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SUMMARY

Autism (ASD) is vastly heterogeneous, particularly in
early language development. While ASD language
trajectories in the first years of life are highly unstable,
by early childhood these trajectories stabilize and
are predictive of longer-term outcome. Early neural
substrates that predict/precede such outcomes are
largely unknown, but could have considerable trans-
lational and clinical impact. Pre-diagnosis fMRI res-
ponse to speech in ASD toddlers with relatively
good language outcome was highly similar to non-
ASD comparison groups and robustly recruited lan-
guage-sensitive superior temporal cortices. In con-
trast, language-sensitive superior temporal cortices
were hypoactive in ASD toddlers with poor language
outcome. Brain-behavioral relationships were atypi-
cally reversed in ASD, and a multimodal combination
of pre-diagnostic clinical behavioral measures and
speech-related fMRI response showed the most
promise as an ASD prognosis classifier. Thus, before
ASD diagnoses and outcome become clinically clear,
distinct functional neuroimaging phenotypes are
already present that can shed insight on an ASD tod-
dler’s later outcome.

INTRODUCTION

There is an absence of neurobiological explanations for why in-

fants and toddlers with autism spectrum disorders (ASD) can

have strikingly different clinical outcomes. One primary reason

for this absence is the large degree of heterogeneity manifested

in both the early clinical phenotype and in the likely underlying

causes for different subtypes of autism (Geschwind and Levitt,

2007). Underscoring phenotypic behavioral heterogeneity in
early development, there is no better example than variability

in early language development (Anderson et al., 2007; Kjelgaard

and Tager-Flusberg, 2001; Pickles et al., 2014). Some individuals

with ASD are minimally verbal throughout life and display high

levels of symptom severity and poor clinical outcome (Tager-

Flusberg and Kasari, 2013). In contrast, others display delayed

or typical early language development and may have relatively

more positive clinical outcome (Fein et al., 2013). The neurode-

velopmental bases for this variability in clinical outcomes are un-

known. Differences in treatment quantity have not accounted for

such variability. For example, in one of the first studies of applied

behavioral analysis (ABA) intervention where treatment quantity

and type were largely standardized across participants, 50%

of individuals achieved typical school placement and IQ scores

within the normal range following treatment, while the remainder

did not (Lovaas, 1987). Overall, variable response to treatment

has been reported for all evidence-based approaches available

for ASD children (Bacon et al., 2014). While pre-treatment lan-

guage (Perry et al., 2011) and other nonverbal cognitive abilities

(McEachin et al., 1993) are often predictors of treatment suc-

cess, this relationship is not always straightforward (Eapen

et al., 2013). Lord and colleagues (Lord et al., 2012) recently

concluded that ‘‘intrinsic’’ biological factors (i.e., different biolog-

ical factors underlying ASD subgroups with different clinical

course) might better explain variable clinical change, although

such biological explanations have yet to be identified.

Given both the widespread heterogeneity in early language

development (Anderson et al., 2007; Kjelgaard and Tager-Flus-

berg, 2001; Pickles et al., 2014) and its importance in relation to

core trajectories of symptom severity (Gotham et al., 2012),

alongside the predictive power of early language levels on later

outcomes (Bennett et al., 2008; Billstedt et al., 2005; Gillberg

and Steffenburg, 1987; Gotham et al., 2012; Howlin, 2003;

Howlin et al., 2000, 2014; Szatmari et al., 2000, 2003, 2009;

Venter et al., 1992), it is important for the field to develop

ways in which the ASD population could be stratified into plau-

sible and clinically relevant neurodevelopmental subtypes. Tak-

ing this stratification approach would help to accelerate the
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translational process from discovery of novel biological markers

to ways in which better treatments could be developed and

individualized to specific phenotypes (Kapur et al., 2012).

No developmental studies of biomarkers for early language

heterogeneity in ASD have been designed to address this major

issue. Existing natural sleep fMRI studies have found that 2- to 3-

year-old ASD toddlers as a whole differ on average from TD

toddlers in atypical speech-related lateralization of superior

temporal cortex (Eyler et al., 2012; Redcay and Courchesne,

2008) and reduced inter-hemispheric synchrony (Dinstein

et al., 2011). While these early studies established the potential

power of natural sleep fMRI to pinpoint early speech-related pro-

cessing differences in superior temporal cortical regions, they

fall short in addressing critical questions about heterogeneity

within ASD with regard to early language development and

outcome. That is, past studies have not employed analyses

and designs capable of detecting different neural subtypes

within ASD that underlie and help explain differing develop-

mental language trajectories and outcomes. Past studies have

also not studied predictive power at the individual level with

respect to prognosis and have not systematically studied how

such individual level variation in large-scale speech-related neu-

ral systems response varies with an individual’s level of change

in early developing language ability. Finally, existing work has

not yet tested whether any such neurofunctional abnormalities

within ASD are specific to an ASD subtype or whether they are

shared by a non-ASD clinical comparison group with significant

early language or general developmental delays.

In the present study, we have gone further to address each of

these critical questions.We combined (1) prospective fMRImea-

surement of neural systems response to speech during our nat-

ural sleep fMRI language paradigm (Eyler et al., 2012; Redcay

and Courchesne, 2008) at the earliest ages at which risk for

ASD can be clinically detected in the general pediatric popula-

tion with (2) contemporaneous and comprehensive longitudinal

diagnostic and clinical assessments to evaluate diagnostic

outcome and characterize language level by 3–4 years of age. In-

fants and toddlers were recruited using a combination of the

one-year well-baby check-up approach (Pierce et al., 2011) as

well as community referral. The natural sleep fMRI language

paradigm employed in this study was identical to that used in

our previously published studies (Eyler et al., 2012; Redcay

and Courchesne, 2008) and used three types of stimuli to reduce

habituation (i.e., complex forward speech, simple forward

speech, and backward speech) and rest blocks (more informa-

tion on the procedure for sleep-fMRI scanning as well as data

acquisition and analysis details can be found in the Supple-

mental Information). Cohorts of age- and sex-matched infants

and toddlers (aged 12–48 months) with ASD (n = 60), non-ASD

language/developmentally delayed individuals (LD/DD; n = 19),

and typically developing individuals (TD; n = 24) participated.

