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Abstract 

The behavior of an elastic capsule by an optical force in a uniform flow is examined by using the penalty immersed 
boundary method. The elastic capsule is subjected to the laser beam with Gaussian distribution in the perpendicular 
direction to the fluid flow. The elastic capsule migrated by the optical force along the direction of the laser beam 
propagation, and the migration distance is dependent on its properties. The oblate capsule with b/a = 0.5 obeying the 
neo-Hookean constitutive law is first considered, and the effects of the surface Young’s modulus and the initial 
inclination angle on the migration distance are studied. The migration distance of the oblate capsule is increased as 
the surface Young’s modulus increases, and the non-inclined oblate capsule is more migrated than the differently 
inclined capsules. Then the spherical, oblate, and biconcave capsules obeying the Skalak constitutive law are 
considered. A comparison of the trajectories of the capsules indicates that the migration of the spherical capsule is 
the largest. Unlike the oblate capsule, the non-inclined biconcave capsule is less migrated than other inclination 
angles due to its initial shape. 
 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of organizing committee of Biomechanics and Bioengineering (UMR CNRS 7338). 
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1. Introduction 

Blood cells consist of red blood cell (RBC), white blood cell, and platelet, which have different shapes and 
properties. Among them, RBC is made of cytoplasm and cell membrane without a nucleus. Due to its simple 
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structure, the dynamics of RBC assumed as an elastic capsule has been widely studied under various external forces 
such as hydrodynamic force, magnetic force, optical force, and acoustic force.1, 2 In the simple shear flow, a 
biconcave capsule to mimic the RBC exhibited the swinging and tumbling motions depending on the capillary 
number and the reduced bending modulus.3, 4 The lateral migration distance of the spherical elastic capsule by the 
optical force in a uniform flow is varied with the elastic properties.5 The RBC is softened or stiffened by disease,6 so 
understanding the behavior of the elastic capsule with different elastic properties and shapes under an external force 
is important for separation of abnormal blood cells from normal ones. 

The optical force has been widely used to manipulate and separate particles or cells because it is controllable in 
the pico-Newton scale on an object of micro-scale size in a noncontact manner.7 Under a loosely focused laser beam 
with Gaussian distribution, the optical force pushes the object along the direction of the laser beam propagation, 
while horizontally pulls the object to the laser beam axis. The axial motion along the direction of the laser beam 
propagation can be restricted by using a tightly focused laser beam, which was used to manipulate a single particle 
or cell. For separation of multiple particles or cells, the fluid flow was imposed in the optical method. In the optical 
chromatography, a single loosely focused laser beam oppositely directed to the fluid flow was adopted.8, 9 The 
particles or cells moved with the fluid flow stop at the equilibrium position between the optical force and the viscous 
force. The optical force depends on the properties of the particle or cell such as the size, shape, refractive index and 
elastic properties. Hence, the particle or cell with different properties can be separated. In the cross-type optical 
separation (COPS),10-12 a single loosely focused laser beam is also used, but the direction of the laser beam 
propagation is perpendicular to the fluid flow. The particles or cells moving by the fluid flow pass through the 
illuminated region by the laser beam, and migrates in this region along the direction of the laser beam propagation. 
After escaping from the illuminated region, they again move with the fluid flow, retaining the lateral migration 
distance. Hence, the continuous separation of particles or cells is available in the COPS. 

The separation of spherical rigid particles with different properties in the COPS was studied numerically and 
experimentally.10-12 For simulation, the particle motion equation including the optical force term is solved. The 
optical force is calculated by the ray optics method, which is applicable for the object size larger than the wavelength 
of the laser beam.5, 10, 13-16 Spherical particles can be separated according to the size and the ratio of the refractive 
indices. An oblate particle was also considered in the COPS.17 Due to the shape, the optical force on the oblate 
particle was obtained by the dynamic ray tracing method using the ray-triangle intersection algorithm.18 The optical 
force term was included in the particle motion equation, and the penalty immersed boundary method (pIBM) 
developed by Huang et al.19 was used for the fluid-particle interaction. In a stationary fluid, the oblate particle rotates 
near the laser beam axis by the optically induced torque until the major semi-axis of the particle is aligned with the 
laser beam axis.20 During the rotation, the oblate particle is horizontally pulled or repelled according to the 
orientation of the major semi-axis. Such a horizontal optical force affects the migration distance in the COPS. 
Considering the oblate particle already aligned with the laser beam axis, the particle does not rotate during the whole 
movement. Hence, the migration distance of the oblate particle is increased as the aspect ratio increases. On the other 
hand, the migration distance is varied with the initial inclination angle due to the horizontal optical force induced by 
the rotation. When the direction of the horizontal optical force induced by the rotation is matched with the direction 
of the fluid flow, the effect of the inclination angle is enhanced. Hence, the rotation about the spanwise direction has 
to be suppressed for effective separation of oblate particles according to the aspect ratio. 

