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1. INTRODUCTION 

This paper was motivated by a certain nonlinear boundary value problem 
which has recently arisen in the theory of tubular chemical reactors. We 
shall treat it and some mathematical generalizations of it here. 

Specifically we shall be concerned with (i) establishing the existence of a 
unique positive solution of the nonlinear boundary value problem 

Lu == -f(x, u), x ED, (1.1) 

Bu =0, xeaD, (I.21 

(ii) characterizing this solution by constructive methods, and (iii) deriving 
pointwise upper and lower bounds on this solution. Here x = (x1 ,..., x,,J and 
L is the uniformly elliptic second-order operator 

Lu -= 2 +(x)-g& 
111 

+- 1 Uj(X) g -- n”(x)% (1.3) 
i.j=l -z I ) =~ 1 * , 

on a bounded domain D, the coefficients a&x), aj(x) are Hijlder continuous in 
D, u0(.2*) 2 0 is Hiilder continuous, and for all unit vectors [ = (E, ,..., [,), 
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The boundary conditions (which we write briefly as Cu -_ 0) will be taken as 

a(x) u(x) + E (x) = 0, .v F 1; , 

U(X) = 0, s c-i r, , 
(I.3 

where I’, and r, are disjoint subsets of the F-boundary aL) of D, with 
r, n I’, : aD, a/&z is the outer conormal derivative on I’i , and a(x) is non- 
negative and continuous for x E r, . Either r, or I‘, may be empty; however, 
if F, is empty, we require that either a(s) or a”(x) is not identically zero. 

Markus and Amundson [2] have studied the following autonomous 
ordinary differential two-point boundary value problem which is a special 
case of (l.l), (1.2): 

w”(y) + Aw’(y) + W(w) = 0, OdYG11, (1.6) 

w’(0) = 0, (1.7) 

w’(l) + Aw(1) = 0. (1.8) 

The function w represents the dimensionless temperature in a tubular 
reactor of length 1 in which there is occuring a single exothermic homoge- 
neous chemical reaction involving several chemical species. A and B are 
known constants, and the function f(w), which essentially represents the 
rates of chemical production of the species, is a smooth function increasing 
fromf( -1) = 0 to a maximum at some point ym (which may be positive or 
negative) and decreasing thereafter to become zero at some c >yrn . The 
concentrations of the various chemical species involved in the reaction can 
be determined easily from a knowledge of w and the stoichiometric coeffi- 
cients of the species. In the light of this interpretation of (1.6), (1.7), (1.8) we 
are led to impose the following conditions on the nonlinearity f in (1.1): 

H-l: f(~, U) is Hijldcr continuous in (x, U) and continuously differen- 
tiable with respect to u for x E D and all u > 0. 

H-2: f(~, 0) > 0 andf(x, c) = 0 for all x E D. Here c is a fixed positive 
constant. 

H-3: f(x, U) < 0 on u > c. 

H-4: (a/&)[f(x, u)/u] < 0 on f> for 0 < u < c. 

H-5: f,(x,u):~OonO<u<bandf,(x,u)<~Oonb<u<c.Here 
h is a fixed nonnegative constant; i.e., b > 0. 

Condition H-4 is a concavity condition which implies that f(~, u), when 
graphed as a function of z1 for fixed X, has the property that any line segment 
from the origin to the function lies below the graph of the function. In 



NONLINEAR BOUNDARY VALUE PROBLEMS 219 

addition, condition H-2 together with H-4 imply that, for fixed x, the tangent 
to the curve y = f(~, U) on 0 < u < c intersects the axis of ordinates (i.e., 
the u = 0 axis) iny > 0. These geometrical properties have been enlightening 
to us in the investigation of related problems (see [3]-[5]); they shall play a 
role in our analysis here. 

In Section 2 we establish a priori bounds on solutions of (l.l), (1.2) by 
using several results which follow from the strong maximum principle for 
uniformly elliptic second order equations. The specific consequences of the 
maximum principle which we utilize have been stated and used by Keller [6] 
for problems similar to ours. 

In Sections 3 and 4 we prove existence and uniqueness of a positive solution 
of (l.l), (1.2), respectively. We introduce iteration procedures, defined by 
solutions of linear equations, which “pinch” the positive solution in the sense 
that one sequence converges monotonically to this solution from above while 
another sequence converges monotonically to this solution from below. Thus, 
in a given problem, for example, we can obtain pointwise upper and lower 
bounds on the solution with the assurance that the bounds become more 
accurate with each iterate. 

