Minireview

July 1992

The modular architecture of vertebrate collagens

Peer Bork

EMBL, Meyerhofstr. 1, 6900 Heidelberg, and Max-Delbrück-Centre for Molecular Medicine, Robert-Rössle-Str. 10, 1115 Berlin, Germany

Received 27 April 1992; revised version received 26 May 1992

Collagens are typical mosaic proteins containing a number of shuffled domains. These domains have been classified by sequence similarity in order to characterize their structural and functional relationships to other proteins. This analysis provides an overview of homologies of collagen domains. It also reveals two new relationships: (i) a module common to type V, IX, XI, and XII collagens was found to be homologous to the heparin binding domain of thrombospondin; (ii) the modular architecture of a human type VII collagen fragment was identified. Its N-terminal globular domain contains fibronectin type III repeats located adjacent to a Von Willebrand factor type A module. The proposed structural similarities point to analogous subfunctions of the respective domains in otherwise distinct proteins.

Homology; Mosaic protein; Type VII collagen; Thrombospondin

1. INTRODUCTION

Collagens are a group of structural proteins of the extracellular matrix characterized by various Gly-X-Yrepeats which form large triple helices [1,2]. Each collagen consists of three (identical or different) interacting chains. The triple helix-forming parts are surrounded by noncollagenous (NC) domains. To date, the presence of at least 14 different vertebrate collagens (numbered in succession of discovery) has been proved and the existence of several others can be assumed [1]. In addition, an increasing number of invertebrate collagens has been sequenced, only some of them being homologous in their NC domains to those of vertebrates.

Classifications of collagens are mainly based on their supramolecular structure which in turn mirrors the constitution of the helical parts [3]. They can be treated as molecular rods that physically separate the NC domains. Even if the triple helical parts represent the most striking feature of collagens (see definition), tissue specificity as well as defined binding of noncollagens seem to be encoded in the NC domains [4].

These globular NC domains have features of mobile modules, [5] which are widespread in proteins of diverse function. The triple helical segments can also be considered as independent modules since they are found in noncollagens (Table I, [6,7]). Therefore, collagens represent typical mosaic proteins containing a number of domains fused together by exon shuffling [5,8-11]. With the increasing amount of primary structures stored in public databases, the number of puzzling relationships between common modules in otherwise distinct proteins grows rapidly. Thus, various homologies have been reported between collagen domains and modules of noncollagens (e.g. see refs. in Table I and Fig. 1), often simultaneously by different groups. In order to obtain a comprehensive and automatically derived overview of the modular architecture of collagens, to classify the modules according to their sequence similarities, and thus to get some hints about common features, a systematic protein sequence analysis of all available vertebrate collagen sequences was performed.

2. AUTOMATICALLY DERIVED OVERVIEW OF THE DOMAIN ASSEMBLY IN COLLAGENS

Sequence analysis of all available collagens indicates a complex arrangement of domains (Fig. 1), which are related to numerous adhesive proteins of diverse function (Table I). The detected sequence similarities are consistent with numerous homologies reported over the last ten years (see e.g. refs. in Fig. 1a and Table I). For example, close overall homologies between chains of different collagen types have been observed among the fibrillar collagens (for review see [1,3]). The $\alpha I(V)$ and $\alpha I(XI)$ chains are surprisingly similar to each other and differ from the other fibrillar collagens only in the Nterminal NC domains [12]. Types IX and XII (fibril-

Abbreviations: NC, noncollagenous; Fn3, fibronectin type III; VWA, von Willebrand factor type A; PARP, proline- and arginine-rich protein.

Correspondence address: P. Bork, EMBL, Meyerhofstr. 1, 6900 Heidelberg, Germany.

