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Abstract

For the cluster category of a hereditary or a canonical algebra, or equivalently for the cluster category of the hereditary category
of coherent sheaves on a weighted projective line, we study the Grothendieck group with respect to an admissible triangulated
structure.
c© 2007 Elsevier B.V. All rights reserved.

MSC: 16G20; 16E20; 18E30

1. Introduction

The cluster category C = C(A) of a finite dimensional hereditary algebra A was introduced by Buan, Marsh,
Reineke, Reiten and Todorov [1], in order to realize the cluster algebras of Fomin and Zelevinsky [2] via tilting
theory.

The construction of the orbit category C(A), see [7], generalizes to the situation where A is any k-algebra of finite
global dimension. In this paper, all algebras will be unitary, associative and of finite dimension over an algebraically
closed ground field k.

We call a triangulated structure S on C admissible if the canonical projection functor π : Db(mod A) → C is exact,
that is, sends exact triangles to triangles from S. We use the notation CS if we consider C as a triangulated category
with triangulated structure S. We suspect that an admissible triangulated structure for C may not be unique.

By Keller [7], C admits an admissible triangulated structure in case Db(mod A) is triangle equivalent to Db(H)

for some hereditary abelian k-category H. Assuming H connected, by Happel’s classification theorem this happens
if and only if A is derived equivalent to a hereditary or a canonical algebra, see [5,6]. In the first case, we can
choose H = mod A where A is hereditary and in the second H = coh X, the category of coherent sheaves over a
weighted projective line X, see [3]. In the present paper we focus on the case H = coh X, but also deal with the cases
H = mod A where A is the path algebra of a Dynkin or an extended Dynkin quiver.
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Given an admissible triangulated structure S on C we study the Grothendieck group K0(CS) with respect to all
triangles in S and compare it with the Grothendieck group K 0(C) with respect to all induced triangles, that is, the
images of exact triangles of Db(mod A) under the projection π .

Assuming A of finite global dimension, we denote by Φ the Coxeter transformation on K0(Db(mod A)), that is,
the map induced by the Auslander–Reiten translation τ of Db(mod A). In Section 3 we show the following result.

Proposition 1.1. If A is an algebra of finite global dimension and C = C(A) then we have K 0(C) = Coker(1 + Φ).

Let A be a hereditary algebra of finite representation type or a canonical algebra. In both cases K 0(C) and K0(CS)

are shown to be free either over Z or over Z2 = Z/2Z (independently of the admissible triangulated structure S). We
define the dual Grothendieck groups K 0(C)∗ and K0(C)∗ as the respective Z- or Z2-dual. In Section 4 we show our
first main result.

Theorem 1.2. We have K0(CS) = K 0(C) in each of the following three cases:

(i) A is canonical with weight sequence (p1, . . . , pt ) having at least one even weight.
(ii) A is tubular,

(iii) A is hereditary of finite representation type.

The remaining canonical cases are covered by the next result.

Theorem 1.3. Assume C = C(A) is the cluster category of a canonical algebra A with weight sequence (p1, . . . , pt ),
where all weights pi are odd. For any admissible triangulated structure S on C the Grothendieck group K0(CS) is a
non-zero quotient of K 0(C) = Z2 ⊕ Z2.

Accordingly, if A is canonical (of any weight type), we have K0(CS) 6= 0 and Proposition 3.7 yields an explicit
basis of K 0(C). Since each tame hereditary algebra is derived equivalent to a canonical one, Theorems 1.2 and 1.3
cover also the tame hereditary situation. To prove the two theorems our main device is to provide a categorification
of suitable members of the dual Grothendieck group K 0(C)∗, that is, to realize them by additive functions on CS in
categorical terms of C (in a sense defined at the beginning of Section 4).

B. Keller informed the authors that his student Y. Palu proved K0(CS) = K 0(C) for the admissible structure S
constructed in [7].

In the last section, we consider the cluster category C(T ) of an “isolated” tube T . We show that there always exists
an admissible triangulated structure on C(T ) and determine its Grothendieck group explicitly.

2. Notations and definitions

2.1. Definition of cluster categories

We assume that A is an algebra (we recall that this means a unitary, associative algebra of finite dimension over
k = k) of finite global dimension. We denote by mod A the category of finitely generated (or equivalently finite
dimensional) right A-modules and by D = Db(mod A) the bounded derived category of mod A. Since A has finite
global dimension, D is a triangulated category, see [4], and we denote by T its suspension functor. Moreover, D has
Auslander–Reiten triangles and the Auslander–Reiten translation τ is an autoequivalence of D.

Denoting F = τ−1
◦ T , the cluster category C = C(A) is defined as the orbit category C(A) = D/FZ, whose

objects are the objects of D and whose morphism spaces are given by

HomC(A)(X, Y ) =

⊕
i∈Z

HomD(X, F i Y ),

which are finite dimensional spaces if A is derived equivalent to a hereditary or to a canonical algebra. We denote
by π : D → C(A) the canonical projection functor and write occasionally π X rather than X for objects in C for
emphasis.
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2.2. Admissible triangulated structures

We call a triangulated structure S on C admissible if the projection π is exact and denote by CS the category
C equipped with S. Keller [7] proves the existence of an admissible triangulated structure for C(A) if Db(mod A)

is triangle equivalent to Db(H) for some hereditary abelian k-category H. Then H has a tilting complex, hence by
[6, Theorem 1.7] a tilting object. We may assume that H is connected. Passing to a derived equivalent hereditary
category we may then assume by Happel’s theorem [5] that H = mod H , where H is a hereditary algebra, or
H = coh X, where X is a weighted projective line [3]. In the first case A is derived equivalent to a hereditary, in
the second case to a canonical algebra, see paragraph “Canonical algebras” below. Since C – up to equivalence –
only depends on Db(mod A), we can assume that A itself is hereditary or canonical. Often, we also shall write C(H)

instead of C(A) if Db(H) ' Db(mod A).

