Vesicular monoamine transporters heterologously expressed in the yeast Saccharomyces cerevisiae display high-affinity tetrabenazine binding

Rodrigo Yelin, Shimon Schuldiner *

Alexander Silberman Institute of Life Sciences, Hebrew University, Givat Ram, Jerusalem 91904, Israel

Received 21 July 2000; received in revised form 26 October 2000; accepted 9 November 2000

Abstract

A mammalian vesicular neurotransmitter transporter has been expressed in the yeast Saccharomyces cerevisiae. The gene encoding the rat vesicular monoamine transporter (rVMAT₁) was cloned in several expression plasmids. The transporter was expressed at detectable levels only when short sequences using codons favored by S. cerevisiae were fused preceding the start of translation of rVMAT₁. The scarce expression of the wild-type protein was, most likely, due to the fact that part of the N-terminus of the protein is encoded by codons not preferred in S. cerevisiae. Furthermore, low growth temperatures increased rVMAT₁ expression and altered its processing. Whereas at 30°C the protein is not glycosylated, at lower temperatures (~16°C) half of the expressed transporters undergo core glycosylation. In addition, under these conditions the levels of protein expression significantly increase. Using a functional chimeric protein composed by VMAT and the green fluorescent protein (GFP), it is shown that the punctate pattern of intracellular distribution remains invariable at the different temperatures. Using a similar fusion sequence, the bovine VMAT isoform 2 (bVMAT₂) was also expressed in yeast. The yeast-expressed bVMAT₂ binds [³H]dihydrotetrabenazine ([³H]TBZOH) with the same characteristics found in the native protein from bovine chromaffin granules. Dodecyl maltoside-solubilized bVMAT₂ retains the conformation required for [³H]TBZOH binding. We exploited the robust binding to follow the transporter during purification assays on a Ni²⁺-chelating column. In this report we describe for the first time the heterologous expression of a neurotransmitter transporter in the yeast S. cerevisiae. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Neurotransmitter transport; Codon usage; Heterologous expression; Protein folding; Tetrabenazine; Vesicular monoamine transporter; Chaperone

1. Introduction

Vesicular neurotransmitter transporters (VNTs) are responsible for the transport of classical neurotransmitters into synaptic vesicles and storage organelles of secretory cells. Vesicular transport activities have been described for acetylcholine, glutamate, y-aminobutyric acid and glycine [1]. The transport
of biogenic amines has served as the experimental paradigm, most likely due to the use of bovine chromaffin granules, an abundant source of material with robust transport activity. Transport of the monoamines serotonin, dopamine, norepinephrine, epinephrine, and histamine into storage organelles is catalyzed by the vesicular monoamine transporter (VMAT). VMAT has been purified from chromaffin granules [2–4]. Cloning of VMAT was achieved both by functional expression [5] and using the expression cloning approach [6]. The cloned transporter protects against the toxicity of 1-methyl-4-phenylpyridinium (MPP⁺), by sequestering it within a vesicular compartment. Two isoforms of the transporter have been identified: VMAT₁ and VMAT₂. The isoforms show a high sequence similarity; yet they differ in their pharmacological profile and affinity to histamine. Whereas VMAT₁ is nearly insensitive to tetrabenazine (TBZ) inhibition, VMAT₂ is inhibited and binds TBZ at concentrations in the nanomolar range [7].

The identification of the genes coding for the transporters allowed the analysis of the role of specific amino acids in the transporter activity [8–11]. In a recent study, we examined the importance of glycosylation and characterized a mutation at a conserved proline residue which affects the folding, localization and activity of VMAT [12].

To further understand the mechanism of transport, high-resolution structure information is required. Purification of proteins from native sources often requires lengthy and laborious procedures. In recent years, the use of tags has simplified purification procedures to ‘single-column protocols’. Efficient expression systems are essential for allowing the introduction of suitable purification tags and render large quantities of functional protein. Several heterologous expression systems were developed and are extensively used in modern biochemistry. Among them, the yeast Saccharomyces cerevisiae, for which a vast knowledge on its genetics and biochemistry is available, became widely accepted. S. cerevisiae has already been successfully used for heterologous expression and cloning of several membrane proteins. For instance, various plant transporters [13–16], mammalian membrane proteins such as the human D₂S dopamine receptor [17], the P-glycoprotein [18], the mouse transporter protein (MTP) [19], etc. We have shown recently, that EmrE, a bacterial multidrug transporter, is expressed at high levels in S. cerevisiae conferring resistance to a variety of toxicants by sequestration into the vacuole [20]. VMAT is unique in that it is an H⁺-substrate antiporter that its default localization in mammalian cells is in storage subcellular organelles such as synaptic vesicles and chromaffin granules. In this report we describe the expression of VMAT in S. cerevisiae. We found that the expression of VMAT is highly dependent on several factors, including the coding sequence of the amino terminus and growth temperature. The yeast-expressed bVMAT₂ binds [³H]dihydrotetrabenazine ([³H]TBZOH) with the characteristics displayed by the native protein. We exploited the stability of the complex [³H]TBZOH-bVMAT₂ to follow the transporter during purification procedures.

2. Materials and methods

2.1. Strains

Bacterial strain Escherichia coli DH5α [21] was used for propagation of recombinant plasmids. The S. cerevisiae strains used in this study were: YAE65 (MAT a, ade2–119, ilv1–92, trp5-b, sge1, ura3Δ5) and YHE4 (MAT a, ade2–119, ilv1–92, trp5-b, ura3Δ5) [22,23] (kindly supplied from C. Senstag, University of Zurich), BWT-1 (MAT a, his3, lys2, ura3, leu2, trp1, met10, GAL+) [20], YMTAB (MAT α, leu2–3, 112, ura3Δ5, pra1::HIS3, prb1ΔAV, GAL+) [17] and SY1 (MAT a, ura3–52, leu2–3,112, his4–619, sec6–4, GAL [24] a gift of Professor C. Slayman (Yale University).