100 aa

Fig. 1. (a) Overview of noncollagenous modules in collagens. The boxes represent the result of a systematic sequence homology search: All collagen sequences were extracted from SWISS-PROT (release 20; [62]) except for types XII and VII which were directly taken from the literature [21,52]. Initial sequence database searches with the NC domain were carried out using FASTA [48]. Significant hits were aligned by the program PILEUP of the GCG package [63] and the corresponding modules were mapped to the respective collagens. If several sequence segments corresponded to a certain module, motifs were defined and subjected to property pattern searches [50]. In order to improve the sensitivity of the property patterns, the procedure was conducted iteratively, putative homologues being added to the learning set (the multiple alignment) progressively [64]. The significance of the homologies was assessed by using three different homology search methods (FASTA [48], PROFILESEARCH [51], PAT [50]) as described in [65]. The abbreviations of the modules are explained in Table I together with the respective similarities to anocollagenous proteins. Hatched domains have not yet been identified in noncollagens. The white boxes were not found to be similar to any other protein segment. The arrows indicate the triple helical regions (where their full length is not shown the number of amino acids is given). Type VII collagen is only a fragment [52]. Not shown are type XIV collagen (small segments are already sequenced indicating a close relationship to types XII and IX [66]) and the α2(I) chain (similar to collagen the α1(I) chain but lacking the N-terminal thsp2 domain). (b) Modular architecture of thromosopondin. The repeats of thrombospondin are similar to malaria proteins (tr) and epidermal growth factor (E). Type III repeats (hatched) contain calcium binding sites [32] and the TA-region contains two cysteines forming interchain disulfide bridges that are essential for trimer assembly.

associated collagens) were grouped together because they share interrupted triple helices and a globular domain in equivalent locations with respect to their collagenous segments [13]. Also, the $\alpha 1(VIII)$ and $\alpha 1(X)$ chains have an overall similarity except for their Nterminal regions [14].

Most of the domains in collagens can be aligned with modules of noncollagenous mosaic proteins, e.g. thrombospondin [15], complement component C1q [16,17], Von Willebrand factor [18-21], fibronectin [21-23], Kunitz type inhibitor [22], and several proteins containing collagenous segments (see Table I). Only some domains are exclusively found in collagens such as the duplicated module [24] at the C-terminus of type IV collagen [25-30] or the large NC1 domain common to all fibrillar collagens which are important for chain as-

Relationships of NC domains in collagens to other proteins

Symbols	Noncollagens containing corresponding modules
Thspl	- Thrombospondin (N-terminal heparin binding domain), PARP [31].
Thsp2	- Thrombospondin (between N-terminus and type I repeat), von Willebrand factor type C module [21].
Clq	- Complement component Clq (also located next to a collagenous segment) [16,17].
Fn3	Fibronectin type III module, present in more than 60 different proteins not counting species redundancies. Subfamilies include adhesive matrix proteins such as fibronectin, tenascin, and undulin, receptor protein kinases as well as phosphatases, cytokine receptors, neural adhesive proteins, giant muscle proteins, bacterial carbohydrate-splitting enzymes, and further unclassified proteins like the one causing Kallmann's syndrome (for reviews see [5,10,11]).
VWA	 Von Willebrand factor type A module, also found in cartilage matrix protein, several integrin α chains (so-called I-domains), undulin, the regulatory chains of inter-α-trypsin inhibitor, thrombospondin related malaria protein and probably DHP-sensitive voltage dependent Ca-channels [40,41].
К	- Kunitz type inhibitor, also found in amyloid precursor protein, inter- α -trypsin inhibitor [22].
S	– Module found in several salvage proteins [22].
Gxy	 Collagenous repeats also present in scavenger receptor [44], a virus protein [7], asymmetrical acetylcholinesterase, surfactant proteins, several proteins which also contain a lectin type C domain ([44-46] and refs. therein), complement component Clq [16,17] and bacterial pullanase [47].

sociation (for review see [3]; Fig. 1). Both are more conserved than domains with similarities to noncollagens (data not shown). NC domains that are homologous among distinct collagen chains and types always have a similar location with respect to the triple helices (Fig. 1). This points to equivalent functions in the different collagen types. Except for types IV, VIII, X and XIII, all collagens (including fibrillar and nonfibrillar ones) can be grouped together by sharing certain globular modules (Fig. 1). Since those domains are thought to fine-tune both binding and tissue specificities, new detected homologies, as described below, may provide some further insight into the functional network of matrix proteins.

3. A DOMAIN COMMON TO TYPES V, IX, XI, XII COLLAGENS, AND THROMBOSPONDIN

A large domain has been described to be common to the N-terminal segments of the $\alpha I(V)$, $\alpha I_{\alpha} \alpha 2(IX)$, α I(XI) and α I(XII) chains as well as to a proline- and arginine-rich protein (PARP [31]; see Fig. 1). Multiple alignment and pattern searches indicate an additional similarity to the N-terminal part of thrombospondin (Table II, Fig. 2).