Early language development was characterized longitudinally

approximately every 6 months from clinical intake, and outcome

was determined from a follow-up assessment in early childhood,

on average 1 year after the original fMRI scanning session.Within

the ASD group, we identified individuals with poor language

outcome in early childhood (‘‘ASD Poor’’; n = 24) who had

outcome receptive (RL) and expressive (EL) language T-scores
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on the Mullen Scales of Early Learning that were below 1 SD of

the norm (i.e., T < 40). A second subgroup was identified that

had relatively better language outcome in early childhood

(‘‘ASD Good’’; n = 36) with EL or RL scores at outcomes greater

than 1 SD below the norm (i.e., T R 40). See Table S1 and

Supplemental Information for more on characterization of the

sample.

RESULTS

Behavioral Characterization of Development
Longitudinal assessments of language, non-verbal, and autism

symptomdevelopmentweremadeapproximately every6months

from initial clinical intake to an individual’s last outcome assess-

ment. Developmental trajectorieswere characterizedat the group

level after taking into account individual-level effects using linear

mixed-effect models. Across T-scores for Mullen EL and RL

subscales, we observed null or trend-level main effects for Age

(EL: F = 0.0803, p = 0.77; RL: F = 3.38, p = 0.06), but found

highly significant main effects of Group (EL: F = 39.01, p <

0.0001; RL: F = 26.72, p < 0.0001) and significant or trend-level

Group 3 Age interactions (EL: F = 8.43, p = 0.0042; RL: F =

3.71, p = 0.055). Bonferroni-corrected post-hoc comparisons

showed that the main effects of Group were driven by differentia-

tion on every pairwise comparison, where a gradient across

groups was observed of TD with the best language scores, fol-

lowed by ASD Good, LD/DD, and ASD Poor. An exception to

this was similar RL levels for LD/DD and ASD Good. For both EL

and RL, the Group3 Age interactions were solely driven by ASD

Poor’s declining trajectory differing from all other groups, though

the statistical significance for RL was at a nominally significant

level (e.g., p < 0.02) (Table S2, Figures 1A and 1B). Because we

are using Mullen T-scores, declining trajectories in ASD Poor

should be interpreted as individuals falling further and further

behind age-appropriate norms, rather than as loss of skills over

development.

In terms of trajectories of autism symptom severity measured

by the Autism Diagnostic Observation Schedule (ADOS), we

found a main effect of Group (F = 11.35, p = 0.0011) but no

main effect of Age (F = 0.536, p = 0.46) or Group 3 Age interac-

tion (F = 1.75, p = 0.18). Bonferroni-corrected post-hoc compar-

isons showed that all groupswere differentiated from each other,

with a gradient of ASD Poor with the most elevated ADOS

scores, followed by ASD Good, LD/DD, and TD. Furthermore,

the LD/DD group showed a decreasing trajectory over time,

and this decreasing slope was significantly different from all

other groups, where the trajectories were relatively stable or

slightly increasing over time (Table S2, Figure 1D).

Similar types of results were also observed on the non-verbal

subscales of theMullen (i.e., visual reception, finemotor) and the

Vineland Adaptive Behavior Scales, a parental clinical interview

measure of abilities in everyday settings (Figure 1C, Table S2,

Figure S1). This is expected, given past research documenting

correlations between early developmental clinical assessment

measures for autism such as theMullen, Vineland, and ADOS (El-

lis Weismer et al., 2010). In this study we replicated this correla-

tional structure at intake and outcome time points (Figure S2).

Furthermore, with longitudinal data, we additionally found that
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Figure 1. Developmental Trajectories for

Language, Non-verbal Cognitive, or Autism

Symptom Measures

(A–D) This figure shows developmental trajectories

for all groups (TD, red; LD/DD, green; ASD Good,

blue; ASD Poor, purple) on the Mullen expressive

language (EL) (A), receptive language (RL) (B), and

visual reception (VR) (C) subscales and the Autism

Diagnostic Observation Schedule (ADOS). Plots

show the group-level trajectory (solid line) esti-

mated frommixed-effect modeling after taking into

account individual-level trajectories (dotted lines,

unfilled circles). The colored bands indicate the

95% confidence band around the group-level tra-

jectory.
individual-level trajectories over development were substantially

correlated within and, to a lesser degree, across measures such

as the Mullen and Vineland. However, ADOS trajectories were

largely not associated with trajectories on the Mullen or Vineland

(Figure S2).

Neuroimaging Results

Given the behavioral evidence for early differentiation of ASD

Good versus Poor subgroups, we next asked the question of

whether the neural systems responsible for early language

development would show any differentiation in response to

speech stimulation. The canonical neural systems responsible

for language in the typically developing brain are well known in

adulthood (Hickok and Poeppel, 2007) and are also observed

in infancy and toddlerhood (Dehaene-Lambertz et al., 2002,

2006). To illustrate these ‘‘canonical’’ neural systems, we ex-

tracted a meta-analysis map from the NeuroSynth database

(http://www.neurosynth.org) (Yarkoni et al., 2011) of 725

studies associated with the feature ‘‘language’’ (Figure 2E).