2.3. Grothendieck groups

Any C as above is equipped with the autoequivalence τ : C → C, induced by the Auslander–Reiten translation of
Db(mod A). A triangle X → Y → Z → τ X in C is called induced if it is – up to isomorphism – the image under
π of an exact triangle in Db(mod A). Note that τ takes the role of a suspension functor for C, although the induced
triangles usually will not define a triangulated structure on C. We denote by K 0(C) the Grothendieck group of C with
respect to all induced triangles.

If S is an admissible triangulated structure on C we denote by K0(CS) the Grothendieck group of C with respect to
all triangles from S. Since each induced triangle lies in S we get a natural epimorphism

K 0(C) → K0(CS).

2.4. Hereditary categories

If H is hereditary then the derived category admits a simple description: the indecomposable objects of Db(H) are
of the form T i X for X ∈ H indecomposable and some i ∈ Z. The morphism spaces are given by

HomDb(H)(T i X, T j Y ) = Ext j−i
H (X, Y ), for X, Y ∈ H. (2.1)

In case H = coh X, τ is an autoequivalence on H and therefore H is a fundamental region for the functor F , that
is, for each indecomposable object X ∈ D there exists a unique Y ∈ H such that X = F i Y and therefore, we can
identify the objects of C with the objects of H up to isomorphism.

We recall that the category coh X has Serre duality, that is, there exists an autoequivalence τ for which
Ext1H(X, Y ) ' D HomH(Y, τ X) holds functorially in X and Y . Similarly the categories D = Db(coh X) and
D = Db(mod A), for A hereditary, have also Serre duality in the sense that HomD(X, T Y ) ' D HomD(Y, τ X)

holds functorially in X and Y .

2.5. Canonical algebras

Canonical algebras were introduced by C. M. Ringel in [11] as algebras A = k Q/I , where the quiver Q is obtained
by joining a source 1 with a sink n by t ≥ 2 arms consisting of p1, . . . , pt arrows respectively, all pointing from 1 to
n:

r r
r r r r- --r r r r- --

r r r r- --
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@@R���1 PPPq

α1

α1 α1
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The ideal I is generated by t − 2 relations α
pi
i = α

p2
2 − µiα

p1
1 for some pairwise distinct µi ∈ k with µi 6= 0, 1. The

sequence (p1, . . . , pt ) is called the weight sequence of A. If
∑t

i=1
1
pi

= t − 2 then A is called tubular; this happens



36 M. Barot et al. / Journal of Pure and Applied Algebra 212 (2008) 33–46

precisely for the weight sequences (2, 2, 2, 2), (3, 3, 3), (2, 4, 4) and (2, 3, 6). We usually omit weights pi = 1 from
the sequence, hence the weight sequence (3) means the sequence (1, 3). We recall that if A is canonical of weight type
(p1, . . . , pt ) then Db(mod A) ' Db(coh X) for a weighted projective line X of weight type (p1, . . . , pt ).

2.6. Tubes

Let X be a weighted projective line of weight type (p1, . . . , pt ) and H = coh X. We denote by H0 the full
subcategory ofH given by the objects of finite length and byH+ the full subcategory of direct sums of indecomposable
objects of infinite length. It is known, see [3], thatH0 =

∐
x∈X Tx is a coproduct of categories, where each Tx is a tube

of rank q, that is a connected, hereditary, uniserial category, which in abstract form can be realized as mod
Zq
0 k[[X ]]

(that is, as the category of Zq -graded k[[X ]]-modules of finite length). Each tube of H0 has rank one except finitely
many (exceptional) tubes having rank p1, . . . , pt , respectively.

Furthermore Hom(H0,H+) = 0 and for each non-zero object M ∈ H+ and each x ∈ X, we have HomH(M, Tx ) 6=

0.

2.7. Formulas for K0(coh X)

The Grothendieck group K0(H) of the abelian category H = coh X is described in detail in [9,8]. It is equipped
with the Euler form defined by

〈[X ], [Y ]〉 = dimk HomH(X, Y ) − dimk Ext1H(X, Y )

on classes of objects X , Y ∈ H. It follows from Serre duality that for all x, y ∈ K0(H) we have 〈y, x〉 = −〈x,Φy〉,
where Φ is the Coxeter transformation.

We denote by L the structure sheaf and for each i = 1, . . . , t the unique simple sheaf Si belonging to the i-th
exceptional tube such that HomH(L , Si ) 6= 0. Then HomH(L , Si ) is one-dimensional, and HomH(L , τ j Si ) = 0 for
j = 1, . . . , pi − 1. Furthermore, all simple sheaves from homogeneous tubes have the same class in K0(H); we fix
one, say S0. Now define the following elements of K0(H):

a = [L], s0 = [S0], si = [Si ] for i = 1, . . . , t.

Define then the elements si ( j) = Φ j si for j ∈ Zpi . For later use we reproduce some facts from [9].

Proposition 2.1. Let H = coh X where X is of weight type (p1, . . . , pt ).

