and let joe §,1,j€&. If ze Zg, —Im 1), (z) = >0, then

Sor |rj,(z)| sufficiently large (depending on o),
C C

|b+_[/(2)| < |f](Z)|’
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Proof. First we show that in this region, for je& and yeL X),

comp(
lle ™ TEX(T + VRy(we (2))) ™ e | |< C (10)

when |rj, ()| is sufficiently large.

When |rj (z)] is sufficiently large, and je L, (X) is one on the support of V,

comp (

¥ XL + VRo(ws(2))) ™ 27|

0
= || eti /(Z)x(—l)m(VRo(Wg(Z)))Z)m}{eiln(Z)x||
m=0
0
= ( 1) ( +zr,()‘<VR0(w((( ))ye,u,z ) 7]
m=0
=¢ (11)

where we are using Lemma 3.1. Using this estimate and the definition of by_j;, b_4y,
we obtain the desired estimates. [J

We shall need the following bound on the b, (z) and b_ _j(z).

Lemma 3.3. Fix a sheet Zg of Z, and let joe&. If ze Zg, Im rj,(z) < —a<0, l,jeé,
and conv(supp(V)) = [—f,y], then for |r; (z)| sufficiently large (depending on ),

Celm i) Ce2PIm 7(2)

|b+14(2)] <Wa b _(2)[< el

Proof. We give the proof for b, ;. Recall that ;. (x,y,z) = e/ ‘qﬁ (y). Then we
obtain that

@l = 11 + VRo(we () V|| < ClmAE,

Note that if supp f'<suppV, then supp({ + VRo(w,g(z)))flfcsupp V. We use this
fact and the bound above to obtain

|b++lj(z)| =

%() / 07, (6,7, 2)7(6,9) 1y (x,7,2) d voly

2 )|

71(2)]

for |rj,(z)| sufficiently large, Im rj,(z) < — «. For the last inequality we have also used
that 7i(z) »7(z) as II(z) >
A similar argument yields the proof of the bound for b_ _;(z). O
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Proof of Theorem 1.1. We use the coordinate k = r; (z) to identify our fixed sheet
with the lower half-plane. Let gi(k) = det(/ + B(z(k))), where II(z(k)) = k* + v}
and z lies on our sheet. Here B(z) is as defined in (5) and (6). Then g, (k) has at most
a finite number of poles, ki, ka, ..., k,,, listed with multiplicity, in Im k<< — o. Let

g2(k) = g1 (k)(k — ki) (k — ka) - (k — kpn,)
and, if gp(—io) #0, let

_ 92(k)
9a(k) = ga(—io)’
If go(—iax) =0, let
sty = — 208

(k + i)' g (—i)

where / is chosen so that g(zm)(—ioc) =0 if m</ but g(21>(—ioc)7é0. Then Lemmas 3.2
and 3.3 show that the hypotheses of Theorem 2.1 are satisfied for g4(k) = g3(k — io),
with

g, (@) <2(y + B)card(é)]sin g|.

Recalling that, except possibly for a finite number, the zeros of g3(k) correspond to
the poles of Ry(z) in this region, an application of Theorem 2.1 finishes the
proof. [

4. Determining cy s and a counterexample

In this section we prove Theorem 1.2, give a counterexample, and give another
example of a setting in which ¢y ¢ can be determined.
We shall need the following lemma, which is Lemma 4.1 of [9].

Lemma 4.1. Suppose ve L* (R) has compact support contained in [—1,1], but in no
smaller interval. Suppose f(x, k) is analytic for k in the lower half-plane, and for real k
we have f (x,k) e L*([—1,1] dx, Rdk). Then [ e**v(x)(1 — f(x,k)) dx has exponential
type at least 1 for k in the lower half-plane.

In the next lemma, we use k = 7(z) as a coordinate, and, fixing a sheet of Z, let
z(k) be the corresponding point on Z.

