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Abstract

We propose a simple conformal mechanics model which is classically equivalent to a charged massive particle propagating
near theAdS2 × S2 horizon of an extreme Reissner–Nordström black hole. The equivalence holds for any finite value of the
black hole mass and with both the radial and angular degrees of freedom of the particle taken into account. It is ensured by the
existence of a canonical transformation in the Hamiltonian formalism. Using this transformation, we construct the Hamiltonian
of aN = 4 superparticle onAdS2 × S2 background.
 2003 Published by Elsevier Science B.V.
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1. Introduction

In the web ofAdS/CFT dualities theAdS2/CFT1 case has a distinguished status and still remains to be fully
understood [1]. One of its peculiarities is that ind = 1 one encounters superconformal algebras which cannot
be obtained by a dimensional reduction from higher dimensions (see, e.g. [2] for a review). Using this type of
the AdS/CFT correspondence one can hope to get insights into quantum properties of supergravity black holes
studying simple (super)conformal mechanics as the relevant boundary theory [3–5].

An interesting application of theAdS2/CFT1 correspondence is provided by a massive charged particle
propagating near the horizon of an extreme Reissner–Nordström black hole [3]. The geometry characterizing this
case isAdS2 × S2 and in the limit of large black hole massM one recovers1 the conformal mechanics of [6].

E-mail addresses:bellucci@lnf.infn.it (S. Bellucci), galajin@mph.phtd.tpu.edu.ru (A. Galajinsky), eivanov@thsun1.jinr.ru (E. Ivanov),
krivonos@thsun1.jinr.ru (S. Krivonos).

1 To be more precise, one considers a specific limit when the black hole massM is large and the difference between the particle mass and
the absolute value of its charge(µ− q) tends to zero, withM2(µ− q) being kept fixed.
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This relationship [3] suggested an elegant resolution for the problem of an infinite number of quantum states of a
particle probe localized near the horizon of a black hole (see the relevant discussion in Ref. [2]). It was traced to
the absence of a ground state in the conformal mechanics and the necessity of redefining the Hamiltonian [6].

It is important to notice, however, that it is the radial coordinate ofAdS2 ×S2 which is identified with the degree
of freedom described by the conformal mechanics. The angular variables effectively decouple in the largeM

limit and show up only in an indirect way via the effective coupling constant. The latter point recently received
attention [7], where a particular case of the general transformation constructed in [8] was considered. It was shown
that the radial part of the particle onAdS2 × S2 background is classically equivalent to the conformal mechanics
for anyfinitevalue of the black hole mass, i.e., without taking any specific limit.

In order to get further insights into quantum properties of a test particle near the horizon of a black hole, a
proper accounting of the angular degrees of freedom is necessary. It is the purpose of this Letter to construct a
simple conformal mechanics, which is classically equivalent to a particle moving onAdS2 × S2 background, with
both radial and angular variables being retained. Specifically, we take the advantage of the Hamiltonian formalism
and demonstrate that the two theories are connected by acanonicaltransformation. The clue to finding such a
transformation is offered by the symmetry group. Requiring the conserved charges to coincide in both theories,
one reveals the desired canonical transformation.

The outline of Letter is as follows. In the next section we compare the radial part of the particle onAdS2 × S2

with the conformal mechanics of Ref. [6]. Equating the conformal currents (which involve the Hamiltonian!)
inherent both theories we find a canonical transformation which establishes the equivalence relation between
them. In Section 3 we extend the analysis to include the angular variables into our consideration. The symmetry
underlying this case isso(1,2) ⊕ su(2) and we expose an appropriate extension of the model of Ref. [6] which
supports this symmetry and is canonically equivalent to the particle onAdS2 × S2. Section 4 is devoted to possible
applications of the canonical transformation we found. In particular, we construct a Hamiltonian of aN = 4
superparticle onAdS2 × S2 by firstly supersymmetrizing our simple conformal model and then applying the
canonical transformation to the resulting system. Some open questions and further developments are discussed
in the concluding Section 5.

2. AdS2 background as a canonical transformation of conformal mechanics

The motion of a charged massive particle near the horizon of an extreme Reissner–Nordström black hole is
governed by the (static gauge) action functional

(1)S =
∫

dt (2R/r)2
[
q −µ

√
1− (r/2R)2ṙ2 −R2(r/2R)4

(
θ̇2 + sin2 θϕ̇2

) ]
.