(a) The abelian group K0(H) is generated by the elements a, s0, si ( j), i = 1, . . . , t and j = 0, . . . , pi − 1, subject
to the defining relations

pi −1∑
j=0

si ( j) = s0, for i = 1, . . . , t. (2.2)

(b) Define p = lcm(p1, . . . , pt ), δ = p(t − 2 −
∑t

i=1
1
pi

) and rk(x) = 〈x, s0〉. Then for all x ∈ K0(H), we have

Φ px = x + δ · rk(x) · s0

(c) We have

Φa = a −

t∑
i=1

si + (t − 2) · s0

(d) Furthermore, we have 〈si (m), s j (n)〉 = 0 for i 6= j , and

〈si (m), si (n)〉 =

1 if n ≡ m mod pi
−1 if n ≡ m + 1 mod pi
0 else

for all i = 1, . . . , t . �
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Beside the rank function rk(x) = 〈x, s0〉 we also define the degree function by

deg(x) =

p−1∑
j=0

〈Φ j a, x − rk(x)a〉

where p = lcm(p1, . . . , pt ). It is characterized by the properties deg(L) = 0, deg(S0) = p and deg(τ j Si ) =
p
pi

for
i = 1, . . . , t and j ∈ Z.

2.8. Discriminant and slope

Let H = coh(X) be of weight type (p1, . . . , pt ) and put p = lcm(p1, . . . , pt ). The discriminant

δH = p

(
(t − 2) −

t∑
i=1

1/pi

)
is an invariant of H deciding on the complexity of the classification problem for H, hence for C(H), see [3]. For
δH < 0 the category H is derived equivalent to the category mod A for the path algebra k Q of an extended Dynkin
quiver, and each such algebra k Q has this property. For δH = 0 we are dealing with the tubular weights, and for
δH > 0 the classification problem for H is wild. For this and the following statements we refer to [3].

Each bundle E has a line bundle filtration 0 = E0 ⊂ E1 ⊂ · · · ⊂ Er = E where each Ei/Ei−1 is a line bundle.
For each non-zero bundle E its slope µ(E) = deg(E)/rk(E) is a rational number such that

µ(τ E) = µ(E) + δH

holds. By means of line bundle filtrations for E and F it follows that HomH(E, F) = 0 if µ(E)−µ(F) is sufficiently
large. In particular, for δH > 0 (resp. δH < 0) we have HomH(τ n E, F) = 0 (resp. HomH(E, τ n F) = 0 for n � 0.

3. Grothendieck group with respect to induced triangles

In this section, we describe the Grothendieck group K 0(C) with respect to the induced triangles. Let D =

Db(mod A). Then the Coxeter transformation Φ : K0(D) → K0(D) is given by Φ([X ]) = [τ X ] for any object
X of D.

Proof of Proposition 1.1. The projection π : D → C sends exact triangles to induced triangles, hence yields an
epimorphism

K0(D) → K 0(C), [X ] 7→ [π X ].

We have [F−1 X ] = −[τ X ] in K0(D), hence [π X ] = [π F−1 X ] = −[πτ X ] in K 0(C) showing that π(1 + Φ) = 0. In
order to prove the exactness of

K0(D)
1+Φ
−→ K0(D)

π
→ K 0(C) → 0

it therefore suffices to show that each morphism λ : K0(D) → G, for G an abelian group, with λ(1 +Φ) = 0 induces
a morphism λ : K 0(C) → G with λ = λπ .

By the assumption λ(1 + Φ) = 0 the corresponding function λ : D → G is constant on F-orbits and additive on
exact triangles of D, hence induces a function λ : C → G which is additive on induced triangles. �

3.1. Explicit description of K 0(C)

Write Zm for Z/mZ. We have the following general description of K 0(C).

Proposition 3.1. Let A be any algebra of finite global dimension and let C = C(A). Then K 0(C) has a unique
expression as Zr

⊕
⊕s

i=1(Zmi ⊕ Zmi ), for natural numbers r, s and positive m1, . . . , ms such that mi divides mi+1
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for all i . Moreover, any such group occurs as K 0(C(H)), where H is the hereditary path algebra given by the following
quiver.

r rα-
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�
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 s multiple Kroneckers

Before we enter the proof we need some preparatory lemmas. If Q is a quiver, we denote by BQ the adjacency
matrix of Q, that is, (BQ)i j denotes the number of arrows in Q from i to j . Let C be the Cartan matrix of A, that is, a
matrix representing the Euler form. Since A has finite global dimension, C has determinant ±1 and Φ = −C−1C tr.

Lemma 3.2. Let A = k Q be a hereditary algebra and C = C(A). Then we have K 0(C) = Coker(BQ − Btr
Q).

Proof. Since A is finite dimensional, Q cannot contain an oriented cycle. Hence the vertices of Q can be ordered such
that C is upper triangular. Thus we see that BQ is nilpotent, hence C = 1 + BQ + B2

Q + B3
Q + · · · is a finite sum and

C−1
= 1 − BQ . Therefore 1 + Φ = (C−tr

− C−1)C tr
= ((1 − BQ)tr

− (1 − BQ))C tr
= (BQ − Btr

Q)C tr, which shows
that Coker(1 + Φ) = Coker(BQ − Btr

Q), thus the result follows by Proposition 1.1. �

We call an arrow α : v → w of a quiver Q a source-arrow if v is a source of Q and α is the unique arrow of
Q starting in v. Similarly an arrow α : w → v is a sink-arrow if v is a sink and α the unique arrow ending in v. In
both cases we denote by Q−α the quiver obtained from Q by removing the vertices v and w and all arrows starting or
ending in v or w. The situation of a source-arrow is depicted as follows.

v w-α �
�*

��1

HHYPPi
ppp Q−α

Q :

The next result is quite useful for calculating K 0(C) in practice.