This map shows involvement primarily within large clusters in

bilateral lateral frontal and superior temporal cortex. Visually,

the within-group all speech versus rest activation maps from

all groups except ASD Poor appear very similar to the Neuro-

Synth language map, particularly in temporal and parietal cor-

tex. TD, ASD Good, and LD/DD groups showed activation

broadly distributed across perisylvian temporo-parietal areas

such as planum polare, planum temporale, anterior, middle,

and posterior superior temporal sulcus and gyrus, Heschl’s

gyrus, middle temporal gyrus, and inferior temporal sulcus

as well as in angular gyrus, supramarginal gyrus, intraparietal

sulcus, and inferior parietal lobule/parietal operculum (Fig-

ure 2E). In contrast, the ASD Poor group showed no left hemi-

sphere recruitment and within right hemisphere recruited
Neuron 86, 567–
patches mainly in inferior parietal lobule,

planum temporale/Heschl’s gyrus, intra-

parietal sulcus, and superior and lateral

occipital cortex (Figure 2E). At very

liberal whole-brain uncorrected thresh-

olds (p < 0.05), the only activation within

ASD Poor left hemisphere superior

temporal cortex was a small cluster

overlapping with primary auditory cortex

(Figure S3).
In order to test for between-group differences in activation

strength within canonical neural systems for language, we first

looked specifically at the lateral frontal and temporal cortex

regions defined by the NeuroSynth ‘‘language’’ meta-analysis

map. ANCOVAs, covarying for mean framewise displacement

(Yan et al., 2013) and age at scanning, revealed significant group

differences only within left hemisphere superior temporal cortex

(F(3,97) = 4.88, p = 0.003, partial h2 = 0.131) (Figure 2A), although

the effect size in right hemisphere superior temporal cortex

(F(3,97) = 2.43, p = 0.069, partial h2 = 0.07) (Figure 2B) suggests

a similar trend. In contrast, no between-group difference was

apparent in frontal cortex either in the right (F(3,97) = 1.94, p =

0.12, partial h2 = 0.057) or left hemisphere (F(3,97) = 0.37, p =

0.76, partial h2 = 0.012) (Figures 2C and 2D). Dot plots showing

individual data points are presented in Figures S4A–S4D. Bon-

ferroni-corrected post-hoc comparisons decomposing the be-

tween-group difference in left hemisphere temporal cortex

clearly showed hypoactivation in ASDPoor compared to all other

groups (TD versus ASD Poor: Cohen’s d = 0.85, p = 0.014; ASD

Good versus ASD Poor: Cohen’s d = 0.94, p = 0.016; LD/DD

versus ASD Poor: Cohen’s d = 1.04, p = 0.011; all other compar-

isons: Cohen’s d < 0.14, p = 1). Confirming that these results are

specific to language outcome as the critical variable, we re-ran

ANCOVAs while also covarying for Mullen VR scores in order

to control for general non-verbal cognitive deficits in the ASD

Poor group and found similar results (F(3,93) = 3.84, p = 0.012,

partial h2 = 0.11; TD versus ASD Poor: p = 0.073; ASD Good

versus ASD Poor: p = 0.047; LD/DD versus ASD Poor: p =

0.01). All other regions of interest (ROIs) remained non-signifi-

cant after including Mullen VR as a covariate (Table S3). These

results also remain the same in further motion control analyses

where no individual exhibited mean framewise displacement
577, April 22, 2015 ª2015 Elsevier Inc. 569
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Figure 2. Functional Neural Abnormalities in Autism with Poor Language Outcome and Development

(A–D) The difference in BOLD percent signal change for the contrast of all speech conditions versus rest formeta-analytically defined canonical neural systems for

language. Error bars represent 95% confidence intervals.

(E) The full spatial extent of the NeuroSynth ‘‘language’’ meta-analysis map along with activation observed at a whole-brain corrected level (FDR q < 0.05) within

each group individually. The second to last row of (E) shows the whole-brain analysis for the specific contrast of All Other Groups > ASD Poor. The last row of (E)

shows the conjunction overlap between the NeuroSynth ‘‘language’’ map and the whole-brain contrast of All Other Groups > ASD Poor.
greater than 0.1 mm (Table S3 and Figure S5). Finally, we

additionally ran Welch’s ANOVAs to guard against violations of

homogeneity of variance, whichwere present only for RH tempo-

ral (Levene’s Test, F(3,99) = 3.19, p = 0.02) and RH frontal cortex

(Levene’s Test, F(3,99) = 3.21, p = 0.02). The effect in RH tempo-

ral cortex became statistically significant (F(3,44.72) = 3.17, p =

0.03), while the RH frontal cortex showed a trend-level effect

(F(3,48.30) = 2.58, p = 0.06).

Further confirmation of hypoactivation in the ASD Poor

subgroup comes from whole-brain between-group analyses.

Bilateral temporal cortex was significantly hypoactive in ASD

Poor compared to all other groups (LH cluster: MNI x = �54,

y = �33, z = 4, t(97) = 4.52, pFDR = 0.011, k = 645; RH cluster:

MNI x = 42, y = �41, z = 8, t(97) = 3.57, pFDR = 0.056, k = 374),

and these clusters spanned language-related perisylvian areas

such as planum polare, planum temporale, anterior, middle,

and posterior superior temporal sulcus and gyrus, Heschl’s

gyrus, middle temporal gyrus, and inferior temporal sulcus (Fig-

ure 2E). The conjunction overlap (Nichols et al., 2005) of this

whole-brain analysis with the NeuroSynth ‘‘language’’ meta-

analysis map was considerable in bilateral superior temporal

cortex (Figure 2E). Further whole-brain analyses specifically
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comparing TD, ASD Good, and LD/DD groups against each

other yielded no significant differences.