Hereµ andq stand for the mass and electric charge of the particle andR is the radius of the sphere in the underlying
AdS2 × S2 geometry (which is equal to that of theAdS2 space and coincides with the black hole ‘mass’ in units
for which G = 1). As has been argued in Ref. [3], in the limitR → ∞, (µ − q) → 0, with R2(µ − q) fixed,
the corresponding quantum mechanical description reduces to that of the ‘old’ (or ‘non-relativistic’) conformal
mechanics [6]

(2)S = 1

2

∫
dt

(
ẋ2 − ĝ

x2

)
, x = √

µr,

providedĝ = 8R2µ(µ − q) + 4l(l + 1). Here l stands for the orbital angular momentum of the particle. This
relation between the two models has been recognized to be a manifestation of theAdS2/CFT1 correspondence.

Since in the aforementioned limit the angular variables effectively decouple and show up in an indirect way only
in the coupling constant̂g, it seems interesting to discuss a connection between the radial part of the model (1)
and conformal mechanics (2) in more detail. According to a recent analysis [7], for a finite non-zero value of
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the radiusR and l = 0 the systems are equivalent and correspond to two different non-linear realizations of the
conformal groupSO(1,2). In particular, the actions (1) and (2) atθ = ϕ = const andĝ = 8R2µ(µ − q) ≡ g are
connected by a specific field redefinition involving coordinates along with their time derivatives.

It turns out that a similar conclusion can be reached in a simpler and suggestive way if one switches to the
Hamiltonian framework. The former case is characterized by the Hamiltonian

(3)HAdS = (2R/r)2
[√

µ2 + (r/2R)2p2
r + (1/R)2

(
p2
θ + sin−2 θp2

ϕ

)− q
]
,

and for our subsequent discussion in this section we will need only the radial part

(4)H = (2R/r)2
[√

µ2 + (r/2R)2p2
r − q

]
.

Apart from time translations generated by this Hamiltonian one reveals two more conserved charges corresponding
to dilatations and special conformal transformations

(5)D = tH − 1

2
rpr , K = t2H − t (rpr)+ 1

4
r2
(√

µ2 + (r/2R)2p2
r + q

)
.

Altogether these form aso(1,2) algebra

(6){H,D} =H, {H,K} = 2D, {D,K} =K,

under the standard Poisson bracket{r,pr} = 1, which is the conformal algebra ind = 1. In the conformal
mechanics case (2) (witĥg = g) a representation of the algebra reads [6]

(7)H = 1

2

(
p2 + g

x2

)
, D = tH − 1

2
xp, K = t2H − t (xp)+ 1

2
x2.

Searching for a classical correspondence between the two models, we wonder if there exists a transformation
from the phase space coordinates(x,p) to (r,pr) which brings the Hamiltonian in Eq. (7) to the form (4).
Furthermore, since the Hamiltonian makes part of the conformal algebra it seems reasonable to strengthen the
condition and demandall the conformal generators to coincide. Comparing the charges corresponding to dilatations
one immediately finds

(8)xp = rpr ,

while requiring the identity of the charges generating special conformal transformations leads one to set

(9)x = 1√
2
r
[√

µ2 + (r/2R)2p2
r + q

]1/2
, p = √

2pr
[√

µ2 + (r/2R)2p2
r + q

]−1/2
.

It is straightforward to verify that, being performed in the Hamiltonian (7), this substitution does produce Eq. (4),
provided the identificationg = (2R)2(µ2 − q2). Notice that this correlates well with the coupling constant
appearing in the aforementioned limit

(10)g = (2R)2
(
µ2 − q2)→ 8R2µ(µ− q),

if one suppresses the angular variables. Besides, the transformation (9) iscanonicalwith the unit Jacobian.
We thus demonstrated that at the classical level the radial part of a charged massive particle moving near the

horizon of an extreme Reissner–Nordström black hole is canonically equivalent to the old conformal mechanics.
This equivalence is implicit in the Hamiltonian analysis of Ref. [9]. In the above, we established this connection in
an explicit way. Moreover, the method by which we have reached this conclusion, i.e., the principle of identifying
the symmetry generators, is new and allows one to treat more complicated cases (see next sections).