2.2. Media

S. cerevisiae strains were grown in standard media. Complete YPD medium (containing 1% yeast extract, 2% bactopeptone, and 2% glucose) was used to grow non-transformed strains. Minimal medium (SD) (0.17% yeast nitrogen base without amino acids (Difco), 0.5% ammonium sulfate and 2% glucose or 2% galactose) was supplemented according with the auxotrophic requirements as described in [25]. Temperature of growth was 30°C unless indicated otherwise. Expression under GAL promoter was checked.
either after growth in 2% galactose or after exposing cells which grew using raffinose, lactate or glucose as carbon source to 2% galactose for 2, 4, 8 and 24 h. Yeast cells were transformed using the method of Elble [26].

2.3. Plasmids

The following yeast-expression vectors were used. pAD4Δ is a 2μ plasmid, LEU2, with ADH promoter and terminator [27]. p421 is a 2μ plasmid, LEU2, with PMA1 promoter and terminator [28]. p112 is a CEN4 plasmid, URA3, with GAL1 and GAL10 promoters [29]. p413Gal is a CEN4 plasmid derived from p413 [30] with the GAL1 promoter inserted at the Sal I site. BFG-1 is a 2μ plasmid, PGK promoter and terminator, LEU2; it contains an ATG site for start of translation, followed by three copies of the hemagglutinin (HA) epitope [31], see Fig. 1A. Canine calnexin [32], a generous gift from Dr C. Tate (MRC Laboratory of Molecular Biology, Cambridge, UK), was expressed under the GPD promoter of the pG-1 plasmid [33]. SHR3 was expressed using the plasmid pPL250 from [34] kindly provided by Dr Per Ljungdahl (Ludwig Institute for Cancer Research, Sweden). For stable transfection of CHO cells, pCIN plasmid allows for stable transfection of cells based on selection with neomycin [35].

2.4. Cloning procedures

The cDNA of rVMAT1 was excised from pTMI/ rVMAT1 [8] with EcoRI and XhoI and inserted in pBluescript KS at the same sites creating an intermediate plasmid pBS/rVMAT1. This plasmid contains the EcoRI site immediately before the ATG that starts the translation of rVMAT1 and the entire 3′ untranslated region (592 bases) [5]. To insert rVMAT1 in the plasmid pAD4Δ [27], pBS/rVMAT1 was partially digested with PstI and a fragment

Fig. 1. The codon usage at the amino terminus affects the levels of rVMAT1 expression. (A) The first 13 amino acids and the coding sequence is shown in the upper box. Codons preferred by yeast [36] are shown with up-arrows, while seldom-used codons are shown with inverted triangles. The middle box shows the short sequence fused to rVMAT1 (lane 5). The lower box (lane 6) shows the longer sequence fused; the HA-epitope (repeated twice) and the fusion site are highlighted. (B) Total membranes prepared from S. cerevisiae transformed with the indicated constructs were separated and immunoblotted using an antibody raised against the C-terminus of rVMAT1 [5]. Similar amounts of protein were loaded onto the gel.
containing the coding region of rVMAT1 and the first 281 bases of the 3'-UTR was used for ligation. rVMAT1 was inserted at the PstI site of pAD4v and the orientation was verified with several restriction enzymes. In the proper orientation, the ATG which starts the translation is located 10 bases from the cloning site. To insert rVMAT1 in p112 [29], rVMAT1 was excised from pBS/rVMAT1 with BamHI and XhoI and inserted in p112 previously digested with BamHI and SalI. As a result, the ATG is located 26 bases downstream the BamHI site and 70 bases from the 5'-end of the mRNA transcript. A second intermediate plasmid (pBS/rVMAT1-B) was constructed by partial digestion of pBS/rVMAT1 with PstI and insertion at the same site of pBlueScript KS. In pBS/rVMAT1-B the ATG (start of translation) is located near the XhoI site of the pBluescript multicloning site. To insert rVMAT1 in p421 [28], pBS/rVMAT1-B was digested with XhoI and BamHI and the plasmid with XhoI and BglII. Accordingly, the ATG is located 50 bases from the XhoI cloning site. pBS/rVMAT1-B was digested with SalI and NotI and inserted in p413Gal at the same sites. In p413Gal/rVMAT1, the ATG is located 50 bases from the SalI site.

All PCR-derived sequences were checked for the absence of point mutations. The insert from pTMI/rVMAT1 [8] was digested with XhoI and partially digested with NcoI, and inserted in BFG-1 at the same sites; in this construct (BFG-1/rVMAT1) the translation starts from the ATG within the NcoI site of BFG-1. In this case, three amino acids encoded with codons preferred by yeast; e.g., codons utilized for highly-expressed endogenous proteins [36] precede the first amino acid of rVMAT1. To create BFG-1/HA-rVMAT1, a PCR product using oligonucleotides PGK-rVMAT1 and RP2421 (all oligonucleotides sequences are shown in Table 1) was inserted in frame at the first BamHI site of BFG-1 (see sequence below and in Fig. 1A). The oligonucleotide used places a BamHI site immediately before the ATG start of translation of rVMAT1. As a result rVMAT1 contains additional 24 amino acids at its amino terminus comprising two copies of the HA epitope (YPYDVPDYA) [37]. Addition of the six-histidine tag (His6 tag) at the carboxy terminus of rVMAT1 was done using PCR with primers PGK-rVMAT1 and a reverse primer designed for this purpose (RP-HisTag-rVMAT1). This primer introduces an EcoRI site followed by six histidines immediately before the stop codon of rVMAT1. Therefore, the His6 tag tail comprises eight residues: phenylalalanine