Next, we quantitatively assessed multi-voxel pattern similarity

(Kriegeskorte et al., 2008a, 2008b) for two specific aims. First

we wanted to assess how similar were each group’s second-

level activation maps to each other. These analyses show that

TD, ASD Good, and LD/DD activation maps are all markedly

similar within voxels defined by the NeuroSynth language

map. In contrast, ASD Poor stands alone with markedly less

similarity to all other groups (all p < 5.63 3 10�14) (Figure 3A,

Table S4). This separation between ASD Poor and all other

groups can be better visualized in Figure 3B after multidimen-

sional scaling.

Second, because some studies report processing abnormal-

ities in primary auditory pathways in ASD (Dinstein et al., 2012;

Haigh et al., 2014), we assessed whether the activation patterns

observed across individuals in this study were similar to meta-

analytically defined activation patterns that are characteristic

for general auditory processing outside the domain of language

or speech, or for activation patterns that are associated with

language and speech. To meta-analytically isolate activation

patterns for each, we used NeuroSynth to retrieve and run a
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Figure 3. Multi-Voxel Pattern Similarity Analyses

(A andB) Pattern similarity analyses comparing each group’s second-level group activationmaps (i.e., t-statisticmaps) with all other groups. These analyseswere

conducted only on voxels defined based on the NeuroSynth languagemap (i.e., voxels that passed FDR q < 0.01). The similarity matrix (i.e., Pearson correlations)

comparing each group’s second-level activationmapwith every other group is shown in (A). Higher values closer to 1 indicatemore pattern similarity, while values

closer to 0 indicate no pattern similarity across voxels. The correlation matrix in (A) was converted into a dissimilarity matrix (i.e., 1-r) and entered into canonical

multidimensional scaling to reduce thematrix to two dimensions (i.e., MDS1 andMDS2) for the purposes of visualization of the separation between ASDPoor and

all other groups (B).

(C and D) Results of analyses comparing individual subject activation maps (i.e., t-statistic maps) to specific NeuroSynth maps for either ‘‘Language AND

Speech’’ or ‘‘Auditory AND NOT (Language OR Speech).’’ Error bars represent 95% confidence intervals. In all panels the coloring across groups is red = TD,

green = LD/DD, blue = ASD Good, and purple = ASD Poor.
meta-analysis on studies associated with specific queries. For

general auditory processing outside the domain of language

or speech, we retrieved all studies associated with the term

‘‘auditory’’ and excluded any studies that were associated with

‘‘language’’ or ‘‘speech’’ (e.g., ‘‘Auditory AND NOT (Language

OR Speech)’’; n = 601 studies). For activation patterns that

are associated specifically with language and speech, we ran

a meta-analysis on all studies in NeuroSynth associated with

both the terms ‘‘language’’ and ‘‘speech’’ (e.g., ‘‘Language

AND Speech’’; n = 145 studies). By assessing pattern similarity

with these two NeuroSynth maps, we could evaluate the hypoth-

esis of whether any such abnormalities in ASD Poor are common

to general auditory and language/speech processing, or whether

their abnormalities are specific to either. For ‘‘Language AND
Speech,’’ we found markedly less similarity in ASD Poor

compared to all other groups (F(3,97) = 3.71, p = 0.014, partial

h2 = 0.10) (Figure 3C). TD, LD/DD, and ASD Good all showed

pattern similarity significantly above 0 (TD, t(23) = 3.34, p =

0.002, Cohen’s d = 0.68; LD/DD, t(18) = 3.34, p = 0.003, Cohen’s

d = 0.78; ASD Good, t(35) = 4.71, p = 3.76 3 10�5, Cohen’s d =

0.78), whereas ASDPoor shows no sign of statistically significant

similarity with the Language AND Speech meta-analysis map

(t(23) = �0.39, p = 0.69, Cohen’s d = 0.08). In contrast, for acti-

vation patterns for general auditory processing outside the

domain of language or speech (e.g., Auditory AND NOT [Lan-

guage OR Speech]), we find no group differentiation in terms

of pattern similarity (F(3,97) = 0.10, p = 0.95, partial h2 = 0.003

(Figure 3D). All groups show statistically significant similarity
Neuron 86, 567–577, April 22, 2015 ª2015 Elsevier Inc. 571



with these meta-analytically defined activation patterns for gen-

eral auditory processing, with ASD Poor possessing the biggest

effect size (TD, t(23) = 3.15, p = 0.004, Cohen’s d = 0.64; LD/DD,

t(18) = 3.22, p = 0.004, Cohen’s d = 0.73; ASDGood, t(35) = 5.13,

p = 1.05 3 10�5, Cohen’s d = 0.85; ASD Poor, t(23) = 4.43, p =

0.0001, Cohen’s d = 0.90). Dot plots showing individual data

points are shown in Figures S4E and S4F. These results show

that activation patterns linked back to general auditory process-

ing are intact across all groups including ASD Poor. In contrast,

for activation patterns characteristic of language and speech,

there is little multi-voxel pattern similarity on average at the group

level in ASD Poor, and their pattern similarity was markedly

reduced compared to all other groups.