Our iteration procedure is patterned after that used by Keller [6] who, in 
fact, has studied problems of a more general nature than ours. In order to 
achieve our more specific results we have limited our attention to the type 
of nonlinearityf(x, U) which arises when we interpret the problem (1. l), (1.2) 
as that of finding the generalized temperature in an n-dimensional chemical 
reactor of arbitrary size and shape. 

2. A PRIORI BOUNDS 

The rough bounds which we obtain in this section are consequences of 
several results which follow from the strong maximum principle [l] for 
uniformly elliptic second order equations. More precisely, we shall use the 
following theorem which is stated and proved in this form in the previously 
mentioned work of H. B. Keller: 

THEOREM 2.1. If 4(x) E Cl(D) n 122(B) and satisfies for some constants 
Ml >OandM, 20 

and 

L+(x) > 0 on D, n D, where Dl = (x I x E U, 4(x) > M,} 

then 

By%(x) < 0 on aD, = {x 1 x E aD, C+(X) > M2), 

$(x) < M, z max(M, , M,) for all x E Is. 

505/7/z-2 
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Taking MI = &I% 1; c, it immediately follows as a consequence of this 
theorem that we have the 

THEOKEM 2.2. Let f (x, u) satisfy H-l to H-3. Then every positive solution 
u(x) of (I. l), (1.2) satis-es 

0 .:r, u(x) < c. (2.‘) 

The a priori bounds (2.1) can be used to replace the problem (1 .l), (1.2) 
by an equivalent one in whichf(x, u) has any desired properties for u < 0 and 
u > c. For the purposes of the present paper this shall always consist of replacing 
f (x, u) byf*(x, u) defined as 

I 

fic(.Y 0) 21 + f(? 0) if 21 < 0 
f’*(x, u) ~= f(x, 21) if 0 ::< u ..G c cm 

fi‘(% c) u i [f("c 4 -.fidx, ckl if II > c. 

Equation (2.2) states that we retain f‘(x, u) in 0 .+ u -<, c and continue 
f (x, u) into u < 0 and zl 3;, L- by its tangent line at u = 0 and u = c, respec- 
tively. H7e now state once and for all that throughout the remainder of this paper 
we are replacingf (x, u) in (1.1) byf*(x, u) defined by (2.2). 

3. EXISTENCE OF POSITIVE SOLUTIONS AND SHARP BOUNDS 

Under conditions H-l to H-4 we shall now show that the boundary value 
problem (1. I), (1.2) has positive solutions. (Note that since u(x) zz 0 is not 
a solution of (1. I), (I .2), then positive solutions can not vanish identically.) 

In order to establish this we shall need the following Positivity Lemma 
which is essentially the strong maximum principle for elliptic equations (see 
[l] for a proof in this form): 

POSITIVITY LEMMA. Let d(x) be twice continuously dajferentiable and satisfy 

L$ GO, XED, 

B$ = 0, XE~D. 

Then, either 4(x) 3 0 on D or 4(x) > 0 for x E D. 

Since f and fU are bounded on u > 0, we can find a positive Holder con- 
tinuous function M(x) and a negative Holder continuous function Q(x) such 
that 

w4 2 f (x9 4, for x E D, u 3 0, (3.1) 

Q(x) < $ f& u) -=E 0 for x E D. (3.2) 
u>o 
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Define the sequence {U,(X)} by 

Lu, = --M(x), XED, 

Bu, = 0, XE~D, 
(3.3) 

Lu, + Q(X)% = -f(% %-I) + Q(X)~,-1 , XED, n = 1, 2, 3 ,..., 

Bu, = 0, XE~D. 

THEOREM 3.1. Letf(x, u) satisfy H-l to H-4. Then u,(x) > 0 on Dfor all 
n > 0. 

PYOO~ The proof is by induction. The Positivity Lemma immediately 
implies that uO(x) > 0 on D. Assume U,(X) > 0 on D for all Y < n - 1. Then, 
(3.2) and H-4 imply 

Lull + Q% = -.f(x, un-1) + Q%-, G -f(x, %-I) + fdx, %-&,-I 

Bu, = 0, XE~D. 

Hence, it follows from the Positivity Lemma with u,,(x) replaced by 
a,(x) - G(x) that un(x) > 0 on D. Q.E.D. 