Table 1

<table>
<thead>
<tr>
<th>Name</th>
<th>Purpose</th>
<th>Oligonucleotide sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGK-rVMAT1</td>
<td>Insertion of rVMAT1 in frame in plasmid BFG-1 at BamHI site</td>
<td>Sense 5’-TTGAATTCGTGCAGCGATCCATG-TCAGGTTGTC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Antisense 5’-CATTAGCATGATATCTTATGATGATGATGATGATGATG-ATGGAAATTTCCTCCCCTCGCTGAGATC</td>
</tr>
<tr>
<td>RP-HisTag-rVMAT1</td>
<td>Addition of His6 tag to the C-terminus of rVMAT1</td>
<td>Sense 5’-TTAGAGCTCCTCGGCGCGATCGCCTGAGGAG</td>
</tr>
<tr>
<td>PGK-bVMAT2</td>
<td>Insertion of rVMAT1 in frame in plasmid BFG-1 at NotI site</td>
<td>Sense 5’-CCGCTCGAGTTAGAATTTCGTCAGCTTTTCAGATTCTTCATCC</td>
</tr>
<tr>
<td>RP-bVMAT2</td>
<td>Inserts EcoRI site before the stop codon to allow insertion of the His6 tag engineered for rVMAT1</td>
<td>Antisense 5’-CGAGATCTGAATTTCGTCAGATCCAGATTGTC</td>
</tr>
<tr>
<td>RP 2421</td>
<td>Adds restriction sites to 3'-UTR of rVMAT1 for cloning in different vectors</td>
<td>Antisense 5’-CGCTCTAGATCGATCGCGGCCGCCATG-TCAGGTTACCACATA</td>
</tr>
<tr>
<td>HA-pCIN</td>
<td>Allows insertion of 5'-end of HA-tagged genes in plasmid pCIN</td>
<td>Sense 5’-CGCTCTAGATCGATCGCGGCCGCCATG-TCAGGTTACCACATA</td>
</tr>
<tr>
<td>RP-pCIN</td>
<td>Allows insertion of genes bearing the 3'-UTR of rVMAT1 in plasmid pCIN</td>
<td>Antisense 5’-CGCTCTAGATCGATCGCGGCCGCCATG-TCAGGTTACCACATA</td>
</tr>
</tbody>
</table>

Start of translation sequence is shown with bold, underlined, italicized letters (ATG).
and glutamate corresponding to the EcoRI site, and six histidine of the tag. Similarly, BFG-1/HA-bVMAT2-His was created after in frame insertion of the coding region of bVMAT2 at the NotI and XhoI sites of BFG-1 using primers PGK-bVMAT2 and RP-bVMAT2. This construct was next digested with EcoRI and XhoI and the His6 tag tail (including the 3′-UTR of rVMAT1) from plasmid BFG-1/HA-rVMAT1-His was inserted creating BFG-1/HA-bVMAT2-His. HA-bVMAT2-His contains 38 additional amino acids at the amino terminus, accommodating three copies of the HA epitope. The DNA sequence of the coding region of BFG-1 is: 5′-CC-ATGGTTGGTTACCATACGATGTCTGACT-ATGC-3′. The first, second and third bold-italicized sequences correspond to the NcoI, BamHI and NotI restriction sites respectively; the first ATG is within the NcoI site.

The protocol was described in [20].

2.6. Western blot

Blots were performed as described in [37]. Antibody dilutions were as follows: 1:5000 for either monoclonal antibody against the HA epitope (12CA5, from Berkeley Antibodies Co., BAbCo, Berkeley, CA) or polyclonal antibody against C-terminus of rVMAT1 [5]. The antibody against calnexin (from Stressgen, Victoria, British Columbia, Canada) was diluted 1:10 000.

2.7. Stable transfection of CHO cells

The protocol was described in [12]. Individual colonies were isolated and tested for MPP⁺ resistance, protein expression and binding of [³H]TBZOH.

2.8. Preparation of CHO membranes

CHO/bVMAT2-His (this work) or CHO/HA-rVMAT1-His [37] cells were seeded on 15-cm culture plates and grown in the presence of 1 mM MPP⁺ to ensure elevated VMAT expression. When cultures reached the highest confluence possible (80–90%) cells were harvested either by addition of 25 mM Na₂EDTA in phosphate-buffered saline (PBS) or scraped with a rubber policeman in the presence of antiproteases [20]. Cells were collected 3000 U g⁻¹ min⁻¹/4°C and stored at −70°C prior to use. Membranes were prepared as follows, the frozen pellet was rapidly thawed at 37°C and resuspended in 3 ml of lysis buffer (0.3 M sucrose, 10 mM Tris-Hepees (pH 7.4), 5 mM MgCl₂). Cells were disrupted with 20 strokes of a tight pestle-Dounce glass homogenizer. After spinning the suspension (3000 × g/5 min/4°C) supernatant was saved and unbroken cells were resuspended as before, homogenized and pelleted again. The supernatants were combined and subjected to ultracentrifugation (300 000 × g/30 min/
4°C), the membranes were resuspended in lysis buffer and used the same day.

2.9. Transient expression in CV-1 cells and preparation of membranes

The methods used in this work, as well as growth conditions and protocols, were described in detail in [12].