Thrombospondin is an adhesive mosaic protein containing three types of repeats [32] and a region which is similar to the Von Willebrand factor type C domain and to the N-terminal NC domains of several fibrillar procollagens [15]. No homology has been described so far for the N-terminal heparin binding domain of about 200 residues. This region exactly matches the module common to $\alpha 1(V)$, $\alpha 1, \alpha 2(IX)$, $\alpha 1(XI)$, $\alpha 1(XI)$, $\alpha 1(XI)$ chains, and PARP (Fig. 3), even if most of the positions thought to be involved in heparin binding [32,33] are not conserved. The $\alpha I(V)$ and $\alpha I(XI)$ chains also contain clusters of positively charged residues in the putative heparin binding sites which have been proposed to be important in acidic proteoglycan binding [34]. The very remote relationship of collagen domains to throm-

		rable II				
	Hom	ology search (FAST)	A) statistics			
Module	Length of the domain	Rank of first false positive	Number of probably right positives ²	Maximal FASTA opt. score ³	5 best opt, scores ³	
Thrombospondin N-term.	210	9	10	1057	136,119,118,118,111	
Collagen VII VWA	200	20	24	1015	171,170,160,158,152	
Collagen VII Fn3 a	90	54	240	449	124,119,119,118,117	
Collagen VII Fn3 b	90	38	240	446	122,119,113,109,106	

1	Гаыс	e []	
Homology sear	ch (FASTA)	statistic

¹ The sequences detected by FASTA [48] were sorted for their optimized scores using FILTER_FASTA (Sander and Schneider, unpublished) which also filters the hits according to a threshold for structural homology [49]. Optimized FASTA scores include gap penalties and weights for similar amino acids.

² The number corresponds to the hits detected either by PAT or by PROFILESEARCH [50,51].

³ The maximal possible opt, score is defined by self-comparison. The five best optimized scores in a database search with the respective domains all belong to proteins described in Table I and thus support the proposed relationships.