It is worth mentioning that according to the analysis of Ref. [9] (see also references therein) the system (2)
in the Hamiltonian approach exhibits a larger symmetry than one could expect to find. In particular, it was
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shown that theso(1,2) algebra formed by the conserved chargesH,D,K can be extended tow∞ algebra of
area-preserving symplectic diffeomorphisms, the latter including the Virasoro algebra as a subalgebra. It was
subsequently realized [10], however, that the charges are functionally dependent which matches with the fact
that the system (2) involves only a finite number of degrees of freedom. Due to the existence of the equivalence
transformation (9) the same symmetries should also persist in the model with the Hamiltonian (3). In what follows
we shall concentrate only on finite-dimensional subalgebras.

3. Adding angular variables

Guided by the observation made in the preceding section it seems natural to inquire whether it is possible to
extend the conformal mechanics (2) by angular variables so as to construct a model canonically equivalent to the
particle moving on theAdS2 × S2 background. A reasonably good starting point is offered by the Hamiltonian

(11)H = 1

2

(
p2 + g

x2

)
+ 2

x2

(
p2
Θ + sin−2Θp2

Φ

)
,

which exhibits conformal symmetry (the generators of dilatations and special conformal transformations maintain
their form (7) withH defined by Eq. (11)) along with the rotationSO(3) invariance. The Hamiltonian (11) arises
from (3) in the same limitR → ∞, (µ− q)→ 0, andR2(µ− q) fixed, with the full angular part being taken into
account. Now we are going to demonstrate that it produces (3) after performing a proper canonical transformation
(with g = (2R)2(µ2 − q2)).

For the model at hand a representation of thesu(2) algebra is realized in the standard way (ε123= 1)

J1 = −pΦ cotΘ cosΦ − pΘ sinΦ, J2 = −pΦ cotΘ sinΦ + pΘ cosΦ,

(12)J3 = pΦ, {Ji ,Jj } = εijkJk,

and it is noteworthy that the angular part of the Hamiltonian is provided by the Casimir operator of thesu(2)
algebraJ 2 = JiJi = pΘ

2 + sin−2ΘpΦ
2.

Much alike the preceding case a transformation(x,Θ,Φ,p,pΘ ,pΦ) → (r, θ,ϕ,pr ,pθ ,pϕ) which brings the
test Hamiltonian (11) to that associated with the model (1) (see Eq. (3) above) is relatively easy to deduce for the
radial variables by comparing the relevant expressions for the conformal generators

x = 1√
2
r
[√

µ2 + (r/2R)2p2
r + (1/R)2

(
p2
θ + sin−2 θp2

ϕ

)+ q
]1/2

,

(13)p = √
2pr

[√
µ2 + (r/2R)2p2

r + (1/R)2
(
p2
θ + sin−2 θp2

ϕ

)+ q
]−1/2

.

Besides, one has to make the identificationq2 = µ2 − g/(2R)2 and require the Casimir operator to remain
invariantpΘ2 + sin−2ΘpΦ

2 = pθ
2 + sin−2 θpϕ

2. The latter requirement, however, does not fix the canonical
transformations for the rest of the involved variables. Clearly, the reason lies in the additionalSO(3) symmetry
characterizing the case under consideration. A sensible way out is to requireall the symmetry generators in both
pictures to coincide. In particular, we putJi = Ji , where the transformed generatorsJi have the same form as
in Eq. (12) but involve(θ,ϕ,pθ ,pϕ) instead of(Θ,Φ,pΘ ,pΦ). Being algebraic equations, these allow one to
express three variables

(14)pΘ = J2 cosΦ − J1 sinΦ, cotΘ = − 1

J3
(J1 cosΦ + J2 sinΦ), pΦ = pϕ,

in terms ofΦ. Besides, we demand the change to be canonical. Let us discuss the latter point in more detail.
The dependence ofΦ on the radial coordinates(r,pr) is dictated by the requirement that it commutes with the

pair (x,p) from Eq. (13). Given the transformation (13), the equalityxp = rpr holds and one immediately faces
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the restriction

(15){Φ,rpr } = 0.