Further analysis on the topic of general auditory processing

was done by specifically examining activation response within

a primary auditory cortex ROI. Here we did not find any signifi-

cant differences between groups in an ANCOVA (F(3,97) =

0.89, p = 0.44, partial h2 = 0.027). TD, LD/DD, and ASD Good

all showed sizeable effect sizes for non-zero activation in this re-

gion (e.g., Cohen’s d > 0.54, one-tailed p < 0.006). For ASD Poor,

a one-sample t test shows that there is weak group-level activa-

tion at trend-level significance for being different from 0 (t(23) =

1.67, one-tailed p = 0.054, Cohen’s d = 0.33) (Figure S3; Table

S4). Montages of single-subject analyses in ASD Poor, thresh-

olded at liberal uncorrected levels in order to show any subtle

extent of activation, demonstrate, however, that this effect is

not particularly robust at the level of individuals (Figure S3).

In contrast to analyses comparing all speech conditions to

rest, we also compared forward versus backwards speech as

a further higher-level contrast specific to intelligible speech pro-

cessing. All analyses on this forward versus backward contrast

yielded no significant differences in canonical neural systems

for language processing (i.e., NeuroSynth temporal and frontal

ROIs), either at thewithin-group or between-group level. Further-

more, whole-brain analyses additionally showed no evidence for

differentiation of forward from backward speech in temporal or

frontal areas. Rather, whole-brain analyses showed that only

the TD group recruited areas in thalamus, retrosplenial, and oc-

cipital cortex significantly more for forward compared to back-

ward speech. The sole recruitment of these areas in the TD group

was also manifested in a significant between-group whole-brain

analysis showing increased activation in TD compared all other

groups (Table S3, Figure S6).

Multivariate Brain-Behavior Relationships at Intake and

Outcome

Next, we looked at brain-behavior relationships between lan-

guage-related behavioral measures (e.g., Mullen EL and RL

subscales and the Vineland Communication subscale) at both

intake and outcome time points and neural contrast measured

from all speech versus rest contrast. To achieve these aims,

we used partial least-squares correlation (PLSC) analyses

(Krishnan et al., 2011; McIntosh and Lobaugh, 2004). PLSC anal-

ysis is most appropriate for this particular aim, as the two data-

sets (i.e., brain and language-related behavioral measures) are

both multivariate and show high degrees of correlation. For

such situations, PLSC finds latent variable (LV) brain-behavioral

pairings that maximally covary and which are uncorrelated

with other brain-behavior LV pairs. PLSC also assesses the
572 Neuron 86, 567–577, April 22, 2015 ª2015 Elsevier Inc.
null hypothesis of whether the observed strength of brain-

behavior relationships, noted by the singular value (‘‘d’’) for

each LV pair, would emerge frequently under chance conditions

(i.e., permutation test, 10,000 iterations) and can descriptively

unveil how such multivariate brain-behavior relationships mani-

fest as covariation patterns of distributed neural response and

multivariate behavioral patterns (see Krishnan et al., 2011 for

primer on PLSC applied to neuroimaging).

PLSC highlighted one significant brain-behavior LV pair (LV1:

d = 73.90, p = 0.031) that accounted for 29.60% of the covari-

ance in the data. Brain regions that make the strongest contribu-

tions toward LV1 (Figures 4C and 4D) are split into two types. The

first are regions shown in hot colors in Figures 4C and 4D and are

generally located within ‘‘language’’-related superior and inferior

temporal cortices, anterior lateral and medial prefrontal cortex,

subcortical regions in amygdala, hippocampus, and ventral

striatum, as well as anterior cingulate and insular cortices. These

brain regions all show a directionality of brain-behavioral corre-

lations shown in Figure 4A; that is, gradient descent in correlation

strength across groups, from robust positive correlations in TD

to less-strong positive correlations in LD/DD, followed by weak

negative correlations in ASD Good and robust negative correla-

tions in ASD Poor. The second set of regions shown in cool

colors in Figures 4C and 4D are generally located within frontal

and temporally connected segments of the thalamus (Behrens

et al., 2003), somatomotor-connected segments of cerebellar re-

gions Crus IV and V (Buckner et al., 2011), supplementary and

pre-supplementary motor areas (SMA, pre-SMA), motor and

premotor cortices, and primary visual cortex. These brain re-

gions all show a directionality of brain-behavioral correlations

shown in Figure 4B, which are the direct opposite of that shown

in Figure 4A; that is, gradient ascent from robust negative corre-

lations in TD to weak negative correlations in LD/DD, followed by

weak positive correlations in ASD Good and robust positive cor-

relations in ASD Poor. It is clear from these plots that there is a

reversal in the directionality of brain-behavioral correlations in

ASD subgroups compared to TD, with the strongest and most

pervasive reversal apparent in the ASD Poor group. In ASD

Good, however, this atypical reversal was less severe when as-

sessing the brain-outcome behavioral relationship, and this may

be indicative of a different developmental process emerging in

ASD Good that allows such brain-behavioral relationships to

approach those seen in LD/DD.

Predicting Poor versus Good Language Prognosis

within ASD

Finally, we asked the important clinical question of how informa-

tion from behavioral and functional neuroimaging measures at

pre-diagnostic ages (i.e., the earliest clinical intake time point)

could be used in the context of predicting poor versus good

language prognosis within ASD. Our primary aim in this analysis

was to assess the predictive power that fMRI data have at an

individual level for classifying ASD Poor versus ASD Good

compared to other early clinical behavioral measures, or to

determine whether a multimodal combination of early clinical

behavioral and fMRI data could provide a potentially more prom-

ising prognostic classifier. Here we used a partial least-squares

linear discriminant classifier with 5-fold cross-validation to

obtain estimates of performance when using various types of
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Figure 4. Multivariate Brain-Behavioral Relationship Analyses