thrombospondin, human, N-terminus thrombospondin, mouse, N-terminus thrombospondin, mouse 2, N-terminus collagen alpha1(V), human, NC2 collagen alpha1(XI), human, NC2 PARP, bovine collagen alpha1(IX), human, NC4 collagen alpha1(IX), chicken, NC4 collagen alpha1(XII), chicken, NC3	16 16 12 30 21 44 44 2516	t CGTNRI CGSNRI IGPRAS APPPSI QAREVI CPKIRI CPKIRI CPLIVI	ttt t (PESGGDI) SAGDHVKI SAAQPADI SAAQPADI GAAPVD GQDDLP(GQDDLP(LEGYTSP(t ht N.SVFDI N.GVFDI D.TSFDI LLKVLDF VIRALRF 3FDLISQ 3FDLISQ 3FKMLES	ht tt FELIGGA FELIGGA FSISNIN HNLPDGI MNSPEGI PALPDGV FQVDKA. FQIEKA. YNLTEKH	ttt hh RKGSGR RRGPGR I.RKTIGA TKTTGFC SKTTGFC RRARGIC .ASRAI .ASQGIV	h RLVKGPDPSSP RLVKGQDLSSP KQFRGPDPGVP ATRRSSKGPDV TNRKNSKGSDT PADV QRVVGSATLQV QRVVGSATLQV SLESGSFPSV	Ah+h T Afried Afrien Ayrfvr Ayrvsk Ayrvsk Ayrvsr Ayrvsr Ayrlgn Ayrlgp Ayrlhk
ht h tt htt htt htth hhh h+ tt	: t	hhti	t t	ohh h	t	h t	tGt t	h
ANLIPPVPDDKFQDLVDAVRTEKGFLLLASLRQMKI	KTRGTL	LALERKI)HSG	OVESVVS	IN.GKAGI	LDLSLTV	QGKQHVVSVEE	ALL
ANLIPAVPDDKFQDLLDAVWADKGFIFLASLRQMKI	KTRGTL	LAVERKI)NTGQ	DIFSVVS	in . Gkagt	LDLSLSL	PGKQQVVSVEE	ALL
FDYIPPVNTDDLNRIVKLARRKEGFFLTAQLKQDRI	KSRGTL	LVLEGPO	3TSQI	ROFEIVS	N.GPGDI	LDLNYWV	EGNOHTNFLED	VGL
DAQLSAPTKQLYPASAFPEDFSILTTVKAKKC	SSQAFL	VSIYNEQ)GIQ	DIGLEL.	GRSPV	FLYE.DH	TGKPGPEDYPL	FRGINL
QAQLSAPTKQLFPGGTFPEDFSILFTVKPKK	JIQSFL	LSIYNER	1GIQ	DIGVEV.	GRSPV	FLFE.DH	TGKPAPEDYPL	FRTVNI
PAQLSAPTRQLFPGGFPKDFSLLTAVRARPO	GLQAPL	LTLYSA	QGVR	QLGLE1.	GRPVF	FLYE.DQ	TGRPOPPAQPV	FRGLSL
NVDFRIPTRNLYPSGLPEEYSFLTTFRMTG	STLKKN	WNIWQI	DSSGKE	QVGIKIN	IGQTQSVV	FSYK.GL	DGSLQTAAFSN	LSSL
NVDFRIPTSATYSNG LPDEYSFLTTFRMTG	ATLOKY	WTIWOIC	DSSGKE	OVGVNLN	IGPMKSVE	FSYK.GV	DGSLOTASFLH	LPFL
NAFVSOPIRETHPEGLPOAYTTIMLFRLLPI	ESPSEP	FAIWOI	TDRDYKP	DVGVVLL	PGSKVLS	FFNK.DT	RGEVOTVTFDN	DEVKKI
Faks				-			_	
ttW+thhh VtttththhhDC h t ht t	ht	h h '	t htt	th t	th Q 1	h hh t	ttC	t
ATGOWKSITLFVOEDRAOLYIDCEKMENAELDVPI	QSVFTR	DLASIA	rlri Akg	GVNDNF	.QGVLQN	VRFVFGT	PPEDILRNKGC.	.SSSTS
ATGOWKSITLFVQEDRAQLYIDCDKMESAELDVPI	QSIFTF	DLASVA	rlrvakg	DVNDNF	.QGVLQN	VRFVFGT:	PEDILRNKGC.	SSSTN
ADSQWKNVTVQVASDTYSLYVGCDLIDSVTLEEPF	YEÇ	LEVDRS	rmyvakg	ASRESH	FRGLDQN	VHLVFADS	SVEDILSKKSCO	HSQGAE
SDGKWHRIALSVHKKNVTLILDCKKKTTKFLDRSD	HPMIDI	NGITVF	gtri lde	EVFEG.	DI.00	LLFVSDH.	RAAYDYCE	HYSPDC
ADGKWHRVAISVEKKTVTMIVDCKKKTTKPLDRSE	RAIVDI	NGITVF	gtri lde	EVFEG.	DI.QQI	FLITGDP.	KAAYDYCE	EHYSPDC
ADGKWHRVAVAVKGQSVTLIIDCKKRVTRPLPRSA	RPVLDT	RGVIIF	GARILDE	EVFEG.	. DI QEI	LSIIPGV.	QAAYESCI	QKELEC
FDSQWHKIMIGVERSSATLFVDCNRIESLPIKPRG	PIDI	DGFAVL	GKLADNP	QVSVPF	EL.QWI	MLIHCOPI	LRPRRETC	ielpart
FDSQWHKVMISVETTSVTLFIDCIKVETLNIKPKG	KISV	DGFSVL	GRLKNNP	QISVPF	EV.QW	MPIHCDPI	LRPQREGC	ELPARI
FYGSFHKVHIVVTSSNVKIYIDCSEILEKPIKEAG	N. ITT	DGYEIL	GKLLKGD	RRSATL	EI.QN	FDIVCSPY	WTSRDRC	DLPSMR

Fig. 2. Multiple alignment of the heparin binding domain in thrombospondins with NC domains of $\alpha I(V)$, $\alpha 1, \alpha 2(IX)$, $\alpha 2(IX)$, and $\alpha I(XII)$ chains as well as with PARP. The sequences are grouped into subfamilies according to their sequence similarity. The putative heparin binding sites in thrombospondin (underlined) are not conserved in the collagens, even if the $\alpha I(V)$ and $\alpha I(XI)$ chains also have clusters of positively charged residues in these regions. Conserved hydrophobic (h) and turn-like or polar positions (t) as well as invariant amino acids (tolerating one exception) are shown at the top. In addition to the high scores of the homology search program FASTA (Table II), two different pattern search tools (PROFILE and PAT) give significant hits for thrombospondins (PROFILESEARCH: z-score 14.03 with a random background of nonrelated sequences below a z-score of 6.55 and PAT: 3 mismatches by discrimination of noise effects appearing with more than 6 mismatches; for details see [50,51,65]).

bospondin is not surprising considering that this domain is the most divergent one between the two distinct thrombospondin genes [33]. These two genes also differ in their putative heparin binding sites [35].