2.10. Vacuolar stain with FM4–64

The staining with FM4–64, preparation of slides and visualization in the confocal microscope were described in [20]. Z-Sections of HA-rVMAT1-GFP expressing cells were projected to show the punctate pattern present in the entire cell. The signal corresponding to the GFP fluorescence is shown in the green channel, whereas the signal of the FM4–64 fluorescence is shown in the red channel.

2.11. Binding of 3H[TBZOH to membranes

α-[2-3H]Dihydrotetrabenazine was purchased from American Radiolabeled Chemicals (ARC, St. Louis, MO). Binding was performed essentially as described in [40], with minor modifications. In brief, 50–100 μg membranes were diluted in 300 μl of binding buffer (0.3 M sucrose, 10 mM K-Hepes, pH 7.4) containing 3 nM [3H]TBZOH in the absence or presence of excess tetrabenazine (100 μM). Binding was allowed to occur at room temperature for 15 min. To stop the reaction, 4 ml of ice-cold binding buffer supplemented with 100 μM tetrabenazine were added, and samples were immediately filtered on a HAWP filter 0.45 μm pore size (Millipore). Filters were washed twice with 3 ml of the same solution. For pH dependence studies membranes were diluted in ammonium buffer (150 mM NH₄Cl, 20 mM Mes–Tris, 5 mM MgCl₂, titrated to the indicated pH) in the presence of 6.6 nM [3H]TBZOH for 30 min at room temperature. Reactions were stopped with 4 ml of ice-cold ammonium buffer (pH 7.4) supplemented with 100 μM TBZ and filtered as described earlier. Scatchard analysis was performed at pH 7.4, with [3H]TBZOH concentration ranging from 1 to 60 nM. Reactions were stopped after 20 min at room temperature.

2.12. Purification of His₆-tagged bVMAT₂ from yeast membranes

One to 5 ml HA-bVMAT₂-His membranes (10 mg protein/ml) were first labeled with [3H]TBZOH as follows. Membranes were diluted in 10 ml ammonium buffer (pH 7.4) containing 20 nM [3H]TBZOH for 15 min at room temperature. Reactions were stopped by centrifugation at 400,000 × g/15 min/4°C. The pellet was washed with 6 ml ammonium buffer, and membranes were finally resuspended in 2 ml of buffer. Solubilization was achieved by stepwise addition of dodecyl maltoside (DM) and cholate to final concentrations of 0.5% and 0.25%, respectively. Suspension was cleared 400,000 × g/15 min/4°C, and supernatant was allowed to bind to Ni²⁺-NTA beads previously equilibrated with the same buffer, in the presence of 30 mM imidazole. Binding was allowed for 1 h, with rotation in a cold room. The bead suspension was loaded in a mini-column and the flowthrough was reloaded three times. The column was washed five times with 4 ml of ammonium buffer containing 0.08% DM, 0.04% cholate and 30 mM imidazole. The protein was eluted in the same buffer as above, but supplemented with 200 mM imidazole. Fractions were collected and radioactivity was assessed by liquid scintillation. In parallel, specific bVMAT₂ presence in the different fractions was detected using Western blots as described above.

2.13. Binding of 3H[TBZOH to Ni²⁺-NTA immobilized transporter

Membranes were diluted in ammonium buffer (150 mM NH₄Cl, 1 mM MgCl₂, 10 mM Tris–Hepes, pH 7.4) spun at 400,000 × g/15 min/4°C and resuspended in 1 ml of the same buffer. Membrane solubilization and binding to Ni²⁺-NTA beads was performed as described above. The beads were spun 30 s in a microfuge, washed twice with 1 ml ammonium buffer containing 0.08% DM and 0.04% cholate, and divided into aliquots. The beads were washed once with buffered solutions (10 mM Mes–Tris) and allowed to bind [3H]TBZOH (6 nM) at the indicated pH for 30 min at 4°C with rotation. The binding was measured in triplicate and non-specific binding was measured in the presence of 125 μM TBZ. The bind-
ing was stopped after centrifuging the suspension for 30 s. The beads were washed once with 1 ml ammonium buffer containing 0.08% DM and 0.04% cholate, and radioactivity was assessed by liquid scintillation. Since the binding of the transporter to Ni\(^{2+}\)-NTA beads is also pH-dependent, one of the triplicates was used to normalize for the amount of transporter bound to the beads. The protein bound to the beads was eluted with 200 mM imidazole. The eluates were mixed with protein sample buffer and separated on an SDS-PAGE gel as described above. HA-bVMAT2-His was detected using immunoblots. Quantitation of the blots was achieved using the MacBas 2.0 software. Results of radioactivity were normalized according to the quantitation results taken the binding at pH 7.4 as control (100% of binding).