Lemma 3.3. Let Q be a quiver with an arrow α, which is a source- or a sink-arrow. Denote H = k Q and H ′
= k Q−α .

Then we have K 0(C(H)) ' K 0(C(H ′)).

Proof. Assume that α is a source-arrow (the case where α is a sink-arrow is similar). By renumbering the vertices,
we can assume that α is the arrow 1 → 2. Then we have

BQ − Btr
Q =

 0 1 0
−1 0 ρtr

0 −ρ BQ−α − Btr
Q−α

 .

Adding multiples of the first row to the rows 3, . . . , n and simultaneously adding (the same) multiples of the second
column to the columns 3, . . . , n we obtain a transformation matrix T and a block diagonal matrix

T (BQ − Btr
Q)T tr

= diag
([

0 1
−1 0

]
, BQ−α − Btr

Q−α

)
and the result follows by Lemma 3.2. �
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Proof of Proposition 3.1. If C denotes the Cartan matrix of A then 1+Φ = (C−tr
−C−1)C tr. Now S = (C−tr

−C−1)

is skew-symmetric. Clearly, we have Coker(1 + Φ) = Coker S.
Using the skew-normal form of S, see [10, Theorem IV.1], we obtain S′

= U trSU for some U ∈ GLn(Z), where
S′

= diag(B0, B1, . . . , Bs) is a block diagonal matrix with the following blocks: B0 is the zero matrix of size r × r
and for i = 1, . . . , s,

Bi =

[
0 mi

−mi 0

]
where mi divides mi+1 for all i = 1, . . . , s − 1. Therefore Im S ' Im S′

'
⊕s

i=1(mi Z)2 and we obtain
K 0(C) ' Coker S′

' Zr
⊕
⊕s

i=1(Zmi ⊕ Zmi ) as desired.
Let H be the hereditary algebra defined by the quiver in Proposition 3.1 and denote H ′

= k Q−α . By Lemma 3.3,
we have K 0(C(H)) ' K 0(C(H ′)). Now, the claim is obvious for H ′ since B−1

Q−α
− B−tr

Qα
= diag(B0, B1, . . . , Bs) is

the block diagonal matrix as above. �

3.2. The hereditary case

Proposition 3.4. If A is a hereditary algebra whose quiver is a tree then K 0(C(A)) is a free abelian group.

Proof. Any tree can be reduced to a disjoint union of r vertices, for some r , by cutting off source- and sink-arrows.
Hence, we get K 0(C(A)) ' Zr by Lemma 3.3. �

Proposition 3.5. Let A be a connected hereditary representation-finite algebra, that is, the underlying graph of its
quiver is a Dynkin diagram ∆. Then, we have the following description.

K 0(C) =


0, if ∆ = An, En with n even
Z, if ∆ = An, Dn, E7 with n odd
Z2, if ∆ = Dn with n even

Proof. This follows immediately using Lemma 3.3. �

3.3. The canonical case

We now assume that A is canonical of weight type (p1, . . . , pt ) and H is the associated category of coherent
sheaves. We put C = C(A) = C(H) and start by describing K 0(C) by generators and defining relations.

Proposition 3.6. The abelian group K 0(C) is generated by the elements a, s0, s1, . . . st subject to the following
defining relations.

2s0 = 0, (3.1)

2a =

t∑
i=1

(si − w), (3.2)

s0 =
1 − (−1)pi

2
si , for i = 1, . . . , t. (3.3)

Proof. We recall from Proposition 2.1(a), that K0(H) is the abelian group generated by {a, s0, si ( j) | i =

1, . . . , t and j = 0, . . . , pi − 1} subject to the defining relations (2.2). Therefore K 0(C) = K0(H)/Im(1 + Φ)

is the abelian group generated by the same generators with the relations (2.2) and the additional relations

a + Φa = 0, (3.4)
s0 + Φs0 = 0 and (3.5)
si ( j) + Φsi ( j) = 0 for i = 1, . . . , t and j = 1, . . . , pi , (3.6)
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which altogether form a system of defining relations. Using Proposition 2.1(c), we can rewrite (3.4) as (3.2). Using
Φs0 = s0 we rewrite (3.5) as (3.1). Using Φsi ( j) = si ( j + 1) and (2.2) we obtain

s0 =

p1−1∑
j=0

(−1) j si

which can be rewritten in the form (3.3). Thus, since Φsi ( j) = si ( j + 1), the group K 0(C) is generated by a, s0,
si = si (0) for i = 1, . . . , t subject to the defining relations (3.1)–(3.3). �

Proposition 3.7. Let H = coh X with weight sequence (p1, . . . , pt ) where p1, . . . , pr are even and pr+1, . . . , pt are
odd. Further let C = C(H).

(i) If r ≥ 1 then K 0(C) is the free abelian group on a, s2, . . . , sr .
(ii) If r = 0 (that is, all weights pi are odd) then K 0(C) ' Za ⊕ Zs0 ' Z2 ⊕ Z2.

Proof. Let first r ≥ 1. Then, by (3.3), we have s0 =
1−(−1)p1

2 s1 = 0 and for i > r , we obtain si = 0, again by (3.3).
Therefore s1 = 2a −

∑r
i=2 si because of (3.2). It follows that a, s2, . . . , sr generate K 0(C) without relations.