Thrombospondin has been reported to bind specifi-

cally to numerous adhesive proteins (see e.g. [36]) including collagens [37,38]. Some of the responsible segments have already been characterized, but not yet mapped to the N terminus (see e.g. [39]). Thus, thrombospondin appears to have a complex regulatory role

			₽	h	h	tt	:tth	Lt	W	Ptt		Y	h	x	t		Sh	h	L L	P T	Y I	ιtV	Ah	G	G
col7/human	13																DSA	ETR	GLE	GGV	SYS	7R 17	ALV	GDRE	GTPVSI
Col7/human	54	PPAL	GT	LH	/VOR	G	CHSL	RIR	WEPV	PREC	-0aa-	GFI	LLH	NOP	EGGO	-10aa-	SSY	HLD	GLE	PAT	OYRI	RLS	YLG	PAGE	GPSAEV
col7/human	.141	PRVF	SI	ELI	RVVD:	T-SI	DSV	'T LA	WTPV	SRAS	-0aa-	SY:	ILS	WRP	LRGP	-15aa	S SQ	RVT	GLE	PGV	SYI	SLI	PVL	DGVI	GPEASV
col2/chick	905	ERGS	SPR	NL:	TTD:	I-TE	TTV	GLR	NTPA	PGTV	-1aa-	NY	RIV	HKS	LYDD	-11aa-	VDA	VLD	GLE	PET	K YR:	CSTY	AAY	SSGE	GDPVEG
col2/chick	1474	PLSS	SVR	NLI	VYYD:	I-G	STSM	RVR	WEPV	NGAT	-0aa-	GYT	LLT	YEP	VNAT	-13aa-	NEV	OLV	DLI	PNT	EYTI	TAY	VLY	GDIT	SDPLTS
KEPH_HUMAN	446	ESLS	GL	SLI	RLVK)	K-EF	RQI	ELT	WA-G	SRPR	-1aa-	GAI	NLT	YEL	HVLN	-11aa-	PRV	LLT	ELQ	PDT	TYT	RVF	MLT	PLGE	GPFSPD
INSR_HUMAN	850	ADDI	EVG	FV:	PHE II	F - E)	1NVV	rh l m	NO-E	PKEP	-5aa-	LY	EVS	YRR	YGDE	-14aa	RGC	RLR	GlŚ	P-G	NYSI	RIP	ATS	LAGN	GSWTEP
FINC_BOVIN	1692	NVSP	PR	RAI	RVTD.	A-TI	TTT	TIS	WRTK	TETI	-1aa-	GFÇ	OVD.	AIP	ANGQ	-1128.	RSX	TTT	GLQ	PGT.	DYK:	CHAY	TLN	DNAF	SSPVVI
CACT_CHICK	92	GLDF	λ ₽ Κ	DL:	SATE	v-Qs	SETA	VIT	WR-P	PRAP	-2aa-	DY	LLT	YES	IDGR	-10aa	TSY	TLT:	elŝ	PST	OYTI	KLC	ALS	RSMF	SKMIOT
LAR_HUMAN	506	VPAC)PA	DF(DAEV	E-SI	DTRI	QLS	WLLP	POER	-2aa-	MY	Elv	YWA	AEDE	-11aa-	SSY	TLE	DLK	PDT	LYRI	OL/	ARS	DMG	GVETET
SPF3_MOUSE	814	PSEF	١ P T	EV(SVKV:	L-SS	SSEI	:SVH	WKHV	LEKI	-2aa-	SY	OIR	YWA	GHDK	-13aa-	Y SA	RLE)	NLL	PDT	QYF:	ĒVĢ	ACN	SAG	GPSSDV
twit7caeno	2352	RADE	<₽G	TPI	EIVD	W-DE	(DHA	DLK	WT-P	PADD	-баа-	Gr	Ĺνei	MRT	PSCD	-11aa-	LTA	TYD	GLK	PGQ	Τ̈́ ΥΟΙ	FRVk	ALN	KAGE	STRSDP
ITB4_HUMAN	1126	DLG	\₽Q	NPI	AKA	A-G	SRKI	HFN	WLPP	SGKP	-1aa-	GY	RVK	YWI	QGDS	-11aa-	PSV	ELT	NLY	PYC.	d yēi	ak VC	AYG	AOG	GPYSSL
7LES_DROME	1899	FAEI	PE	LQI	LLEL	GF	YSL	SLT	WAGT	PDPL	-1aa-	SL	OLE	CRS	SAEO	-09aa	TKM	VVE	PLO	PRT	RYO	RLI	LGY	AATE	GAPLYH
ros1_human	195	PETA	₽ L	IRI	VIES.	S-SE	PDTV	EVS	WD-P	POFP	-5aa-	GN	N L R	LIS	KNQŔ	-07aa-	TSF	QFY	STĨ	PNT	I YRI	FST/	AVN	EVGE	GPEAES
EPOR_HUMAN	145	LLDA	١PV	GL	VARL.	ADES	SGHV	VLR	WLPP	PETP	-5aa-	RY	EVD	VSA	GNGA	-12aa	TEC	VLS:	NLR	GRT	RYTI	FAVE	RARM	-AEE	SFGGFW
GHR_HUMAN	153	IALN	IWT	LL	NVSL	TGI	IADI	OVR	NE-P	PRNA	-9aa-	EY	E L O	YKE	VNET	-10aa	TSV	PVY	SLK	VDK	EYE	7R VI	RSKO	-RNS	GNYGEF
CHIT_BACCI	559	APT	\ P T	NL	ASTA	Q-T?	rssi	TLS:	WTAS	TDNV	-3aa-	GY	DV-	YNG	TALA	-05aa	TTA	TIS	GLA	ADT	SYTI	TV	AKD	A7	GNVSAA
—				1	9			в					c					E				F			
				ppl	ado		ÞÞ	מממי	b			ы	dag	ddd	b		ď	bbb	dd		ומממ	obbb	dda		