That the quantity -f(x, u) +fU( x u u is negative also follows from the , ) 
geometric considerations of the Introduction. For fixed x the tangent to the 
curve y = f(x, u) at the point (~,f(x, u)) is given by 

Thus, the quantity [f(x, v) -&(x, w) V] d e ermines t where the tangent line 
intersects the axis of ordinates (i.e., the u = 0 axis). Conditions H-2 and 
H-4 and the definition (2.2) imply that this quantity is positive; that is, the 
tangent line must always intersect the positive y axis. 

THEOREM 3.2. Letf(x, u) satisfy H-l to H-4. Then, the sequence {un(x)} 
defined by (3.3) is monotone nonincreasing; that is, 

un+dx> G %2(x), x E D, n = 0, 1, 2 ,.... 

Proof, The proof is by induction. Equations (3.3) imply 

quo - u1) + f‘quo - 4 = - (M - f(x, %I)) G a XED 

B(u, - 241) = 0, XEaD. 
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Hence, by the obvious modification of the Positivity Lemma we conclude 
that U,,(X) - Z+(X) > 0 on D. Now, assume that u~..~(x) - Us :,: 0 on /1 
for all v < n. Then, from Eqs. (3.3) we have 

where u, < zl G. u,-~ and we have obviously used the lMean Value Theorem 
and then Eq. (3.2). Since B(un - u,,.J = 0 on ZD, The Positivity Lemma 
implies u,(x) - u,+~(x) 3 0 on D. Q.E.D. 

The existence of a positive solution is now established by 

THEOREM 3.3. Let f(x, u) satisfy H-l to H-4. Then, the sequence (uJx)> 
dejked by (3.3) converges to a positive solution of (1. I), (1.2). 

Proof, The proof follows from the work of Simpson and Cohen [7] for a 
similar problem. Since all details are given there, we shall content ourselves 
with the following brief outline: 

Having demonstrated in Theorems 3.1 and 3.2 that the sequence {U%(X)} is 
monotone nonincreasing and bounded from below, we may immediately 
conclude that there is a limit function, say 

Clearly, the functions Lu, are uniformly bounded, and the usual Schauder 
type estimates from the theory of elliptic equations implies that the u, are 
equicontinuous. Thus, the limit function w is continuous, the convergence 
of the u, to w is uniform and also the convergence of Lu, is uniform. Hence, 
the compactness results of Agmon, Douglas, and Nirenberg [S] now imply 
that w is a solution of (1. l), (I .2). Q.E.D. 

In anticipation of the uniqueness theorem of the next section we now 
construct a sequence (vJx)} of iterates which converge to a positive solution 
monotonically from below. Once uniqueness is established, then by using 
both sequences, we can “pinch” the unique positive solution u(x) of (1, I), (1.2) 
by solutions of linear equations as follows: 
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The sequence (z)~(x)} is defined by 

vo(x) = 0 

Lv, + Q(X)% = -f(x, %-1) + q+4L-, > x E D, n = 1, 2, 3 ,...) 

Bv, = 0, xEaD. (3.7) 

The proof that this procedure defines a monotone nondecreasing sequence 
of nonnegative functions is exactly like the proofs of Theorems 3.1, and 3.2 
so we shall omit it. We show only how to establish a uniform upper bound on 
the iterates, and then the proof that they converge to a positive solution 
follows exactly like the proof of Theorem 3.3. 

Clearly, ZQ,(X) - Q(X) 2 0 on D. Now, (3.3) and (3.7) imply that 

L(% - vin) + Q’(% - vn) = -f(x, q-1) -t-f@, %-I) + Q(%-1 - %I) 
= - [f&c, ii) - qu,-, - %-I), 

where we have obviously used the Mean Value Theorem. Hence, a straight 
forward induction argument allows us to prove that U,(X) - Z)%(X) >, 0 on D, 
from which we conclude that for all n > 1 the vn(x) are uniformly bounded 
above by max,,, [U,(X)]. 

4. UNIQUENESS OF POSITIVE SOLUTIONS 

We shall need the 

LEMMA 4.1. The sequence {un(x)} defined by (3.3) converges to the maximal 
positive solution J(X) of (1. l), (1.2); that is, a(x) >, u(x) on D for any positive 
solution u(x). 