Now let r = 0. Then we obtain from (3.3) that si = s0 for all i = 1, . . . , t . Therefore we get that K 0(C) is
generated by a and s0 with the remaining defining relations 2s0 = 0 and 2a = 0. �

3.4. The dual Grothendieck groups

In the sequel the Grothendieck groups K 0(C) and K0(CS) are free over Z or Z2, respectively. We define dual
Grothendieck groups K 0(C)∗ and K0(CS)∗ forming the respective Z- or Z2-duals.

We first deal with the Z-free case. Since the Cartan matrix has determinant ±1, the Euler form induces an
isomorphism K0(H)

∼
→ K0(H)∗, y 7→ 〈y, −〉. A linear form λ : K0(H) → Z induces a linear form λ : K 0(C) → Z

if and only if λ ◦ (1 + Φ) = 0.

Lemma 3.8. A linear form λ = 〈y, −〉 satisfies λ ◦ (1 + Φ) = 0 if and only if Φy = −y. In particular, in this case
rky = 0 and deg y = 0.

Proof. We have 〈y, −〉 ◦ (1 + Φ) = 0 if and only if 〈y,Φ−1x〉 + 〈y,ΦΦ−1x〉 = 0 for all x ∈ K0(H), and since
〈y,Φx〉 = 〈Φ−1y, x〉 this is equivalent to 〈y + Φy, −〉 = 0. Since the Cartan matrix has determinant ±1 the assertion
follows. �

For any abelian group G define G2 = G ⊗Z Z2. Furthermore let rk2, deg2 : K0(H)2 → Z2 be the functions
induced by rk and deg. Similarly define 〈−, −〉2 : K0(H)2 × K0(H)2 → Z2 to be induced by the Euler form.

Proposition 3.9. Let H = coh X with weight sequence (p1, . . . , pt ) and set C = C(H). The group 〈Φ〉 acts on K0(H)

by Φ.y = −Φy.

(i) If there is at least one even weight pi then there is an isomorphism

K0(H)〈Φ〉 ∼
→ K 0(C)∗, y 7→ 〈y, −〉

which gives rise to an exact sequence

0 → K 0(C)∗ → K0(H)
1+Φ
−→ K0(H) → K 0(C) → 0.

(ii) If all weights are odd, then there is an isomorphism

K0(H)
〈Φ〉

2
∼
→ K 0(C)∗, y 7→ 〈y, −〉2

which gives rise to an exact sequence

0 → K 0(C)∗ → K0(H)2
1+Φ
−→ K0(H)2 → K 0(C) → 0.

Proof. Part (i) follows from Lemma 3.8 and the proof of (ii) is similar using reduction modulo 2. �
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If x ∈ K0(H) is a Φ-periodic object with period qx, we define

v(x) =

qx−1∑
j=0

(−1) jΦ j x

and if qx is even, we define

h(x) =

qx
2 −1∑
j=0

Φ2 j x.

Proposition 3.10. Let H = coh X with weight sequence (p1, . . . , pt ) where p1, . . . , pr are even and pr+1, . . . , pt
are odd. Further let C = C(H).

(i) If r ≥ 1 then

〈v(s1), −〉, 〈h(s2) − h(s1), −〉, . . . , 〈h(sr ) − h(s1), −〉 (3.7)

is a Z-basis of K 0(C)∗.
(ii) If r = 0 (that is, all weights pi are odd) then rk2 and deg2 is a Z2-basis of K 0(C)∗.

Proof. (i) Clearly (1 + Φ)v(s1) = 0 since p1 is even. Furthermore, (1 + Φ)h(si ) = s0 for i = 1, . . . , r and therefore,
by the Proposition 3.9, we get that (3.7) are indeed elements of K 0(C)∗. From the formulas

〈v(s1), a〉 = 1, 〈v(s1), sh〉 = 0
〈h(s j ) − h(s1), a〉 = 0, 〈h(s j ) − h(s1), sh〉 = δ jh

it follows that (3.7) forms a Z-basis of K 0(C)∗.
(ii) We know that a, s0 is a Z2-basis of K 0(C) by Proposition 3.7. We have Φs0 = s0 and therefore rk2 = 〈−, s0〉2

defines a linear form on K 0(H).
Since si = s0 for i = 1, . . . , t , we get from Proposition 2.1(d) that Φa = a mod 2. Hence we get

deg2(x) =

p∑
j=0

〈Φ j a, x − rk(x)a〉2 = 〈a, x − rk(x)a〉2 = 〈a, x〉2 + rk2(x).

Thus, also deg induces a linear map deg2 : K 0(C) → Z2. Since rk2(a) = 1, rk2(s0) = 0 and deg2(a) = 0,
deg2(s0) = 1, it follows that rk2, deg2 form a Z2-basis of K 0(C)∗. �

4. Additive functions on CS

4.1. Cutting technique

For a finite dimensional k-vector space V let |V | (resp. |V |2) denote its k-dimension (resp. its k-dimension modulo
two). We put µE (X) = |HomC(E, X)| and write µE (X) for µE (X) modulo two.

In the sequel we identify members λ from the dual Grothendieck group K 0(C)∗ with mappings λ defined on
C = C(H) with values in Z, respectively in Z2, that are additive on induced triangles. We call λ realizable if, depending
on the case considered, it has the form µE − µF (resp. µE ) with E and F from C. The realizable functions form a
subgroup of K 0(C)∗. Note that usually neither µE nor µE (respectively µE −µF ) are realizable. Our next proposition
shows how to construct realizable functions which additionally belong to K0(CS)∗ for an admissible triangulated
structure S on C.