3. Results

3.1. The codons chosen at the N-terminus of rVMAT\(_1\) are important for expression

Expression of foreign proteins, specially membrane proteins may interfere with the delicate balance of cellular processes and therefore can have deleterious effects on cell viability. For this reason rVMAT\(_1\) was first cloned in an array of expression plasmids that allowed us to control the expression. p112 [29] and p413Gal (derived from [30]) are centromeric plasmids in which the expression is under the inducible GAL1 promoter. Regulation of expression is tight; induction of expression is achieved only after removal of glucose from the medium and upon addition of galactose. On the other hand, plasmids p421 [28] and pAD4\(_{Δ}\) [27] are multicopy plasmids equipped with strong constitutive promoters. After completion of plasmid construction, yeast strain BWT-1 was transformed with p421/rVMAT\(_1\), pAD4\(_{Δ}/rVMAT\(_1\), p112/ rVMAT\(_1\) and p413Gal/rVMAT\(_1\). To study the expression of rVMAT\(_1\), yeast transformants carrying p421/rVMAT\(_1\) or pAD4\(_{Δ}/rVMAT\(_1\) were grown on glucose media. Cells carrying the rVMAT\(_1\) under the GAL1 promoter (p112/rVMAT\(_1\) and p413Gal/rVMAT\(_1\)) were grown directly on 2% galactose, or first grown on glucose, ra⁄nose or acetate, and then the carbon source was replaced by 2% galactose. Expression of rVMAT\(_1\) was assessed using a polyclonal antibody directed against the carboxy terminus of the transporter [5]. No immunoreactive material was detected in membranes prepared from cells carrying the rVMAT\(_1\) gene cloned in the above expression plasmids. A representative Western blot is shown in Fig. 1B (lanes 1–4). To test whether an intrinsic determinant, located within the rVMAT\(_1\) gene was hampering the expression of the transporter, the codon usage of the 5’ end of rVMAT\(_1\) was examined. The use of synonymous codons is strongly biased in the yeast S. cerevisiae. Following the cloning of the first glycolytic enzymes, it became clear that yeast evolution changed gene codons in a way where major codons replaced minor codons in highly expressed proteins, and vice versa [36]. In addition, it was shown that replacing an increasing number of major codons with synonymous minor ones at the 5’ end of the coding sequence caused a dramatic decline of the expression level of phosphoglycerate kinase [41]. Examination of the codon usage at the 5’ end of rVMAT\(_1\) reveals a trend of minor codons rarely used in S. cerevisiae [36,42]. The first 13 codons encoding the N-terminus include at least six that are seldom utilized in yeast for highly expressed proteins (see Fig. 1A, upper box). To test the possibility that the codon usage was impeding the expression of rVMAT\(_1\), we fused readily translatable short sequences before the natural start of translation. First, we fused a sequence coding four amino acids using codons favored by yeast (see Fig. 1A, middle box). This addition notably changed the expression of rVMAT\(_1\), and a single polypeptide with an apparent size of 45 kDa became easily detectable on immunoblots (Fig. 1B, lane 5). Following this rationale a longer sequence of 24 amino acids was fused, creating HA-rVMAT\(_1\). The fused sequence includes two copies of the hemagglutinin (HA) epitope (YPYDVPDYA). The longer fusion further increased the level of expression of rVMAT\(_1\) by at least one order of magnitude (see Fig. 1B, lane 6). Importantly, we found no expression from a BFG-1 plasmid bearing the HA-rVMAT\(_1\) fusion but lacking the 3’ untranslated region (3’-UTR) of rVMAT\(_1\) (not shown). The 3’-UTR probably stabilizes the mRNA transcript allowing efficient expression.
3.2. The yeast-expressed rVMAT₁ displays the size of the unglycosylated transporter

Addition of epitopes has potentially deleterious effect on protein function. We have already shown that when the tagged transporter is expressed in a mammalian expression system, it displays identical kinetic and pharmacological features as the untagged, wild-type protein [12,37]. The yeast-expressed protein shows an apparent \(M_r \) similar to that of the unglycosylated form of the transporter (45 kDa, Fig. 2A, lanes 1 and 4). The 45 kDa polypeptide detected above with an antibody against the HA epitope located at the N-terminus is not a proteolytic fragment, since the protein detected with an antibody against the C-terminus displays the same molecular mass (see Fig. 1A, lane 4). As shown in Fig. 2A, the size of the yeast-expressed protein (lane 4) corresponds to the size of the unglycosylated mutant (‘Triple’, lane 3) and to the wild-type protein produced in presence of tunicamycin in a mammalian system (lane 4), (see also [12]).

3.3. The expression rVMAT₁ is enhanced at low temperatures

We have shown that glycosylation is not required for rVMAT₁ activity in a mammalian system [12]. The mutant rVMAT₁ in which all glycosylation sites have been mutated away retains the ability to protect mammalian cells against the toxicity of MPP⁺ [12]. Yet, in the case of the yeast-expressed rVMAT₁, it fails to confer resistance to MPP⁺ to strains YAE65 and YHE4 which are particularly sensitive to the toxin [20,22]. In addition, membranes prepared from yeast expressing rVMAT₁ do not catalyze neither serotonin transport nor reserpine binding (not shown). It has been suggested that N-linked glycosylation serves, among other functions, as quality control device for correct protein folding in the endoplasmic reticulum (ER) [43]. rVMAT₁ is probably not glycosylated in yeast because of improper folding. Since protein folding and stability are often favored under low temperatures, S. cerevisiae was grown at different temperatures and the effect on rVMAT₁ expression and processing was tested. Membranes prepared from cells grown at 10°C, 24°C, 30°C and 37°C were separated on a Laemmli 9% gel and immunoblotted using a monoclonal antibody against the HA epitope. Note the increase in the level of expression and the appearance of glycosylated rVMAT₁ at low growth temperatures (16°C, lane 5). Addition of the ligand reserpine during the growth step did not influence rVMAT₁ expression or processing (lane 2). Similar lack of effect was detected with other substrates of transport: noradrenaline and serotonin (not shown).
peratures decreased (24°C and 16°C) expression levels significantly increased. Furthermore, at 16°C a large fraction of the expressed rVMAT1 underwent core glycosylation. As seen in Fig. 2B, lane 5, a distinct band with an apparent molecular mass of ~53 kDa is clearly recognized. This band corresponds to the core-glycosylated form usually seen using the T7 polymerase/Vaccinia virus expression system (see Fig. 2A, lane 1) [12]. The bands seen at ~87 kDa correspond to oligomeric forms of VMAT. Upon treatment with N-glycosidase F (PNGase-F), the band coinciding with the glycosylated form disappears, whereas the lower unglycosylated form remains intact (not shown). The results imply that under the low-temperature conditions the transporter is posttranslationally modified.