The migration of a spherical elastic capsule by the optical force in a uniform flow was also examined.5 During the 
migration of the capsule by the optical force, the capsule membrane is deformed by the optical force, and the 
deformed shape affects the lateral migration. To simulate the deformation of the capsule, the membrane motion 
equation is solved, and the pIBM was adopted for the fluid-membrane interaction. The results for different elastic 
properties, i.e. the surface Young’s modulus and the bending modulus, showed that the migration distance mainly 
depends on the surface Young’s modulus. The migration distance of the capsule is increased as the surface Young’s 
modulus increases. Although the bending modulus does not affect much the migration distance, the buckling 
occurring on the capsule with high surface Young’s modulus is suppressed by increasing the bending modulus. To 
the best of our knowledge, study on the non-spherical elastic capsule in the COPS has not been carried out so far, 
although the RBC among the blood cells is not spherical and deformable. For the elastic capsule, the optical force 
and the deformed shape are interacted with each other, and the deformed shape also affects the rotation. Hence, the 
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oblate and biconcave capsule may show different behaviors in the COPS, comparing with the spherical capsule and 
the oblate particle. 

In the present study, the migration of elastic capsules subjected to the optical force in a uniform flow is simulated. 
The effects of the elastic properties and the shapes on the migration distance are examined. To solve such system, 
the pIBM is adopted for solving the fluid-membrane interaction, and the dynamic ray tracing method is used to 
calculate the optical force. The obtained optical force is included in the membrane motion equation. First, the oblate 
capsule with b/a = 0.5 obeying the neo-Hookean (NH) constitutive law is simulated. Variations of the migration 
distance with the surface Young’s modulus and the initial inclination angle are examined. Next, the biconcave 
capsule obeying the Skalak (SK) constitutive law is considered to mimic the RBC. For comparison, the spherical and 
oblate capsules assumed as the SK membrane are also simulated, and variations of the migration distance with the 
initial inclination angle are presented. 

2. Problem formulation and numerical method 

2.1. Fluid-membrane interaction 

The optically induced migration of an elastic capsule in a uniform flow is studied as shown in Fig. 1. The capsule 
is assumed to be enclosed by a membrane without thickness, and the fluid-membrane interaction is implemented by 
the pIBM. In the framework of the pIBM, the governing equations for the fluid flow and the membrane motion are 
separately solved in different coordinates, and are coupled by an additional momentum forcing to enforce the no-slip 
condition on the solid boundary. 

 

 

Fig. 1. Schematic diagram of the elastic capsule subjected to the laser beam in a uniform flow. 

The fluid flow is governed by the Navier-Stokes and continuity equations in the Eulerian coordinates, which are 
expressed by 
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where 0 , u, p, μ, and f are the fluid density, the fluid velocity, pressure, viscosity, and Eulerian momentum forcing, 
respectively. The equation of the membrane motion defined in the moving Lagrangian coordinate system is 
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where , X, Sij, Bij, F, and Fo are the density difference between the solid and fluid, the position of the membrane, 
the second Piola-Kirchhoff stress tensor, the bending stress tensor, Lagrangian momentum forcing, and the optical 
force, respectively. 1 2,s s  denotes the moving curvilinear coordinates. Sij and Bij are derived by using the energy 
method.4 Sij for the NH and SK constitutive laws is expressed as, 
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where Es and Dij are the surface Young’s modulus and the Green strain tensor, and C is a constant related to the area 
dilation.  Bij is expressed by using the bending strain tensor Kij as follows, 

2

1 1 2 2 3 ,31 1 , , 1, 2 ,
i j

i j i j s i j
i j

B K K K i j
s s

X   (6) 

where γ and s are the bending coefficient and Poisson ratio, respectively. In the present study, s is simply set to 
zero.4 