For any object U ∈ D = Db(H) and any positive integer q define the function λ
(q)
X on the objects Y of C by

λ
(q)
U : C → Z, λ

(q)
U (Y ) =

q−1∑
i=0

(−1)i
|HomC(πU, T i Y )| (4.1)

and set λ
(q)

U : C → Z2, Y 7→ λ
(q)
U (Y ) mod 2
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Proposition 4.1. Suppose that U is an object in Db(H) such that for some positive integer q we have τ q X ' Fm X
for some m ∈ Z.

(i) If q is even then λ
(q)
X is additive on each triangle of an admissible triangulated structure on C.

(ii) If q is odd, then λ
(q)

X is additive on each triangle of an admissible triangulated structure on C.

Proof. Identify U with its image in C. Let X
α

−→ Y
β

−→ Z
γ

−→ T X be a triangle in C with respect to an admissible
triangulated structure. Application of the functor HomC(U, −) gives a long exact sequence

0 → K → HomC(U, X) → HomC(U, Y ) → HomC(U, Z) →

→ HomC(U, τ X) → HomC(U, τY ) → · · ·

· · · → HomC(U, τ q−1Y ) → HomC(U, τ q−1 Z) → K ′
→ 0,

where K = Ker(C(U, α)) and

K ′
= Ker(C(U, τ qα)) ' Ker(C(τ−qU, α)) ' Ker(C(U, α)) = K . (4.2)

The alternating sum of the dimensions of the spaces in the sequence equals zero. If q is even we hence get

λ
(q)
U (X) − λ

(q)
U (Y ) + λ

(q)
U (Z) = 0. (4.3)

Therefore λ
(q)
U is a linear form on K0(C). If q is odd then this holds modulo 2. �

4.2. The even canonical case

We first study the case where H = coh X with weight sequence (p1, . . . , pt ). In this case we have linear forms
which are defined by “periodic” elements which lie in tubes: If U ∈ H is indecomposable lying in a tube of rank q
then τ qU ' U .

Assume that p1, . . . , pr are even and pr+1, . . . , pt are odd. Let T1, . . . , Tr be the exceptional tubes in H0 of rank
p1, . . . , pr , respectively, and recall that Si is a simple object from Ti . By Proposition 4.1 the functions λi = λ

(pi )
Si

are
additive on the triangles of any admissible triangulated structure S on C.

If x is an element in K0(H), denote by x̂ its image in K0(CS).

Proposition 4.2. Assume that the number r of even weights pi is non-zero, then the linear forms λi (i = 1, . . . , r)

are realizable, linearly independent over Z and K0(CS) = K 0(C) ' Zr .

Proof. Linear independence of λ1, . . . , λr follows from λi (S j ) = 2δi j , where δi j denotes the Kronecker symbol.
We conclude that ŝ1, . . . , ŝr are linearly independent and hence also â, ŝ2, . . . , ŝr , since 2̂a =

∑m
i=1 ŝi . Therefore

K0(CS) = K 0(C) ' Zr follows from Proposition 3.7(i). �

4.3. The odd canonical case

We adopt the notations of the previous section. Recall that S0 denotes a simple object from a homogeneous tube
in H0.

Proposition 4.3. Let C = C(H), where H is the category of coherent sheaves on a weighted projective line of weight
type (p1, . . . , pt ), where all weights pi are odd. Then the following holds:

(i) Always rk2 is a non-zero realizable member of K0(CS)∗ ⊆ K 0(C)∗.
(ii) For δH 6= 0 the subgroup of realizable members of K 0(C)∗ agrees with the subgroup 〈rk2〉 generated by the rank

modulo two.
(iii) For δH = 0, that is for weight type (3, 3, 3), we have equality

K0(CS)∗ = K 0(C)∗ = Z2rk2 ⊕ Z2 deg2,

and each member of K 0(C)∗ is realizable.
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Proof. (i) and (iii): We invoke Proposition 3.10 and use that rk2 can be realized as λ0 = λ
(1)

S0
where λ0(L) = 1 mod 2

and λ0(S0) = 0.
In the tubular case, only the weight type (3, 3, 3) matters, thus the structure sheaf L lies in a tube of τ -period three.

Hence deg2 is realized by λ
(3)

L where λ
(3)

L (S0) = 1 mod 2.
(ii): Assume the function µE (X) = |HomC(E, X)|2 with E from H is additive on induced triangles. We are going

to show that µE is a multiple of rk2. Since X → X → 0 → τ X is an induced triangle, we get

µE (X) = µE (τ X) = µτ−1 E (X)

for each object X of H. Since p = lcm(p1, . . . , pt ) is odd, setting E =
⊕p−1

j=0 τ j E we thus obtain µE = µE .
Next, we use a decomposition E = E+ ⊕ E0 of E into a bundle E+ and an object E0 of finite length. Invoking that

τ p acts as the identity on finite length objects of H, we see that E0 =
⊕p−1

j=0 τ j E is fixed under τ . The expression
µE0

(X) = |HomH(E0, X)|2 +|Ext1H(E0, τ
−1 X)|2 hence agrees with 〈E0, X〉2, and µE0

is a multiple of rk2. By part
(i) the function rk2 is additive on induced triangles, we conclude that the same holds for µE+

. From now on, we may
hence assume that E is a bundle. Note that

µE (X) = µE (X) = 〈〈E, X〉〉2 + ∆E (X),

where 〈〈E, X〉〉 =
∑p−1

j=0 〈τ j E, X〉, 〈〈E, X〉〉2 = 〈〈E, X〉〉 mod 2 and

∆E (X) =

p−1∑
j=0

(
|Ext1H(τ j E, X)|2 + |Ext1H(τ j+1 E, X)|2

)
= |Ext1H(E, X)|2 + |Ext1H(τ p E, X)|2.