3.4. The intracellular distribution of VMAT is not altered at different temperatures

To follow the above findings, the intracellular distribution of the transporter at various growth temperatures was tested. For this purpose, a functional chimera between the tagged rVMAT1 and the green fluorescent protein was prepared (HA-rVMAT1-GFP). Notably, the pattern of HA-rVMAT1-GFP fluorescence distribution was virtually identical at either 30°C or 14°C (shown in green, Fig. 3, 30°C or 14°C). Indicating that although at lower temperatures rVMAT1 undergoes core-glycosylation, the transporter is still targeted to the same organelle. The punctate pattern corresponding to the chimeric transporter is present uniformly in the cell and re-

Fig. 3. The intracellular distribution of rVMAT1 remains invariable at the different growth temperatures. A chimera between rVMAT1 and the green fluorescent protein (GFP) was prepared to follow the distribution of the transporter in living cells. Yeast cells were grown at 30°C and 16°C, stained with the vacuolar marker FM4-64 and visualized with a confocal microscope. Fluorescence corresponding to the GFP is shown in green, while that of the FM4-64 dye is shown in red. The pattern of fluorescence of the rVMAT1-GFP chimera resembles the late-Golgi marker Kex2p [44]. A similar pattern was found for bVMAT2-GFP (not shown). As a control we expressed GFP alone using the same fusion sequence. The GFP shows a clear cytoplasmic distribution (lower panel). The VMAT-GFP chimeras are completely functional in a mammalian expression system (not shown).
sembles the distribution of the late-Golgi marker Kex2p [44]. This pattern contrasts to the ring staining decoration of the vacuolar vital stain of FM4-64 (shown in red) and clearly differs from the cytoplasmic pattern found for the wild-type HA-GFP (Fig. 3, lower panel) or the vacuolar-targeted HA-EmrE-GFP transporter [20], both proteins expressed using the same N-terminal fused sequence.

3.5. Simultaneous expression of chaperones and VMAT

Our manipulations have increased the level of expression and glycosylation. Yet, the rVMAT1 expressed in yeast is still incapable of protecting the yeast cells against MPP⁺, or of catalyzing transport of monoamines or binding reserpine. To improve the probability to achieve correct protein maturation we tested the effect of co-expression of mammalian calnexin (a known chaperone) together with VMAT. The co-expressed calnexin migrates in SDS-PAGE as the endogenous calnexin from cell lines CHO, CV-1 and MDCK cells (not shown). In addition to calnexin, we co-expressed Shr3p from a high copy-number plasmid [34]. Shr3p is an ER-resident yeast chaperonin shown to be essential for packaging of amino acid permeases into transport vesicles [34,45,46]. Nonetheless, cells expressing simultaneously VMAT, calnexin and Shr3p did not show enhanced resistance towards MPP⁺. Membranes prepared from these cells were still unable to bind reserpine or to accumulate serotonin. We also tested the addition of substrates and ligands as they were shown to act as molecular chaperones for otherwise misfolded proteins [47,48]. Membranes from cells grown on standard medium supplemented with millimolar concentrations of serotonin or noradrenaline or micromolar concentrations of reserpine did not induce enhanced VMAT activity or protein maturation (see Fig. 2B, lane 3). Finally, no differences in rVMAT1 expression were found between cells bearing or lacking the co-expressed chaperones, grown either at 30°C, 24°C or 16°C (not shown).

3.6. The yeast-expressed bVMAT2 binds tetrabenazine

None of the above manipulations rendered a protein capable of transporting serotonin in a proton-dependent manner. This activity requires proper assembly into a proton impermeable membrane and may even require specific lipids. Therefore binding of [³H]dihydrotetrabenazine ([³H]TBZOH), a partial activity detected even in detergent (see below) was measured. As already stated, tetrabenazine binds to and inhibits VMAT2 at nanomolar concentrations while concentrations as high as 20 µM do not affect transport mediated by VMAT1 [7]. The gene encoding bVMAT2 [49] was inserted in the plasmid BFG-1 at the NotI site. Since we intended to purify the expressed protein, a polyhistidine (His₆) tag was engineered by PCR at the carboxy terminus, this protein was also referred to as HA-bVMAT2-His. Taking into consideration our previous results, the 3'-UTR of rVMAT1 was included in this construct to stabilize the mRNA transcript and to achieve efficient expression. The yeast expressed bVMAT2 displays a mobility similar to the fully functional protein expressed using the T7 Polymerase/Vaccinia virus expression system suggesting similar glycosylation levels (see Fig. 2A, lanes 5 and 6). The expression levels and the degree of glycosylation of bVMAT2 were much less sensitive to the growth temperature than those of rVMAT1 (data not shown). As shown in Fig. 4A, membranes prepared from cells expressing bVMAT2 (closed bars) but not rVMAT1 (open bars), display high-affinity [³H]dihydrotetrabenazine binding. When the specific binding was analyzed using the method of Scatchard, a linear plot was obtained suggesting the presence of a single species of binding sites. The Kd calculated for the yeast-expressed bVMAT2 was 15.3 nM and the Bmax was 13.7 pmol/mg, whereas the Kd for the CHO-expressed bVMAT2 was 29.5 nM and the Bmax was 73.2 pmol/mg. The measured constants were in good agreement with the values found for the native protein in the literature [40]. From the measured number of binding sites, we estimate about 15 000-20 000 copies of bVMAT2 per cell. The expression level of rVMAT1 was in the same order of magnitude, as estimated from quantitative Western blots. As in the native protein, [³H]TBZOH binding to the yeast-expressed bVMAT2 was sensitive to nanomolar concentrations of ketanserin but barely inhibited by micromolar concentrations of reserpine, millimolar concentrations of serotonin or noradrenaline (not
shown). In addition, the binding did not depend on an imposed proton gradient as the reactions were performed in the absence of ATP. The binding of \(^{3}H\)TBZOH to chromaffin granules shows a distinctive pH dependence \([50]\). As shown in Fig. 4B (bars), the binding of \(^{3}H\)TBZOH to chromaffin granules (gray bars) is low at acidic pH (5.8) and increases to its maximum at pH 7.4–8.0, whereas at more basic conditions it begins to decline. An analogous behavior was measured for the yeast expressed bVMAT2 (see Fig. 4B, dark bars). Our results are essentially the same as found by Scherman and Henry \([50]\), except that in our hands binding decreases at alkaline pH. Based on the results presented here, we conclude that the binding of tetrabenazine in the yeast-expressed bVMAT2 resembles that in the native transporter from bovine chromaffin granules.