Lemma 4.2. Let X = (—o00,00) X Y and suppose that conv,(supp(V)) = [—b,b].
Suppose that

CV)| = €| [ Vb0 dvolyl = Vsl for | bl < |+ b <e
Y
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for some C,&>0. Fix a sheet Zg of Z with 1€ &, and choose « so that there are no poles
of bivu, b_ _yonZgwith Imr(z)< —o. Then by yy(z(k)), b_ _y(z(k)) are functions
of type at least 2b for the half-plane Imk< — o, k = 7j(z).

Proof. We give the proof for by, as the proof for b_ _j is similar.
Let g(k,x) = €** and let

1
V(x,y)

ii D" ((9)™ Rows (2(K)) V)", | (x. 7).

m=

fi(x,y. k) =di(y)

[éU—U+VWwM@%DHWV®4u4@4@J)

where the second equality holds when |k| is sufficiently large. Then

bran(elhk) = 5 [ F V)9 0) = filx. ) dvoly.

Let
) {0 if |x|<b—¢ or |x|>b,
(x) =
‘ 1 if b—e<|x|<b.
Let
o) = [ Vel )dvoly = Vi),
and
1
(x, k) = (. (X V(x,y)fi(x,y,k)dvoly.
100k = s ) [ V) i) dvely
Note that

2lk‘C
bran(elh) =5 [ ¢ — f(x,K)) dx

——1/ému—mvmwﬁm%deu
% Jy

Using (10) and the support properties of V(1 — y,), the last term on the right is of
type at most 2b — 2¢, and so we need only show that the first integral on the right is
of type at least 2b. To do this, we will apply Lemma 4.1 to b, ;(z(k + io)).
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We must show that f(x,k)e L*([~b, b] dx, Rdk) when Im k = —a. We have

/VXk|W—/<HWU|bU

/ / [ Vi(x ()| V(x, y)| dvoly
|x|<b
></ |f1(k7x,y)| dvoly dx
Y

2
V(x7y)fl(k7 X7y) dvoly| dx

C/Nﬁwmywdmu
X

By Lemma 3.1, when |Re k| is sufficiently large, this is bounded by C|Re k\77/6.

When |Re k| is in a compact set (with Imk = —a), it is enough to note that
1Ak, x,y)[*dvoly is bounded, so that f(x, k) € L*([—b, b] dx, R dk). Then, applying
Lemma 4.1 after appropriately rescaling, we finish the proof. [

Proof of Theorem 1.2. We use k = rj,(z) = 7, (z) as the coordinate. The simplicity of

vjzo as an eigenvalue of 4y means that the matrix B is a 2 x 2 matrix

B <b+1010 b_ i1, > .
b++lo/0 b—+1010
Thus det(l + B)(Z(k)) = [(1 + b+*1010)(1 + b*Jr/olo) —b_ *l()lnb++lolo}(z(k)) = QD](k)~
Suppose first that ¢, (k) has no poles in the region Im k< — a. If ¢, (—ix)#0, let

- @, (k)
0200 = iy
If ¢, (—ix) =0, let
pall) = — 21O

(k + i)' @\ (—ix)

where / is chosen so that ¢\")(—ix) = 0 if m<!I but ¢\ (—ia) #0.

Note that by Lemmas 3.2 and 3.3, for seR, ¢,(s — i) = ¢o(1 + O(]s|™")) when
|s| > oo, for some nonzero constant ¢y. Moreover, by Lemmas 3.2, 3.3, and 4.2,
@,(k) is a function of type 4b in the half-plane Im k< — o. Then applying Theorem
2.1 to @, (k) in the half-plane Im k< — o, we obtain the result.

If ¢,(k) has poles in the region Im k< — o, they can be handled in the same
manner as in the proof of Theorem 1.1. O

We give a counterexample for Theorem 1.2. Let X = R x S', and let Vix,y) =
Vi(x)e™ with Vy(x)eLZ  (R) nontrivial and m>0 an integer.

‘comp
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In fact, this potential has no resonances away from the ramification points of Z.
To see this, note that if z is resonance and not a ramification point, there is a
nontrivial function u(x,y) = 3% u;(x)e’” e L*(X), with

(I + Vi(x)e™ Ry(z))u =0
(see (3)). The function u is necessarily supported on the support of V. Then
Ujrm(x) = = V1 () (Roj(2)1;)(x), (12)
where

P
ROj(Z) :melh x\r,(_).