Fig. 3. Multiple alignment of type VII collagen sequences with selected fibronectin type III modules. SWISSPROT codes [62] are used when available. The consensus line notation is explained in Fig. 2. Fn3 consensus positions are shown in bold. The putative beta strands [67] are shown at the bottom. Note the similarity between the repeats of type VII collagen and those of type XII collagen.

within the extracellular matrix. The two regions in thrombospondin with similarity to distinct collagen types (Fig. 1, Table I) might be involved in anchoring different collagen types to specific tissues.

4. THE MODULAR ARCHITECTURE OF TYPE VII COLLAGEN

Sequence analysis indicates that two complete fibronectin type III (Fn3) modules, a part of a third one, and a Von Willebrand factor type A (VWA) domain constitute the N-terminal globular part of the human type VII collagen fragment (Table II, Fig. 3.)

Fn3 modules are found in a variety of adhesive proteins (Table I, for reviews see [5,10,11]). Comparative sequence analysis of more than 300 reported Fn3 modules (Bork and Doolittle, in press) reveals a relatively low overall similarity, but also several conserved features which are all present in type VII collagen (Fig. 2). Since the Fn3 module appears to have distinct functions in different groups of adhesive proteins (Bork and Doolittle, in press) no conclusion about a specific function can yet be drawn.

The VWA module is a domain of about 200 residues which has been reported so far in numerous extracellular adhesive mammalian proteins (Table I, [40,41]). All of these proteins appear to have a variety of binding functions.

In addition to type VII collagen, Fn3 repeats and VWA domains also coexist in type XII collagen [21], α 3(VI) chain [22,23], and in undulin, another matrix protein without collagen-like triple helices [42]. Since type VII collagen is thought to have a large NC domain (e.g. [1,43]), additional repeats may be assumed. This, in turn, suggest a close similarity to the large NC4 domain of type XII collagen, supported by the relative high sequence identity between the Fn3 repeats in type VII collagen and those of type XII collagen as well as by the arrangement of Fn3 and VWA modules (Fig. 1).

In spite of possible functional switches of the domains in different proteins, a comparative analysis of globular modules in collagens gives some indication about common binding capacities and also highlights structurally important residues or regions (Figs. 2 and 3). The various similarities to other mosaic proteins and the presence of homologous modules in both fibrillar and nonfibrillar collagens suggests a consideration of NC domains in structural as well as functional classifications of collagens.

Acknowledgements: The author thanks C. Sander, R. Schneider, A. Valencia, and R. Wade for critical reading of the manuscript.

REFERENCES

 Van der Rest, M. and Garrone, R. (1991) FASEB J. 5, 2814– 2823.