3.7. \(^{3}H\)TBZOH binding to a detergent-solubilized immobilized bVMAT2

Recently a convenient assay for high-affinity ligand binding in a detergent solubilized transporter was introduced \([51]\). This assay takes advantage of the ability to immobilize His6-tagged proteins on Ni\(^{2+}\)-NTA beads. We adapted this assay to assess TBZOH binding on the detergent-solubilized bVMAT2 anchored on the metal chelate adsorbent (Ni\(^{2+}\)-NTA beads). We found that dodecyl maltoside (DM) is appropriate for solubilizing bVMAT2 in a...
form that retains high [3H]TBZOH binding activity. Yeast membranes previously labeled with 15 nM [3H]TBZOH were solubilized using 0.5% DM (or a combination of 0.5% DM and 0.25% cholate). [3H]TBZOH remains associated with the solubilized bVMAT2 as judged by the fact that the majority of the radioactivity released to the supernatant could be subsequently bound to Ni2+-NTA beads. Conversely, it was possible to assay [3H]TBZOH binding on solubilized bVMAT2 and immobilized on Ni2+-NTA beads. The binding was dependent on the presence of bVMAT2 and could be competed away by excess of unlabeled tetrabenazine or ketanserin. In agreement with previous findings [52], increasing concentrations of cholate (up to 1.5%) caused the gradual loss of bound [3H]TBZOH. Also, Triton X-100 was found deleterious for [3H]TBZOH binding activity [52]. This effect is reversible since upon exchange with 0.5% DM the binding activity is recovered. Importantly, the immobilization assay gives an excellent signal-to-noise ratio since the beads can be washed several times without loosing significant counts. To test whether the immobilized bVMAT2 exhibits the characteristics of the membrane inserted protein, we examined also the pH dependence of [3H]TBZOH binding. The results shown in Fig. 4B (triangles) demonstrate that the immobilized bVMAT2 reproduces the pH dependence of [3H]TBZOH of the protein in the membrane.

3.8. Purification of the [3H]TBZOH binding activity

To purify rVMAT1 expressed in mammalian cells we used immobilized metal affinity chromatography [37]. Using a similar approach that takes advantage of its robust [3H]TBZOH binding activity we purified the yeast expressed bVMAT2. Membranes were first labeled with [3H]TBZOH, and then solubilized with DM and cholate. Since [3H]TBZOH remained bound after solubilization, it was possible to follow the protein during the purification process assessing the radioactivity associated with the different fractions (see Fig. 4C). The radioactivity found in the void volume and the initial washes of the column, represents [3H]TBZOH non-specifically bound to proteins or released upon solubilization. Using immunoblots some bVMAT2 was also detected in fractions corresponding to non-stringent washes (Fig. 4C, lower panel wash 1–5). The bulk of the specific [3H]TBZOH binding activity remained bound to the beads and was released only in the presence of 200 mM imidazole (see Fig. 4C, elution 1). When the eluted fractions were resolved on SDS–PAGE and stained with coomassie blue, a predominant band with a size of ~63 kDa was detected (Fig. 4C lower panel). A single band with a similar size was specifically identified by Western blot (see Fig. 4C, middle panel, elution 1) suggesting that the major band was bVMAT2.

4. Discussion

Vesicular monoamine transporters (VMATs) are \(^{\text{H}^+}\)-driven antiporters that catalyze the transport of biogenic amines across membranes of secretory organelles. The mechanism of transport remains obscure, largely because of the lack of suitable expression systems which provide large amount of protein for biochemical and crystallographic characterization. High-level expression of functional polytopic membrane proteins is a difficult task due to the problems that arise regarding efficient protein folding and stability. In this report we describe the first detailed attempt to express vesicular monoamine transporters in the yeast \(S.\,\, \text{cerevisiae}\). After several futile attempts to express rVMAT1 using the endogenous codon for initiation of translation, elevated expression was achieved only after modification of the codon usage of the initiation region. Instead of substituting the hampering codons for the yeast-preferred ones, short and readily translatable sequences were fused in frame immediately before the first methionine of the protein. As a result a drastic increase in the expression was obtained. The levels of expression increased together with the length of the fused sequence. The use of synonymous codons is strongly biased in the yeast \(S.\,\, \text{cerevisiae}\) [36]; a major determinant of this bias is the abundance of the different tRNA species [53]. Evidently, protein synthesis is more efficient when the pool of the required tRNAs is not limiting. Besides, effective translation probably confers increased stability to the mRNA transcript. Therefore, preferred codons improve protein expression and favor mRNA stability.