In the pIBM, to couple the fluid flow and the solid motion, two kinds of the immersed boundaries are assumed, 
i.e. the massless and massive material points. Motions of the massless material points are computed from the 
interpolation of the Eulerian fluid velocity by using the smoothed Dirac delta function,21 while the motion of the 
massive material points are directly obtained by solving the equation of the solid motion. The two kinds of the 
immersed boundaries are linked closely by a stiff spring with damping, so they are moved together like a single 
massive structure. The restoring force on the Lagrangian immersed boundary is calculated by 

1 2, , ,ib ibs s t tF X X U U    (7) 

where κ and t denote a large coefficient and the computational time step, respectively. X and Xib denote the 
positions of the massive and massless material points, and the U and Uib are the corresponding velocities. The 
Lagrangian momentum forcing is spread on the Eulerian grids as follows, 
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where δ( ) is the smoothed Dirac delta function. Here, the four-point smoothed delta function is used in simulation.21 
For computation, the governing equations are non-dimensionalized by using the characteristic scales. The fluid 

density 0 , the far-field velocity U , and the minimum waist radius of the laser beam 0  are selected as the 
characteristic density, velocity, and length, respectively. After the non-dimensionalization, the governing equation 
takes the same forms, except that 0  is removed and μ is replaced by 1/Re in Eq. (1). The membrane is discretized 
by using the subdivision surface method.22 The governing equations for the fluid flow and the membrane motion are 
solved by the fractional step method23 and the subdivision finite element method,4 respectively. They are coupled by 
the pIBM.19 More details of the numerical method can be found in Hunag et al..4, 19 
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2.2. Calculation of the optical force 

The ray optics method is adopted for calculation of the optical force. In the ray optics method, the light from the 
laser beam is assumed as a bundle of rays with direction and momentum. Due to the difference in the refractive 
indices, some of the momentum with a ray is reflected and the rest is refracted. At the same time, the direction is 
also changed. The momentum change per unit time is defined as the optical force, which on each nodal point is 
expressed as 

,
g ,im
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i
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where i, nm, c, Q denote the index of surface elements, the refractive index of the outer fluid, the speed of the light, 
and the dimensionless momentum transfer, respectively. Pg is the incident laser beam power, which is defined as Pg,i 
= i e ,i iAI N , where A, Ne, and I are the area around nodal point, the surface normal direction of the element, and 
the Gaussian beam intensity, respectively. In the present study, a loosely focused laser beam with the Gaussian 
distribution is used, so the beam intensity has only a y- component, as expressed as 
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where P and df  are the laser beam power and the distance from the focal point to each nodal point, and ω is the 
waist radius of the laser beam. 

The dimensionless momentum transfer indicates the direction of the optical force, and is calculated using the 
direction vectors of the incident, refracted, and reflected rays, i.e. Q = (incident ray) – (reflected ray) – (refracted 
ray). The ray-triangle intersection algorithm is used for the dynamic ray tracing because the elastic capsule subjected 
to the laser beam is deformed.18 The incident ray from the laser beam firstly intersects the lower surface of the 
capsule, and then the refracted ray on the lower surface intersects the upper surface of the capsule. In the present 
study, the ratio of the refractive indices is not large, so only the refracted ray is traced.5, 13, 16 During the tracing of 
the refracted ray, Pg calculated at the first intersection element is consistently used. Details of the computational 
procedure can be found in the previous studies.5, 16 In the following paragraphs, the non-dimensional quantities are 
used by default, while the star superscript is marked on the dimensional ones to avoid confusion. 

3. Results and discussion 

The lateral migration of the elastic capsule by the optical force in a uniform is simulated. The equivalent radius 
defined by * *

eqr A is set to be 3.2μm for both the oblate capsule with b/a = 0.5 and the biconcave capsule, where 
A denotes the surface area of the capsule membrane, and it is non-dimensionalized by the minimum waist radius of 
the laser beam. The capsule is moved by the fluid flow with nm = 1.33 and Re = 0.01 based on *U = 625μm/s and *