By the Riemann–Roch formula,

〈〈E, X〉〉 = −
p
2

δH rk(E)rk(X) +

∣∣∣∣ rk(E) rk(X)

deg(E) deg(X)

∣∣∣∣ , (4.4)

see [9], the function 〈〈E, −〉〉2 is a linear combination of rk2 and deg2. Hence 〈〈E, −〉〉2 is a member of K 0(C)∗,
implying that ∆E also belongs to K 0(C)∗. By construction, ∆E vanishes on S0. By means of a line bundle filtration
of E , Serre duality implies that ∆E (L ′) = 0 for any line bundle L ′ of sufficiently large degree, and we deduce from
Proposition 3.7 that ∆E = 0. If E is of even rank, then the function 〈〈E, −〉〉2, hence also the function µE , is a
multiple of rk2, proving the claim in this case.

It remains to deal with the case that the rank of E is odd, where we deduce a contradiction from the assumption
that µE belongs to K 0(C)∗. Invoking µE = µE , we have shown that ∆E = 0. Note that ∆E = 0 asserts that

|Ext1H(E, X)|2 = |Ext1H(τ np E, X)|2 (4.5)

for each n ∈ Z and each object X from H.
Case δH > 0: Clearly, the functions 〈E, −〉 = 〈〈E, −〉〉 and 〈τ np E, −〉 = 〈〈τ np E, −〉〉 are additive on induced
triangles. They agree modulo two on S0 and by formula (4.5) also on each line bundle L ′ of large negative degree. It
then follows from Proposition 3.7 that 〈E, −〉2 = 〈τ np E, −〉2.

By means of a line bundle filtration for E we obtain for each integer n � 0 two line bundles L1 and L2 of
consecutive degrees d and d + 1 such that

HomH(τ np E, L i ) = 0 and Ext1H(E, L i ) = 0 for i = 1, 2. (4.6)

By (4.4) we get 〈E, L i 〉2 = α + deg2(L i ) for some α ∈ Z2, only depending on E . We then choose one of the L i such
that (4.6) and further 〈E, L i 〉2 = 1 holds. Invoking (4.5) we obtain the contradiction

1 = 〈E, L i 〉2 = 〈τ np E, L i 〉2

= |HomH(τ np E, L i )|2 + |Ext1H(τ np E, L i )|2 = 0.

Case δH < 0: The proof is similar, choosing n � 0. �
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4.4. The Dynkin case

Now, let A be a connected hereditary representation-finite algebra whose quiver has as underlying graph the Dynkin
diagram ∆. Then ∆ is a star with length of the arms p1, . . . , pt (where t ≤ 3) and the Auslander–Reiten quiver of
Db(mod A) is Z∆ whose τ -orbits correspond to the vertices of ∆. In this case there are no tubes. Nevertheless we
find “periodic” objects. Let m be the Coxeter number of ∆, that is, the order of the Coxeter transformation Φ. We
have

m =

n + 1 if ∆ = An,

2(n − 1) if ∆ = Dn,

12, 18, 30 if ∆ = E6, E7, E8, respectively.

Since K0(C) = 0 in the cases ∆ = An (n even), E6, E8 by Proposition 3.5, we restrict our attention to the remaining
cases. Note that then m is always an even number.

Proposition 4.4. In the cases ∆ = An with n odd or ∆ = E7, let M be an indecomposable object of Db(mod A)

lying in a τ -orbit as indicated in the following picture.

r r r r uM

∆ = An :

r r r r r
r

uM

∆ = E7 :

Then λ
(m+2)
M is a non-zero realizable function, which is additive on all triangles.

In the case ∆ = Dn (n ≥ 4) one can choose indecomposable objects M1 and M2 of Db(mod A) lying in the two
τ -orbits as indicated in the following picture

u
u r r r r@@

��

M1

M2

∆ = Dn :

such that the functions λi = λ
(m+2)
Mi

for i = 1, 2 are non-zero realizable and, for n even, linearly independent.

Proof. For any indecomposable A-module U we have τmU ' T −2U in D = Db(mod A) which implies
τm+2U ' F−2U . By Proposition 4.1 the function λ

(m+2)
U is additive on triangles in C with respect to any admissible

triangulated structure on C.
Let H = mod A. For indecomposable objects M and N in D we have (identifying them with their images in C)

λ
(m+2)
M (N ) =

m+1∑
i=0

(−1)i
|HomC(τ

−i M, N )|

=

∑
j∈Z

m+1∑
i=0

(−1)i
|HomD(M, τ i− j T j N )|.

Setting µ j (M, N ) =
∑m+1

i=0 (−1)i
|HomD(M, τ i− j T j N )| we have µ j (M, N ) = 0 for j < 0 and M , N ∈ H ∪ τ−H.

In the case ∆ = An (n odd) we get λ
(m+2)
M (M) = 2, where M is as indicated above. Indeed, µ0(M, M) = 1 =

µ1(M, M) and µ j (M, M) = 0 for j ≥ 2.
In the case ∆ = E7 we have λ

(m+2)
M (M) = 6. Indeed, µ0(M, M) = 1, µ1(M, M) = 3, µ2(M, M) = 2 and

µ j (M, M) = 0 for j ≥ 3.
In the case ∆ = Dn let M1 and M2 be in the AR quiver lying in the following slice.

u
u r r- r r--@@R

���

M1

M2
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Let λ1 = λ
(m+2)
M1

and λ2 = λ
(m+2)
M2

where M1 and M2 are as indicated above. Let M , M ′
∈ {M1, M2} with

M 6= M ′. It is easy to see that HomD(M, τ i M) 6= 0 if and only if i is even and −(n − 2) ≤ i ≤ 0. Similarly,
HomD(M, τ i M ′) 6= 0 if and only if i is odd and 1 ≤ i ≤ n − 1. Moreover,

τ−(n−1)M '

{
T M n even,

T M ′ n odd.