- [2] Gordon, M.K. and Olsen, B.R. (1990) Curr. Opin. Cell. Biol. 2, 833-838.
- [3] Vuorio, E. and de Crombrugghe, B. (1990) Annu. Rev. Biochem. 59, 837–872.
- [4] Engel, J. (1991) Int. J. Biol. Macrom. 13, 147-151.
- [5] Bork, P. (1992) Curr. Opin. Struct. Biol. 2/3, 413-421.
- [6] Van der Rest, M. and Garrone, R. (1990) Biochimie 72, 473-484.
- [7] Banford, J.K.H. and Banford, D.H. (1990) Virology 177, 445-451.
- [8] Gilbert, W. (1978) Nature 271, 501.
- [9] Doolittle, R.F. (1992) Prot. Sci 1, 191-200.
- [10] Patthy, L. (1991) Curr. Opin. Struct. Biol. 1, 351-361.
- [11] Bork, P. (1991) FEBS Lett. 286, 47-54.
- [12] Greenspan, D.S., Cheng, W. and Hoffman, G.G. (1991) J. Biol. Chem. 266, 24727-24733.
- [13] Gordon, M.K., Gerecke, D.R. and Olsen, B.R. (1989) J. Biol. Chem. 264, 19772-19778.
- [14] Yamaguchi, N., Benya, P.D., Van der Rest, M. and Ninomiya, Y. (1989) J. Biol. Chem. 264, 16022–16029.
- [15] Hunt, L. and Barker, W.C. (1987) Biochem. Biophys. Res. Commun. 144, 876-882.
- [16] Reid, K.B.M. and Day, A.J. (1990) Immunol. Today 11, 387-388.
- [17] Sellar, G.C., Blake, D.J. and Reid, K.B.M. (1991) Biochem. J. 274, 481-490.
- [18] Koller, E., Winterhalter, K.H. and Trueb, B. (1989) EMBO J. 8, 1073-1077.
- [19] Chu, M.-L., Pan, T., Conway, D., Kuo, H.-J., Glanville, R.W., Timpl, R., Mann, K. and Deutzmann, R. (1989) EMBO J. 8, 1939–1946.
- [20] Bonaldo, P., Russo, V., Buccietti, F., Bressan, G.M. and Columbatti, A. (1989) J. Biol. Chem. 264, 5575-5580.
- [21] Yamagala, M., Yamada, K.M., Yamada, S.S., Shinomura, T., Tanaka, H., Nishida, Y., Obara, M. and Kimata, K. (1991) J. Cell. Biol. 115, 209-221.
- [22] Chu, M.-L., Zhang, R.-Z., Pan, T., Stokes, D., Conway, D., Kuo, H.-J., Glanville, R., Mayer, U., Mann, K., Deutzmann, R. and Timpl, R. (1990) EMBO J. 9, 385-393.
- [23] Bonaldo, P., Russo, V., Bucciotti, F., Doliana, R. and Colombatti, A. (1990) Biochemistry 29, 1245-1254.
- [24] Pihlajaniemi, T., Tryggvason, K., Meyers, J.C., Kurkinen, M., Lebo, R., Cheung, M.-C., Prockop, D.J. and Boyd, C.D. (1985)
 J. Biol. Chem. 260, 7681–7687.
- [25] Babel, W. and Glanville, R.W. (1984) Eur. J. Biochem. 143, 545-556.
- [26] Hostika, S.L. and Tryggvason, K. (1988) J. Biol. Chem. 263, 19488-19493.
- [27] Morrison, K.E., Germino, G.G. and Reeders, S.T. (1991) J. Biol. Chem. 266, 34–39.
- [28] Maryama, M., Kalluri, R., Hudson, B.G. and Reeders, S.T. (1992) J. Biol. Chem. 267, 1253–1258.
- [29] Pihlajaniemi, T., Pohjolainen, E.-R. and Myers, J.C. (1990) J. Biol. Chem. 265, 13758-13766.
- [30] Pettitt, J. and Kingston, I.B. (1991) J. Biol. Chem. 266, 16149-16156.
- [31] Neame, P.J., Young, C.N. and Treep, J.T. (1990) J. Biol. Chem. 265, 20401–20408.
- [32] Lawler, J. and Hynes, R.O. (1986) J. Cell. Biol. 103, 1635-1648.
- [33] Lawler, J., Ferro, P. and Duquette, M. (1992) Biochemistry 31, 1173-1180.
- [34] Vasios, G., Nishimura, I., Konomi, H. and van der Rest, M. (1988) J. Biol. Chem. 263, 2324–2329.
- [35] Laherty, C.D., O'Rorke, K., Wolf, F.W., Katz, R., Seldin, M.F. and Dixit, V.M. (1992) Biochemistry 31, 3274–3281.
- [36] Hogg, P.J., Stenflo, J. and Mosher, D.F. (1992) Biochemistry 31, 265-269.
- [37] Lahav, J., Schwartz, M.A. and Hynes, R.O. (1982) Cell 31, 253-262.
- [38] Galvin, N.J., Vance, P.M., Dixit, V.M., Fink, B. and Frazier, W.A. (1987) J. Cell. Biol. 104, 1413-1422.