(A–D) This figure shows large-scale neural systems where all speech versus rest fMRI response covaries with multivariate behavioral patterns of variation in

language ability measured at intake and outcome time points. PLSC analysis highlighted one significant brain-behavioral latent variable pair (LV1; d = 73.90, p =

0.031; 29.60% covariance explained), and the strength of brain-behavioral relationships for LV1 are shown in (A) and (B), while the voxels that most robustly

express such relationships are shown in (C) and (D). (A) depicts the directionality of brain-behavioral relationships for hot-colored brain regions in (C) and (D), while

(B) depicts the directionality of brain-behavioral correlations for cool-colored brain regions in (C) and (D). Within the bar plots in (A) and (B), bars are stratified by

language measure (Mullen expressive [EL] or receptive [RL] language or Vineland Communication) and by the developmental time point at which they were

measured (e.g., intake or outcome assessment). Error bars indicate the 95%confidence intervals estimated from bootstrapping (10,000 resamples). The coloring

of the bars indicate different groups (red = TD, green = LD/DD, blue = ASD Good, purple = ASD Poor). Stars above specific bars indicate where the brain-

behavioral relationship is non-zero (i.e., 95% CIs do not encompass 0), and these are specific relationships that reliably contribute to the overall PLS relationship

for LV1. The coloring in (C) and (D) reflects the bootstrap ratio (BSR), which is analogous to a pseudo z-statistic and can be interpreted accordingly. Only voxels in

(C) and (D) with BSR values greater than 1.96 or less than�1.96 are shown, as these are the primary voxels showing the biggest contributions to the overall pattern

being expressed by LV1. BSR, bootstrap ratio; EL, Mullen expressive language; RL, Mullen receptive language; ASD, autism spectrum disorder; TD, typical

development; LD/DD, language/developmental delay.
features, such as the ADOS at intake alone, clinical measures

at intake alone (Mullen + Vineland + ADOS), fMRI alone (e.g.,

speech-related activation from the left hemisphere superior tem-

poral cortex ROI derived from NeuroSynth), or a multimodal

combination of clinical intake measures and fMRI. Comparing

these different classifiers based on area under the curve (AUC)

values, we find that the multimodal combination of clinical intake

measures plus left hemisphere superior temporal cortex activa-

tion outperformed all other classifiers (AUC = 81). Classifiers that
used either ADOS alone, clinical intake measures alone, or fMRI

alone performed similarly in terms of near-identical AUC values

(AUC ranging from 67 to 70) (see Figure 5).

DISCUSSION

In this study we discovered functional neuroimaging biomarkers

underlying one of the theoretically and clinically most important

areas of developmental heterogeneity in autism: early language
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This figure shows the performance of four classifier models (i.e., partial least-

squares linear discriminant analyses) using different features for the purpose of

distinguishing the ASD Poor from the ASD Good subgroup. All models using

behavioral data (e.g., ADOS,Mullen, Vineland) utilize such information from the

earliest clinical intake time point. Information input into the fMRI classifier are

percent signal change estimates from all speech versus rest from all voxels

within the NeuroSynth left hemisphere superior temporal cortex ROI. Acc,

Accuracy; Sens, Sensitivity; Spec, Specificity; AUC, area under the curve;

ADOS, Autism Diagnostic Observation Schedule.
development. Prior to this work, neurobiological explanations

were lacking for why clinical courses in toddlers and young

children with ASD are so heterogeneous, with some worsening

and others improving with development. Here we have shown

that subgrouping the ASD population based on early childhood

language outcome represents a developmentally and neuro-

biologically meaningful way to parse this phenotypic heteroge-

neity and identify meaningful biological subtypes. Moreover,

leveraging a rare and large sample size of toddlers from the

general population, our study, for the first time, finds a strong

relationship between levels of aberrance in speech-activation

in language-critical superior temporal cortex and actual real-

world language ability in ASD toddlers.

Developmentally, ASD subgroups defined in this study

showed differential behavioral developmental trajectories of lan-

guage growth over the first 4 years of life. ASD Poor individuals

arrive at their poor outcome levels at 3–4 years through develop-

mental trajectories from 12 months of age that are indicative of

falling further and further behind what is considered age-appro-

priate developmental progress. In contrast, ASD Good shows

steady age-appropriate progress and slight improvement in lan-

guage ability over time. These results are well aligned with other

clinical studies looking at a much larger age range that show

that > 50% of ASD individuals have poor long-term language

outcomes, while the remaining individuals have better long-

term language outcomes (Anderson et al., 2007; Gotham et al.,

2012; Pickles et al., 2014).

Neurally, ASD individuals with good language development

and clinical outcome alongside typically developing and non-

ASD language/developmentally delayed individuals all showed

intact speech-related response of language-relevant superior

temporal cortical areas and in terms of multi-voxel activation

patterning were also very similar. In striking contrast, ASD indi-

viduals with poor language development and outcome showed

a lack functional differentiation in superior temporal cortex to
574 Neuron 86, 567–577, April 22, 2015 ª2015 Elsevier Inc.
speech stimuli and showed markedly less similarity in activation

patterning compared to all other groups. Furthermore, in terms

of activation patterning, ASD Poor showed relatively intact acti-

vation patterning related to general auditory processing, but

showed much less activation pattern similarity that was specif-

ically related to language and speech. This result points towards

the interpretation that neural systems for general auditory pro-

cessing are relatively intact in ASD Poor and that the abnormal-

ities observed here are specific to language and speech-related

neural systems dysfunction. Thus, the neural functional sub-

strates of early language presentation and development in ASD

are different for those with good versus poor outcome, and this

very early effect points to distinctly different neural develop-

mental subtypes of ASD. These neural functional findings will

accelerate translational progress on important questions and

topics related to the mechanisms (e.g., molecular, cellular, neu-

ral systems, cognitive, social/environmental) that lead to such

differentiation in the early phenotype of ASD. At the molecular

and cellular levels, prior work has shown that prenatal periods

of brain development are important in ASD (Baron-Cohen

et al., 2015; Courchesne et al., 2011; Parikshak et al., 2013;

Stoner et al., 2014; Willsey et al., 2013), and so genomic and

stem cell methodologies could be used to investigate whether

these ASD Good and Poor neural subtypes reflect different

timing and/or manifestation of etiological mechanisms.