Using this we get µ0(M, M) = 1, µ0(M, M ′) = 0, and

µ1(M, M) µ1(M, M ′) µ2(M, M) µ2(M, M ′)

n even n
2 −

n−2
2

n−2
2 −

n−2
2

n odd n−1
2 −

n−1
2

n−3
2 −

n−1
2

and µ j (M, M) = 0 = µ j (M, M ′) for j ≥ 3. Consequently, for even n one has λ1(M1) = n, λ1(M2) = −(n − 2),
λ2(M1) = −(n − 2) and λ2(M2) = n, and linear independence of λ1 and λ2 follows. If n is odd, then λ1(M1) =

n − 1 = λ2(M2) and λ1(M2) = −(n − 1) = λ2(M1). �

Proof of Theorem 1.2. For case (i) the assertion follows from Proposition 4.2, for case (ii) it follows from
Proposition 4.3 and for (iii) it follows from the fact that by Proposition 1.1, K0(CS) is a quotient of K 0(C) and
by Propositions 4.4 and 3.5 both are free of the same rank. �

Proof of Theorem 1.3. This follows immediately from Propositions 4.2 and 4.3. �

5. Cluster tubes

5.1. Existence of admissible structures

Let T be a tube of rank q . We consider the cluster category C = C(T ) as the orbit category Db(T )/FZ, where
again F = τ−1T , where τ is the Auslander–Reiten translation and T the suspension functor. We call C(T ) the cluster
tube of rank q .

Since T has no tilting object, we can not invoke Keller’s result [7] directly to conclude that T has an admissible
triangulated structure. We now show that T admits an admissible structure anyway.

Proposition 5.1. The cluster tube C(T ) of rank q admits an admissible triangulated structure.

Proof. Let X be a weighted projective line of weight type (q) = (1, q) and let H = coh X. Recall the definitions
of H0 and H+ from Section 2. We may view T as a full subcategory of H0, which is even exact because of (2.1).
Therefore C(T ) is a full subcategory of C(H).

By [7], there exists an admissible triangulated structure S on C(H). We denote by S ′ the subclass of S given by
all triangles X → Y → Z → T X such that X, Y, Z ∈ C(T ). It is clear that once we show that S ′ is a triangulated
structure on C(T ) then it is admissible. Since T , and then also C(T ), is closed under direct sums and summands in H,
we only have to verify that X, Y ∈ C(T ) implies Z ∈ C(T ) for any triangle X → Y → Z → T X in S.

By the preceding remark, we can assume that X, Y ∈ T and Z ∈ H. Write Z = Z+ ⊕ Z0 where Z0 ∈ H0 and
Z+ ∈ H+. Let W ∈ H be a simple object in some homogeneous tube T ′

6= T . Applying the functor HomC(−, W ) to
the triangle X → Y → Z → T X , we get an exact sequence

HomC(T X, W ) → HomC(Z , W ) → HomC(Y, W )

whose end terms are zero, because T and T ′ are orthogonal inH and C(H). Therefore HomC(Z , W ) = 0, in particular
HomH(Z , W ) = 0. Hence Z+ = 0 and Z0 6∈ T ′. Since we can vary T ′

⊂ H0 we also see that Z = Z0 ∈ T . �

5.2. The Grothendieck group of a cluster tube

Let T be a tube and C = C(T ) its cluster category. As in Proposition 1.1 one shows K 0(C) = Coker(1 + Φ). We
call an admissible triangulated structure on T an induced triangulated structure if it is obtained from an embedding of
T in coh X as explained in the previous paragraph.
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Proposition 5.2. Let T be a tube of rank q.

(i) If q is even then for any admissible triangulated structure S on C = C(T ) we have K0(CS) = K 0(C) ' Z.
(ii) If q is odd then for any induced triangulated structure S on C = C(T ) we have K0(CS) = K 0(C) ' Z2.

Proof. (i) If S is a simple object in T then K0(T ) is the free group generated by the elements s( j) = [τ j S], for
j ∈ Zq . Therefore s( j) = −s( j + 1) in K 0(C) and K 0(C) is generated by s = s(0) without relation. This shows
K 0(C) = Zs ' Z.

Finally, we can define λ
(q)
S : C → Z as in (4.1) which defines a linear form λ : K0(CS) → Z with λ(S) = 2. Thus

K0(CS) has at least rank one and (i) follows.
(ii) Let S ∈ T be a simple object. Then K 0(C) is generated by s, where s = [S], and we have 2s = 0. We show

that s induces a non-trivial element in K0(CS). For any object X in C define

λ(X) =

q−1∑
j=0

|HomC(L , τ j X)|2.

For an object X in T we have λ(π X) = deg2(X). Indeed, since τ q X ' X

λ(π X) =

q−1∑
j=0

|HomT (L , τ j X)|2 ±

q−1∑
j=0

|Ext1T (L , τ j−1 X)|2

=

q−1∑
j=0

〈L , τ j X〉2 = deg2(X).

In particular, λ(π S) = 1 6= 0. Now, λ is additive on triangles in C, which is shown with a version of the cutting
technique similar to the proof of Proposition 4.1. In order to show that K ' K ′ like in (4.2) we use that τ q is the
identity functor on T . �
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