It means, in particular, thatΦ is a function of(rpr). Making use of Eq. (15) one can verify that only one of the two
equations{Φ,x} = {Φ,p} = 0 is independent and amounts to

(16)
∂Φ

∂pr
+ r{J2,Φ}

(2R)2
√
µ2 + (r/2R)2p2

r + (1/R)2J2 (
√
µ2 + (r/2R)2p2

r + (1/R)2J2 + q)
= 0,

whereJ2 = JiJi . Taking into account that the Casimir operator maintains its form, the explicit expression for
{J2,Φ} can be easily computed. Then, introducing a specific subsidiary function

α =A+
√

J2

R
√
µ2 + (1/R)2J2 − q2

[
arctan

(
rpr

2R
√
µ2 + (1/R)2J2 − q2

)

(17)− arctan

(
qrpr

2R
√
µ2 + (1/R)2J2 − q2

1√
µ2 + (r/2R)2p2

r + (1/R)2J2

)]
,

whereA depends on the angular variables(θ,ϕ,pθ ,pϕ) only, one can readily integrate the radial equation (16)

(18)tanΦ = J3

√
J2

J 2
2 + J 2

3

tanα − J1J2

J 2
2 + J 2

3

.

Here we made use of Eq. (14) and assumed the conditions{Φ,Θ} = {Φ,pΘ } = 0, {Φ,pΦ} = 1 to hold. Obviously,
the last three equations are designed to fix the explicit form ofA which enters the subsidiary function. A
straightforward calculation reveals the following restrictions

(19){A,J1} = 0, {A,J3} = J3

√
J2

J 2
2 + J 2

3

, {A,J2} = J2

√
J2

J 2
2 + J 2

3

.

Beautifully enough, the following solution to the first equation:

(20)A= arctan

(
pϕ sin−2 θ tanϕ −pθ cotθ√

J2

)
,

solves the others as well.
Having specified the explicit form ofΦ, one has to verify yet that the whole change is canonical. It proves to

be the case. In particular, the conjugate momentumpΦ commutes with(x,p,Θ,pΘ) while the pair(Θ,pΘ) is
canonical{Θ,pΘ } = 1. Besides, asΦ has the vanishing bracket with the pair(x,p), so do(Θ,pΘ).

To summarize, the canonical change of the variables exposed above in Eqs. (13), (14), (18) establishes the
equivalence relation between the charged massive particle moving near the horizon of an extreme Reissner–
Nordström black hole (see Eq. (3) above) and conformal mechanics (11). Although the transformation looks pretty
bulky when applied to the angular variables, the quantities of physical interest like the angular momentum or
the angular contribution to the Hamiltonian remain invariant and are easily handled. It is noteworthy that the
equivalence holds for any fixed value of the black hole mass and is not bound to any specific limit.

4. A N = 4 superparticle on AdS2 × S2 background

Among possible applications of the model (11) which we briefly outline in the concluding section there is one
which can be addressed immediately. It has been known for a long time that conformal mechanics (2) admits
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supersymmetric generalizations [11–13]. It is interesting to find analogous superextensions of the particle on
AdS2×S2. Since the full superisometry of theAdS2 ×S2 background is known to beSU(1,1|2), the corresponding
N = 4 superconformal mechanics should possess this symmetry. In this context theSU(2) symmetry underlying
the bosonic case comes out as theR-symmetry contained in the superconformal group.

In order to construct aN = 4 superconformal mechanics inAdSspace one could either use the non-linear
realizations [13,14], or properly fix the gauge with respect toκ-symmetry in the 0-brane Green–Schwarz action
on AdS2 × S2 [15] or, working in a more general geometric setting, analyse the conditions for a particle
moving in an arbitrary curved background to admit aN = 4 superconformal symmetry (see, e.g., Refs. [16–
18]). Observe now that our consideration in the preceding section suggests quite new and interesting possibility to
construct asu(1,1|2)-invariant superconformal mechanics inAdS2 × S2 space by making use of the Hamiltonian
approach. Indeed, it suffices to extend the simple model (11) by fermions in a manner which complements the
so(1,2) ⊕ su(2)-symmetry algebra of the bosonic case to the entiresu(1,1|2) and then apply to the resulting
theory the canonical transformation found above with the fermions kept untouched.

The construction turns out to be mostly algebraic. One introduces a pair of complex fermions(ψi )∗ = ψ̄i ,
i = 1,2, obeying the bracket{ψi, ψ̄j } = −iδij , and modifies thesu(2) generators (12) by adding the appropriate
fermionic bilinears (without spoiling the algebra!)