Proof. Assume U(X) is any positive solution. Then, U(X) satisfies 

Lu = -f (x, u), xED, 

Bu = 0, x E 8D. 
(4.1) 

Equations (3.3) and (4.1) imply that 

L(u, - u) = - (M -f(X,U)) < 0, x E D, 

B(u, - u) = 0, x E D. 

The Positivity Lemma immediately implies that z+,(x) - U(X) >, 0 on D. We 
now proceed by induction. Assume u,(x) - U(X) 3 0 on D for all Y < n - 1. 
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Then, 
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where we have used the Mean Value Theorem and u < u” < u,-~ . Hence, 

wn - u) + qu, - u) = Q(un-l - u) - fu(x, 22)(21,-1 - u) 
= - [fu(x, 2) - Q](%-1 - u) < 0, XED. 

B(u, - u) = 0, XED. 

Therefore, from the Positivity Lemma we conclude that u,(x) - u(x) > 0 on 
D; that is, {u,(x)> converges to the maximal positive solution. Q.E.D. 

The main result of this section is the 

THEOREM 4.2. Let f(x, u) satisfy H-l to H-5. Then, positive solutions 
(l.l), (1.2) are unique. 

Proof. Let U(X) be the maximal positive solution, and suppose some other 
positive solution v(x) exists. Then, I%(X) 3 v(x) on D. Choose the largest 
number q, such that v(x) 3 q,ti(x) for all x E D. Such an a0 exists and satisfies 
0 < 0~~ < 1; this can be seen as follows: Let A = (a 1 v(x) 3 ati for all 
x E D}. A is nonempty since it obviously contains OL = 0, and clearly 01 E A 
implies 0 < (Y < 1 since 01 > 1 would contradict the fact that z%(x) is the 
maximal positive solution. Thus, we have 01s = supor A. 

Now, recalling property H-5, define 

D, = {x I 0 < v(x) < b), D, = (x I 6 < v(x) < c}. 

For 0 < 01~ < 1 condition H-5 implies that 

f [x, +qx>l > %fw f lx, Q(x)1 
+> = all f rx, WI 

for all x E n such that c(x) > 0. Hence, f [x, CY$(X)] - a0 f [x, U(X)] > 0 
for all x E D [and also if B(X) = 01. In fact, by the continuity of 

f (x, c@) - %f (x, G) 

and the boundedness off(x, a) there exists an c1 > 0 such that 

f [x, %q41 - %f lx, m)l 2 Elf [x, a4 
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for all x E B. Thus, for .X E D, 

while for x E D, , the fact thatf( x u is a decreasing function of u implies , ) 

-Lz: = f(x, 8) 3 f(X, u) = - [q + (I - n,)] Lii. 

Setting E = min[Ei , 1 - oc,J, we therefore have 

Hence, 

Lv < (cd0 + c) Lzl, x E D. 

L(v - (q + 6) U) < 0, x E D, 

B(v - (CQ + c) ii) = 0, XEaD. 

Therefore, from the Positivity Lemma we conclude that v(x) > (01~ + c) U(X) 
on D which contradicts the fact that 01” is the largest number such that 
v(x) > a,qx>. Q.E.D. 

We would like to point out how critical the geometry of the nonlinearity is 
for uniqueness. In the pertinent range 0 < u < c the condition H-4 implies 
that our nonlinearity f(x, U) possesses the property that when graphed as a 
function of u for fixed x any straight line from the origin to the function lies 
below the graph of the function. It is easy to construct nonlinearities which 
violate this condition and for which the problem (1. I), (1.2) possesses more 
than one distinct positive solution on D (see T. W. Laetsch [5] for a more 
penetrating discussion). 

All our results have been given for the general non-self-adjoint operator 
L. In the case that L is self-adjoint a particularly simple proof exists for 
Theorem 4.2. This consists of using the generalized Green’s identity to write 

i 
D (iTLv - VLU) dx = 0, 

where the zero on the right comes from the fact that the boundary conditions 
imply that the integral over aD vanishes. Now, if we take B(X) to be the maxi- 
mal positive solution and V(X) to be some other positive solution, we can 
write (using H-4) 

O= 
s 

D (u&) -&C) = 
i [ 

av -f@, v) + Lc!s.Q 
V ii I 

< 0, 
D 

which is a contradiction. Hence a(x) = v(x), and our proof is concluded for 
the self-adjoint case. 
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