0

= 1000kg/m3, and is subjected to the Gaussian laser beam with *
0 = 16μm, * = 1.064μm, and *P = 3.4W. The 

properties of the inner fluid of the capsule are the same as those of the outer fluid, except for the refractive index of 
the inner fluid np = 1.40. The capsule membrane is discretized using 8192 triangular elements. The elastic properties 
of the membrane is set similarly with those of the RBC.24, 25 The surface Young’s modulus and the bending rigidity 
are varied in the ranges of *

sE = 0.625 - 2.5×10-5 N/m and * = 3.2 - 4.0×10-19 Nm, respectively. To present the 
variation of the elastic properties, the capillary number and the reduced bending modulus are used, which are 
defined as C a sU E , and 2

e q sr E . The density difference of ρ = 0.1 is set in the simulations. 
The fluid domain has a size of 36req×76req×18req, and is discretized using 256×320×128 grids in the x-, y-, and z- 

directions. The uniform grids are distributed in the x- and z- directions, but the stretched grid is generated in the y- 
direction except for a 36req width near the center of the domain. The origin of the coordinates is located at the center 
of the domain in the x- and z- directions, and at a distance of 28req from the bottom of the domain in the y- direction. 
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For a uniform flow, , 0u U v w  is enforced at the inlet, top, and bottom of the domain. The convective 
boundary condition is adopted at the outlet of the domain, and the periodic boundary condition is applied in the z- 
direction. The laser beam axis is along the z- axis, and the capsule is initially released at x = -15req, y = 0, and z = 0. 
In the simulations, the computational time step t  = 0.00001 is used, and the free constant 82 .8 10  is set, which 
is large enough to assure the convergence of the solution. 

3.1. The oblate capsule with b/a = 0.5 in the COPS 

The oblate capsule with b/a = 0.5 obeying the NH constitutive law is first considered, and the effects of the 
elastic properties and the inclination angle on the migration distance are examined. The inclination angle θ is 
defined as the angle between the major semi-axis of the capsule and the positive x- axis in the x-y plane with z = 0, 
because the effect of the inclination is maximized when the capsule rotated about the z- axis (spanwise direction).17 
The major semi-axis of the non-inclined oblate capsule is parallel with the x-z plane. Since the migration distance of 
the elastic capsule is mainly dependent on the surface Young’s modulus,5 the bending coefficient is fixed in the 
present study. As the surface Young’s modulus increases, both the capillary number and the reduced bending 
modulus decrease. 

 

 

Fig. 2. Trajectories of the differently inclined oblate capsule with b/a = 0.5: (a) Ca = 0.1 and ζ = 0.005; (b) Ca = 0.025 and ζ = 0.00125. 

The trajectories of the oblate capsule with different Ca and ζ are shown in Fig. 2. Generally, the oblate capsule 
moved by the fluid flow is laterally migrated near the laser beam axis. After escaping from the illuminated region of 
the laser beam, the capsule again is moved following the fluid flow, retaining the lateral migration distance. The 
migration distance for each inclination angle is increased with the decrease of Ca and ζ, indicating that the more 
deformable capsule is less migrated by the optical force. For different initial inclination angles, it is shown that the 
initially inclined oblate capsules are similarly migrated, while the non-inclined case achieves a larger lateral 
migration distance. Such effect of the inclination angle is different with that on the particle case, where the 
migration distance of the positively (negatively) inclined oblate particle is increased (decreased) because the particle 
is decelerated (accelerated) by the horizontal optical force.17 

The variation of the migration distance by the initial inclination angle is caused by the deformation and the 
rotation of the capsule, which is shown by the instantaneous shape of the oblate capsule and the distribution of the 
optical force in Fig. 3. The optical force is along the surface normal direction and is calculated by 

2 2 2
, , , , , , , ,o i o x i o y i o z i iF F F F A    (11) 

which is non-dimensionalized by 2 2
0 0U . As shown in Fig. 3(c) and 3(d), the capsule is stretched along the 
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oblate capsule is rapidly aligned to the laser beam axis, and the horizontally acted optical force on the upper surface 
is diminished. Then the oblate capsule with θ = π/4 and -π/4 is moved like the θ = π/2 case, and they are similarly 
migrated as seen in Fig. 2. The oblate capsule with θ = π/2 is stretched along the major semi-axis, whereas the non-
inclined capsule is stretched along the minor semi-axis. Therefore, the extent of deformation becomes different, and 
the capsules are differently migrated. 
 