(21)

J̃1 = J1 + i

2

(
ψ2ψ̄1 −ψ1ψ̄2

)
, J̃2 = J2 − 1

2

(
ψ2ψ̄1 +ψ1ψ̄2

)
, J̃3 = J3 + 1

2

(
ψ1ψ̄1 −ψ2ψ̄2

)
.

Requiring them to obey proper Poisson brackets with the Poincaré supersymmetry generatorsGi, �Gi , one severely
restricts the form of the latter. Observing further that the bracket{Gi, �Gj } = −2iHδij , i = 1,2, makes part of
the su(1,1|2) superalgebra, it suffices to find fermionic generatorsGi and �Gi whose Poisson bracket yields a
Hamiltonian which reduces to Eq. (11) in the bosonic limit. Besides, one has to make sure that the conditions
{Gi,Gj } = {�Gi, �Gj } = 0 hold which, by Jacobi identities, provide the conservation of the supercharges. It should
be also mentioned that, in order to guarantee the stability of the vacuum (see the discussion in Refs. [3,14]) one is
forced to setµ = q . We thus putg = 0 in our subsequent consideration.

It turns out that all these restrictions are met by the following representation for the supersymmetry charges

G1 =
(
p − 2i

x
J3

)
ψ1 + 2

x
(J1 + iJ2)ψ

2 + i

x
ψ1ψ2ψ̄2,

(22)G2 = −
(
p + 2i

x
J3

)
ψ2 + 2

x
(J1 − iJ2)ψ

1 − i

x
ψ1ψ̄1ψ̄

2,

which yield the Hamiltonian

H = 1

2

[
p2 + 4

x2

(
p2
Θ + sin−2Θp2

Φ

)]+ 2i

x2 (J1 − iJ2)ψ
1ψ̄2 − 2i

x2 (J1 + iJ2)ψ
2ψ̄1

(23)− 2

x2
J3
(
ψ1ψ̄1 −ψ2ψ̄2

)+ 1

x2
ψ1ψ̄1ψ

2ψ̄2.

Given the Hamiltonian, one can readily verify that the generators of dilatations and special conformal
transformations maintain their previous form (7) (with the Hamiltonian taken from the previous line). Finally,
evaluating the Poisson brackets of the supersymmetry charges with the generators of special conformal
transformations one finds a representation for the superconformal generators

(24)S1 = tG1 − xψ1, S2 = tG2 + xψ2.



S. Bellucci et al. / Physics Letters B 555 (2003) 99–106 105

Having formulated the model in the conformal basis, we now proceed to construct itsAdS2 × S2 equivalent. To
this end we apply the transformation (13) (withµ = q) to the Hamiltonian (23) which yields

HN=4 = (2R/r)2
[√

µ2 + (r/2R)2p2
r + (1/R)2J2 −µ

]
+
[
(J1 − iJ2)ψ

1ψ̄2 − (J1 + iJ2)ψ
2ψ̄1 + iJ3

(
ψ1ψ̄1 −ψ2ψ̄2

)− i

2
ψ1ψ̄1ψ

2ψ̄2

]
(25)× 4i

r2(

√
µ2 + (r/2R)2p2

r + (1/R)2J2 +µ)

.

Because the bosonic limit of this theory does coincide with the Hamiltonian (3) one ends up with aSU(1,1|2)
supersymmetric generalization of the model (1). It is interesting to compare the result with theSU(1,1|2)
superparticle in the Green–Schwarz approach [15]. This requires the construction of a Lagrangian formulation
which will be given elsewhere.

5. Conclusion

To summarize, in the present Letter we took advantage of the Hamiltonian formalism, in order to establish
a precise classical correspondence between a massive charged particle moving near the horizon of an extreme
Reissner–Nordström black hole and conformal mechanics (11). Since our construction does not rely upon a specific
limit, it becomes possible to investigate in full generality quantum properties of the former model (at any finite value
of the black hole mass) working with the latter theory. It is then tempting to study the quantum spectrum and the
transition amplitude for the theory (11). Although we have a little hope to literally transform into theAdSbasis
the results of the operator quantization because of the complexity of the transformations (13), (14), (18), the path
integral quantization is still quite feasible.

In constructing aN = 4 supersymmetric generalization of the model (11) we assumed the stability of the
vacuum and setg = 0. The caseg �= 0 can also be considered. It also remains to explore how the equivalence
in the Hamiltonian approach is translated into the Lagrangian language and how it is linked to the off-shell map of
Refs. [7,8].
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