The operator Ry, is bounded from L2 (R) to L2 . (R). For a fixed z, when ]| is

‘comp comp
sufficiently large we have

V1) Ry ()< Clj " (13)

For u to be in L*(X), we must have ||u;||—0 when j— + co. But, using (12) and (13),
when |j| is sufficiently large,

C
el <l 1

Thus, we cannot have ||uj||—0 when j— — co unless there is a j, so that u; =0

whenever j <. In this case, using (12), #; = 0 for all j. Thus we have a contradiction.
In Theorem 1.2 we used some knowledge of the potential near the boundary of its

support to allow us to find cy . In the following theorem we again make use of the

fact that the potential is “‘controlled” near the boundary of its support.

Theorem 4.1. Suppose for some potential Vo e Ly, (X C), with supp Vo< [—bg, by] x

Y and for some sheet Zyg of Z with jo€ & we have

#{zk : zx€Zg, zi is a pole of Ry, (z),|rj,(zi)|<r, Imrj(zx) < —a}

_4bg
N T

#{1: 1€&}r + 0,(r)

Jor some a>0. Suppose in addition WeLg, (X;C) with supp W <[—bg + &by —
¢] X Y for some ¢>0. Then

#{zk : zxeZg, z is a pole of Ry, w(z),|rj(z)|<r, Imrj(zx) < — o}

_4by

H{I: 1€&}r + 0y(r).

T
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That is, if the resonance-counting function for 4 4+ Vj has maximal growth rate, so
does that for 4 + Vo + W.

Proof. In the proof of this theorem, we will add a superscript to the matrix B from
Section 3 and its entries to indicate to which potential it is associated. That is, when
|, (z)| is sufficiently large, the poles of the resolvent of A4 + V correspond to the
zeros of det(I + B”(z)) and likewise for V5. We shall also add a superscript to ¢, .

In this proof, as previously, we shall sometimes use as coordinate on our sheet
k =rj,(z), and then z(k) is the corresponding point on our sheet.

Let V = Vy+ W. We shall show that B”(z) = B"(z) + D(z), with the entries
djj(z) of D(z) satisfying

C
17(2)]

Because of the assumption on the distribution of resonances for 4 + Vy, det(l +
B"(z(k))) is of type 4bo#{l: le&} in Imk< —a<0. Moreover, each entry of
B"(z(k)) has type at most 2by and is bounded by Ce**/"™ k| Then

|dy(2)| < e(2ho=0)lIm 7,(2)| a4

det(I + B (z(k))) =det(I + B"(z(k)) + D(z(k)))

e|Im k|(4bo#{l:le 5}1))

=det(! + B"(z(k))) + 0( k|

Applying Theorem 2.1 as in the proof of Theorems 1.1 and 1.2 finishes the proof.
It remains to show (14). Note that we may write, when |r;,(z)| is sufficiently large,

[+ (Vo + W)Ry(ws(2))]™
- (u S [+ VoRoGws (@) W&W(z))}’") [+ VoRo(ws(2))]

Then
@l (2) = (I + VRy(wg(2))) ™ (Vo + W)y (e,2))

= (I + VoRo(ws(2))) " (Vo®p(e,2)) + (I + VoRo(ws(z))) " (W s (o, 2))

+ Z (=1)" [+ VoRo(w(2)) ™ WRO(W(Z))]'"

m=1

[+ VoRo(ws(2))] ' ®pp (o, 2).

The first term on the right is q)}ff (z). The second term is, as in (11), bounded by
Celho=e)Imn(2)l - Again as in (11), the third term is also bounded by Celto—#)lIm ()|,
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Putting all this into the definition of 5!, (z), we see that

o(2b0—2)[m 1 <z>)

175 ()]

bzﬂj(z) = bf’w(z) + 0<

A similar argument works for the other entries of BY (z), proving (14). O

Combining the previous theorem with the results for potential scattering in one
dimension [9,16], we obtain the following corollary.