- [39] Dardik, R. and Lahav, J. (1991) Biochemistry 30, 9378-9386.
- [40] Columbatti, A. and Bonaldo, P. (1991) Blood 77, 2305-2315.
- [41] Bork, P. and Rohde, K. (1991) Blochem. J. 279, 208-210.
- [42] Just, M., Herbst, H., Hummel, M., Dürkopf, H., Tripier, D., Stein, H. and Schuppan, D. (1991) J. Biol. Chem. 266, 17326– 17332.
- [43] Mayne, R. and Burgeson, R.E. (1987) Eds., Structure and function of collagens types, Academic press, Orlando, Florida.
- [44] Kodama, T., Freeman, M., Rohrer, L., Zabrecky, J., Matsudaira, P. and Krieger, M. (1990) Nature 343, 531-535.
- [45] Thiel, S. and Reid, K.B.M. (1989) FEBS Lett. 250, 78-84.
- [46] Shimizu, H., Fisher, J.H., Papst, P., Benson, B., Lau, K., Mason, R.J. and Voelker, D.R. (1992) J. Biol. Chem. 267, 1853-1857.
- [47] Charalambous, B.M., Keen, J.N. and McPherson, M.J. (1988) EMBO J. 7, 2903–2909.
- [48] Pearson, W.R. and Lipman, D.J. (1988) Proc. Natl. Acad. Sci. USA 85, 3338–3342.
- [49] Sander, C. and Schneider, R. (1991) Proteins 9, 56-68.
- [50] Bork, P. and Grunwald, C. (1990) Eur. J. Biochem. 191, 347–358.
 [51] Gribskov, M., McLachlan, A.D. and Eisenberg, D. (1987) Proc. Natl. Acad. Sci. USA 84, 4355–4358.
- [52] Parente, M.G., Chung, L.C., Ryynänen, J., Woodley, D.T., Wynn, K.C., Bauer, E.A., Mattei, M.-G., Chu, M.-L. and Uitto, J. (1991) Proc. Natl. Acad. Sci. USA 38, 6931-6935.
- [53] Lozano, G., Yoshifumi, N., Thompson, H. and Olsen, B.R. (1985) Proc. Natl. Acad. Sci. USA 82, 4050-4054.
- [54] Muragaki, Y., Kimura, T., Ninomiya, Y. and Olsen, B.R. (1990) Eur. J. Biochem. 192, 703–708.

- [55] Yoshioka, H. and Ramirez, F. (1990) J. Biol. Chem. 265, 6423-6426.
- [56] Bernard, M.P., Chu, M.-L., Myers, J.C., Ramirez, F., Gilenberry, E.F. and Prockop, D.J. (1983) Biochemistry 22, 5213– 5223.
- [57] Su, M.W., Lee, B., Ramirez, F., Machado, M. and Horta, W. (1989) Nucleic Acids Res. 17, 9473–9473.
- [58] Ala-Kokko, L., Kontusaari, S., Baldwin, C.T., Kuivaniemi, H., Prockop, D.J. (1989) Biochem. J. 260, 509-516.
- [59] Woodbury, D., Benson-Chanda, V. and Ramirez, F. (1989) J. Biol. Chem. 264, 2735-2738.
- [60] Pihlajaniemi, T. and Tamminen, M. (1990) J. Biol. Chem. 265, 16922–16928.
- [61] Ninomiya, Y., Gordon, M., Van der Rest, M., Schmid, T., Linsenmayer, T. and Olsen, B.R. (1986) J. Biol. Chem. 261, 5050.
- [62] Bairoch, A. and Boeckmann, B. (1991) Nucleic Acids Res. 19, 2247-2249.
- [63] Devereux, J., Haeberli, P. and Smithies, O. (1984) Nucleic Acids Res. 12, 387–395.
- [64] Bork, P., Sander, C. and Valencia, A. (1992) Proc. Natl. Acad. Sci. USA 89, in press.
- [65] Bork, P. and Sander, C. (1992) FEBS Lett. 300, 237-240.
- [66] Dublet, B. and van der Rest, M. (1991) J. Biol. Chem. 266, 6853-6858.
- [67] Baron, M., Main, A.L., Driscoll, P.C., Mardon, H.J., Boyd, J. and Campbell, I.D. (1992) Biochemistry 31, 2068–2073.