The 5’-UTR sequences may affect the efficiency of
protein synthesis. In the case of rVMAT1, the differences in expression levels cannot be explained by this factor: two plasmids with identical 5'-UTR but varying only in the fused translated sequences express rVMAT1 at very different levels. Furthermore, we showed that fusion of the longer sequence was sufficient to procure high expression of bVMAT2 (this work), the green fluorescent protein (GFP) and the E. coli multidrug transporter EmrE [20]. Finally, we also found that apart from the effect of the codon usage at the N-terminus, the 3'-untranslated region of rVMAT1 was critical for expression. This region contains the mammalian polyadenylation signal and may serve as stabilizing factor for the mRNA transcript, therefore promoting efficient expression.

rVMAT1 was expressed at relatively high levels, yet the size of the protein corresponded to the size of the non-glycosylated form. Lack of glycosylation is usually correlated with misfolding of proteins. We deduced that rVMAT1 is incorrectly folded as no significant activity was detected in a variety of assays that test established traits of the functional transporter. Low cultivation temperatures caused a remarkable increase in the levels of expression. Furthermore, under these conditions about half of the expressed rVMAT1 underwent core glycosylation. This post-translational modification, not occurring at 30°C, indicates that a specific folding event was accomplished. Yet, additional steps leading towards genuine conformation are necessary since activity was still not detected. As judged by chimeras with the GFP, the intracellular distribution of rVMAT1 (and although not shown also of bVMAT2), remained unchanged either at 30°C or 14°C, conditions at which rVMAT1 undergoes core glycosylation. The punctate pattern of fluorescence resembles the late-Golgi compartment. The acquisition of a correct three-dimensional conformation in the ER is not a spontaneous, unassisted event. The ER contains a variety of molecular chaperones and foldases involved in the folding and maturation process [54]. Since the endogenous yeast chaperones may not recognize mammalian misfolded proteins, we co-expressed canine calnexin together with VMAT. Calnexin was initially chosen as it was found to be the chaperone causing the maximal increase in the level of functional heterologously-expressed plasma-membrane serotonin transporter (SERT) [55]. Although the yeast-expressed calnexin showed mobility similar to that of the endogenously expressed mammalian counterpart, its expression was ineffectual regarding the production of functional rVMAT1 or bVMAT2. In contrast to rVMAT1, the expression levels of bVMAT2 were only slightly affected by the growth temperature.

Using membrane preparations from S. cerevisiae expressing bVMAT2, it was possible to measure high-affinity specific dihydrotetrabenazine ([3H]-TBZOH) binding. The binding properties shown by the heterologously expressed bVMAT2 were similar to those found in the native chromaffin granule transporter. Only ketanserin and tetrabenazine completely abolished [3H]TBZOH binding, whereas exceedingly high concentrations of reserpine and substrates of transport modestly inhibited the reaction. In addition, the distinctive pH dependence of [3H]TBZOH binding known for the native protein was detected also in the yeast-expressed bVMAT2. Based on the ability of dodecyl maltoside to solubilize bVMAT2 in a form that retains [3H]TBZOH binding activity, a novel binding assay was developed. The assay takes advantage of a poly-histidine tag engineered at the C-terminus of bVMAT2 and a metal chelate adsorbent (Ni2+-NTA beads). The immobilized bVMAT2 displays the same features of the membrane protein regarding the affinity to [3H]TBZOH, the pharmacological profile and the pH dependence of binding.

It was previously shown that it is possible to use the Ni2+-NTA resin to purify the transporter [37,56]. In this communication we exploited the robust [3H]TBZOH binding to follow the protein during the purification procedure directly assessing the radioactivity at each fraction. Although a supplementary chromatographic step is required to obtain pure preparations of the protein, a notable enrichment is achieved using a single Ni2+-NTA column.

Sievert and collaborators have expressed rVMAT2 using baculovirus-infected insect cells [56]. The expressed protein display [125I]AZIK (7-azido-8-[125I]iodoketanserin) and [3H]TBZOH binding activity, yet no transport activity or reserpine binding were shown. In our hands rVMAT1 expressed in this system shows neither of these activities albeit elevated levels of expression (RY and SS, unpublished observations).
In this work we developed general strategies for expression of heterologous proteins in yeast: namely, fusion to readily translatable sequences having codons preferred by yeast and growth at low temperatures. Yet, the results illustrate the difficulties to express fully functional vesicular monoamine transporters perhaps due to the complex folding of these proteins or the lack unknown essential factors. Strikingly, the native binding site for tetrabenazine and ketanserin is formed using different heterologous expression systems. The results imply that its correct assembly is less dependent on the folding machinery. We therefore propose the possibility that the creation of the binding site demands fewer adjacent domains within the protein or it is composed by determinants located within the same region of the polypeptide. In contrast, the reserpine and substrate binding site requires a more delicate arrangement. This site is directly affected by the H^+-electrochemical gradient since it drives the refolding needed to accelerate the binding of reserpine and to catalyze the whole transport process.

Acknowledgements

The authors would like to thank Sonia Mordoch and Dvir Rotem for the help given at several stages of this work. We thank also Dr Chris Tate and Dr Per Ljungdahl for fruitful discussion, and Dr Aryeh Weiss for the technical assistance on the confocal microscopy. This work was performed in the Charles Smith Laboratory for Collaborative Research. It was supported by grants from the Deutsche-Israeli Program (Federal Ministry of Education, Science and Research-BMBF-International Bureau at the German Aerospace Center Technology) and Grant NS16708 from the National Institutes of Health.

References