Further underscoring the importance of these different neural

substrates to early language progress and outcome, we also

found in ASD highly atypical relationships between language

development and neural response to speech. Two major sys-

tems were highlighted in these analyses. First, canonical lan-

guage areas, the default mode network, and subcortical regions

involved in reward, emotion, and memory (e.g., hot-colored re-

gions in Figures 4C and 4D) appear to be normatively (i.e., in

the typically developing group) recruited more in individuals

with better language, while other large-scale systems (e.g.,

cool-colored regions in Figures 4C and 4D) were recruited less

by individuals with the best language ability (i.e., somatomotor

cerebellar areas, thalamus, motor, premotor, and primary visual

areas). This trade-off between these two large-scale sets of neu-

ral systems is insightful on its own about typical language devel-

opment and the neural systems that are modulated as a function

of an individual’s early language ability. However, the additional

and perhaps more striking insight for autism is that these brain-

behavioral relationships reverse in directionality, with ASD Poor

being most prominent in showing these atypical reversals that

persist across early intake and outcome time points. In contrast

to ASD Poor, ASD Good toddlers (who had improving language

development) started with intake brain-behavioral relationships

that were atypically reversed, but showed brain-behavior rela-

tionships at clinical outcome that began to approach the TD

and LD/DD groups. The mechanism(s) involved in this atypical

directionality reversal of how brain function is relevant to lan-

guage-related behavioral variation in the early development of

ASD is unknown. One possibility is that because social interac-

tions are critically important for early language development,

early social deficits common to all ASD toddlers may delay early

language learning in ASD Good toddlers despite their good

neural activation to speech. Another non-mutually exclusive



explanation could be boiled down to unique genomic mecha-

nisms for a particular subgroup that are integrally related with

variation in these neural systems.

Our results also suggest that information encoded in neural re-

sponses to speech at very young ages might provide important

predictive information about a child’s likely later language capa-

bilities. We found that early neural and behavioral information

provide joint pieces of information that, when combined, pro-

vided a particularly strong classifier of poor versus Good lan-

guage outcome in ASD, and that such a multimodal classifier

outperformed classifiers that used only clinical or fMRI informa-

tion alone. Future work integrating information from other imag-

ingmethods like ERP/EEG,MEG, and fNIRSmay be helpful (Kuhl

et al., 2013; Lloyd-Fox et al., 2013; Seery et al., 2013) as addi-

tional sources of information and collected under different con-

texts such as language/speech processing in awake states. In

general, these classifier analyses show a proof-of-concept for

potential future development of a prognosis classifier that may

combine evidence from both fMRI and early clinical behavioral

assessment information. If such a clinically useful classifier could

be developed in the future, this would clearly have an impact for

aiding clinical judgments, such as potentially informing future

treatment decisions and personalizing early intervention. Future

work along these lines would require much larger sample sizes

and prevalence estimates of such subgroups. Future work might

also consider utilizing separate global developmental delay and

language delay contrast groups instead of combining toddlers

from within these groups, as was done in the current study. In

this way, unique contributions of global delay on the specializa-

tion of superior temporal cortex for language, and how this may

be similar or different to ASD, could be more easily gleaned from

the data.

Our work represents one of the first attempts at using fMRI to

define neurofunctional biomarkers of a subtype in very young

ASD toddlers. Such subtypes may facilitate future work on an

array of translational goals such as highlighting novel etiological

and developmental mechanisms or informing clinical practice re-

garding early interventions that could be developed and/or

modified to be more effective and personalized to a child’s

needs. Understanding how these different subtypes respond to

different types of treatment would also allow for insight into un-

derstanding how and why treatments are effective for some

but not all individuals on the autism spectrum. Finally, this

work provides an example of how we may be able to start effec-

tively mapping multiple behaviorally manifested phenotypes

more directly onto underlying neurobiological substrates and

thus better account for the substantial heterogeneity inherent

in the early development of ASD.
EXPERIMENTAL PROCEDURES

For a full description of all experimental procedures, analysis details, etc.,

please see the Supplemental Information. This study was approved by the

Institutional Review Board at University of California, San Diego. Parents pro-

vided written informed consent according to the Declaration of Helsinki and

were paid for their participation. A total of 103 infants/toddlers participated

in this study (24 ASD Poor, 36 ASD Good, 24 TD, 19 LD/DD). All individuals

were recruited via either a general community referral and/or a population-

based screening method called the one-year well-baby check-up approach
(Pierce et al., 2011). All infants were tracked from an intake assessment around

12 months until 3–4 years of age. fMRI scanning sessions typically occurred

within 3 months of the intake assessment time point, though this was not

the case for all individuals. The ASD Poor subgroup was defined based

on the criteria of having both Mullen EL andRL T-scores more than 1 SD below

the norm of 50 (i.e., T < 40) at the outcome assessment. ASD Good was

defined by having outcome Mullen EL or RL T-scores greater than or equal

to 40. All individuals were followed longitudinally approximately every 6months

from intake with evaluations on the three initial modules of the Autism Diag-

nostic Observation Schedule (ADOS) (toddler, 1, or 2) (Lord et al., 2000; Luy-

ster et al., 2009), the Mullen Scales for Early Learning (Mullen, 1995), and the

Vineland Scales of Adaptive Behavior (Sparrow et al., 1984).