Corollary 4.1. Let  V(x,y) = Vo(x) + W(x,p) € Loy, (X;C), convy(supp(V)) =

[=b,b], and supp Wc[-b+¢e,b—¢| x Y for some ¢>0. Then on any sheet Zg of
Z with joe&,

#{zk : zxeZg, zi is a pole of the resolvent of A+ V,|rj(z)|<r, Imrj(zx) < — o}

:%#{l 1e&Yr + 0,(r)

for any 0.>0.

5. Results for half-cylinders

In this section, we consider half-cylinders X = [0, c0) x ¥, with A either the
Dirichlet or Neumann Laplacian on X. Let VeLZ® (X;C). The resolvent (4 +

comp
V- z)_1 has a meromorphic continuation to Z just as in the full cylinder case. We
give several results analogous to the results for full cylinders. Since the proofs are so
similar, we only sketch them.

Let Ry (z) = (4 —z)"" be the resolvent for the Neumann (+) or Dirichlet (—)
Laplacian on X, for ze Z. Restrict z to Z,. Then, following the same argument as in
the beginning of Section 3, we can show that when |Im IT(wg(z))|>|| V||, the poles
of the resolvent of 4 + V' correspond to the zeros of det(/ + B4 (z)). Here we are
again using “+” for the Neumann Laplacian and “—" for the Dirichlet Laplacian.
To define B4 (z), let

Oy(x,p,2) = (T LTI gy (v),

¢ 11(%,3,2) = (T + VRox (ws(2)) " (V®11)(,2))(x, 7).
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Then By (z) = (b1j(2)); ke s> With

i

byjk(z) = 70 /x @+;(x,,2)®1x(x,p,2) dvoly.

We obtain the following analog of Theorem 1.1.

Theorem 5.1. Let X = [0,00) X Y and let VeLZ, (X;C), with suppV <[0,b] x Y.

comp
Fix a sheet Zy of Z, and suppose that jo€ &. Then, there is a constant cy s >0 such that
for any 0.>0,

#{zk 1 zk€Zg, zic is a pole of the resolvent, |rj(zx)|<r, Imrj (zx)< — o}
= cy g1+ 04(7).

The constant cy s depends on the potential V and the sheet. Moreover,

cVﬁg\z—b#{l :Im 7(2) <0 when zeZg}.
T

Proof. Just as in the proof of Lemmas 3.2 and 3.3, we can show that on Z,

by (2)] <——— PPm ()l
’ 175(2)]

Then the proof follows just as the proof of Theorem 1.1. [

Theorem 5.2. Let X = [0, c0) X Y and suppose that the support of V is contained in
[0,b] x Y and the number b cannot be replaced by a smaller one. Suppose that VJZO isa

simple eigenvalue of Ay, with v]go = ai. Suppose, in addition, that
V(0] = I | Vsl 0P dvoly| 2|Vl Sor [x—bl<s
for some C,e>0. Then, for any a.>0,
#{zr s zk € Zyjy, 2k Is a pole of the resolvent, |rj (zx)| <r,Imrj(zx) < — o}

2
= Ebr—i— 04(r).
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Proof. Let zeZ(;,. In this case B (z) is a single function, b y,. Let k = 7, (z) and
let z(k) be the corresponding point on Zy; ;. We have

i

binn(2(k) =57 /X (™ +e7 ™)@y [ + VRo(we(z(k)))] " V4 (o, 2(k))] d voly
=i /X G [T + VRo(we (z(k)] 'V fi, (o, z(k)) d voly
+ O(eb\lm k|).

Here f;,(x,y,2) = € <Z)x¢),0 (), and we have used a bound similar to that of Lemma

3.1 to obtain the bound O(e’™*l) on the rest. Following the technique of Lemmas
3.2 and 4.2 shows that b, (z(k)) is an exponential function of type 2b for Im k< —
o. The proof is completed as in the proof of Theorem 1.2. [O
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