fMRI Data Acquisition and Task Design

The fMRI task was identical to that used in our previously published studies

(Eyler et al., 2012; Redcay and Courchesne, 2008; Redcay et al., 2008) and

consisted of three types of speech stimuli (complex forward speech, simple

forward speech, and backward speech) as well as rest blocks interspersed

between task blocks to forestall possible habituation across blocks. Blocks

were 20 seconds in duration. All speech conditions were created using the

same female speaker. Two contrasts of interest were analyzed in this study:

all speech conditions versus rest and forward (simple + complex) versus

backward speech. At early language learning ages, when neonates, infants,

and toddlers are not yet experts at language, forward and backward speech

both activate language-relevant temporal areas; thus, specific comparisons

between them tend to be non-significant (Dehaene-Lambertz et al., 2002;

Redcay et al., 2008). Therefore, forward and backward speech stimuli both

appear to be effective in stimulating language-sensitive cortices, by perhaps

both being treated as potentially language-relevant by the language-inexpe-

rienced infant and toddler brain. Thus, although we have specifically

analyzed both contrasts, because of this age-related caveat for forward

versus backward speech, our main contrast of interest was all speech versus

rest.

Imaging data were collected on a 1.5 Tesla General Electric MRI scanner

during natural sleep at night; no sedation was used. High-resolution T1-

weighted anatomical scans were collected for warping fMRI data into standard

atlas space. Blood oxygenation level-dependent (BOLD) signal was measured

across the whole brain with echoplanar imaging during the language paradigm

(echo time = 30ms, repetition time = 2,500ms, flip angle = 90�, bandwidth = 70

kHz, field of view = 25.6 cm, in-plane resolution = 43 4 mm, slice thickness =

4 mm, 31 slices).

Behavioral Trajectory Analyses

All behavioral analyses employ mixed-effect analyses (modeling random

slopes and intercepts) in order to model within-individual trajectories and

group-level trajectories and were implemented in the R nlme package with

the function lme (http://cran.r-project.org/web/packages/nlme/index.html).

fMRI Data Analyses

fMRI data preprocessing was implemented within the Analysis of Functional

NeuroImages (AFNI) software package (http://afni.nimh.nih.gov). First-level

and second-level mass-univariate whole-brain activation analyses were

modeled with the general linear model (GLM) in SPM8 (http://www.fil.ion.

ucl.ac.uk/spm/). Events in first-level models were modeled using the

canonical hemodynamic response function and its temporal derivative. All

first-level GLMs included motion parameters as covariates of no interest.

High-pass temporal filtering was applied with a cutoff of 0.0078 Hz (1/128

seconds) in order to remove low frequency drift in the time series. Within sec-

ond-level analyses, we covaried for age at fMRI scan and mean framewise

displacement. For all second-level whole-brain analyses, we used a clus-

ter-forming threshold of p < 0.025 and corrected for multiple comparisons

at the cluster level to obtain an FDR q < 0.05 (Chumbley et al., 2010). For

ROI analyses, we used independent functionally defined ROIs related to lan-

guage processing by extracting bilateral frontal and temporal cortex clusters

from a meta-analysis map downloaded from http://www.neurosynth.org

(Yarkoni et al., 2011) of 725 studies associated with the feature ‘‘language’’

(see top of Figure 2E).
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Multi-Voxel Pattern Similarity Analyses

Two separate multi-voxel pattern similarity analyses were conducted. The

first assessed similarity between each group’s second-level activation map

(i.e., t-statistic map), masked for only voxels within the NeuroSynth language

map. The resulting correlation matrix was converted into a dissimilarity matrix

(i.e., 1-r) and entered into canonical multidimensional scaling to reduce dimen-

sionality down to a two dimensions for visualization of the separation between

ASD Poor and all other groups. The second analysis compared individual

subjects’ activation maps (i.e., first-level t-statistic maps) with specific Neuro-

Synth featuremaps constructed specifically for the purposes of testing similar-

ity with meta-analytic knowledge about neural systems for general auditory

processing outside the domain of language and speech or for meta-analytic

knowledge about neural systems that are specific to language and speech

(see Supplemental Information for more details).

Brain-Behavior Relationship Analysis

Brain-behavior relationships were assessed with the multivariate technique of

PLSC analysis (Krishnan et al., 2011; McIntosh and Lobaugh, 2004). All PLSC

analyses were implemented with the plsgui Matlab toolbox (http://www.

rotman-baycrest.on.ca/pls/). The number of permutations and bootstrap re-

samples were each set to 10,000 (see Supplemental Information for more

details).

Classifier Analyses

Classifier analyses used partial least-squares linear discriminant analyses

with 5-fold cross-validation implemented with the Matlab toolbox libPLS

(http://www.libpls.net). Features for the classifiers consisted of behavioral

measures taken from the earliest clinical intake time point or using fMRI

speech-related activation (i.e., percent signal change for all speech versus

rest) from all voxels extracted from the NeuroSynth-defined left hemisphere

superior temporal cortex ROI. The distinction being made in each classifier

was the distinction between ASD Poor versus ASD Good. Receiver operating

characteristic (ROC) curves and AUC values were computed for each classi-

fier in order to determine which of the four classifiers performed best, and

accuracy, sensitivity, and specificity were also computed as measures of

classifier performance.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and four tables and can be found with this article online at http://

dx.doi.org/10.1016/j.neuron.2015.03.023.
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