 

Fig. 3. Instantaneous shapes and optical force distributions of the oblate capsule with b/a = 0.5: (a) θ = 0; (b) θ = π/2; (c) θ = π/4; (d) θ = -π/4. 

 

 

Fig. 4. The deformation parameter of the oblate capsule with (a) Ca = 0.1, ζ = 0.005 and (b) Ca = 0.025, ζ = 0.00125, and the y- component 
optical force of the oblate capsule with (c) Ca = 0.1, ζ = 0.005 and (d) Ca = 0.025, ζ = 0.00125 as functions of the streamwise position. 

To examine the effect of the surface Young’s modulus on the capsule motion, variations of the deformation 
parameter and the y- component optical force with the streamwise position are shown in Fig. 4. The deformation 
parameter is defined as 
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which is non-dimensionalized by 2 2
0 0U . As shown in Fig. 4(a) and 4(b), the deformation parameter is largely 

varied for the high Ca and ζ. When the extent of deformation is reduced, the y- component optical force is increased. 
As shown in Fig. 4(c) and 4(d), all the y- component optical force except for the non-inclined case are similarly 
varied. Although the y- component optical force of the non-inclined capsule of the high Ca and ζ is larger than that 
of the small Ca and ζ, the optical force of the capsule of the high Ca and ζ is more consumed by deformation. Hence, 
the oblate capsule with higher surface Young’s modulus is more migrated. 

In summary, the results for the oblate capsule show that the stiffer capsule can be more migrated in the COPS. 
The variation of the initial inclination angle affects differently the trajectories of the oblate particle and capsule. The 
horizontal optical force induced by the inclination of the oblate capsule is diminished due to the capsule deformation. 
Furthermore, the extent of the deformation becomes different according to the initial inclination angle, which also 
causes the difference in the migration distance. In the simulation, the NH law is adopted for the capsule membrane, 
but the membrane of the RBC is typically assumed as the SK material. The RBC is usually modelled as a biconcave 
capsule, and the NH membrane is more elastic than the SK membrane, so different behaviors may be induced in the 
COPS. In the next subsection, the elastic capsule with various shapes obeying the SK constitutive law is considered, 
and effect of the membrane constitutive law is also presented. 

3.2. The RBC model in the COPS 

The behavior of the biconcave capsule obeying the SK constitutive law to mimic the RBC is examined. For 
comparison, the spherical capsule and the oblate capsule with b/a = 0.5 obeying the SK constitutive law are also 
included. In simulations, Ca = 0.03125 and ζ = 0.001953 are fixed. The constant related to the area dilation C is set 
to be 50, which results in a nearly area-incompressible membrane. The capsule is subjected to the laser beam with 

*P  = 2.66W. The computational time step t  = 0.000008 is used. Figure 5 shows the trajectories of the elastic 
capsule with different shapes. The spherical capsule is more migrated than other capsules, which was also observed 
for the spherical and oblate particles in the COPS.17 According to the initial inclination angle, different trends are 
shown for the oblate and biconcave capsules. As shown in Fig. 5(b), the biconcave capsule with different inclination 
angles is similarly migrated except for the non-inclined case having a smaller migration distance. On the other hand, 
all the oblate capsules are similarly migrated, which is different with those obeying the NH constitutive law as 
discussed above. 

 

 

Fig. 5. Trajectories of the differently inclined elastic capsules: (a) spherical and oblate capsules; (b) biconcave capsule. 

The behavior of the elastic capsules with different shape is clearly seen from the instantaneous shape and the 
optical force distribution in Fig. 6. As shown in Fig. 6(a)-(d), the major semi-axis of the oblate capsules except for 
the non-inclined case was aligned with the laser beam axis, and they are similarly migrated, which is the same as the 
NH membrane cases. Although the laser beam power in the simulation is reduced, the deformation of the capsule 
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with SK membrane is reduced mainly due to the strain hardening effect by the restriction of the area dilation. Hence, 
the initial shape of the non-inclined oblate capsule is almost preserved during the deformation. Since the migration 
distances of the oblate particle with θ = 0 and π/2 are similar,17 the migration distances of the oblate capsule with θ = 
0 and π/2 are also not much different, indicating that the stiff oblate capsule can similarly migrate regardless of the 
initial inclination angle. 

Unlike the oblate case, the dimples of the biconcave capsule affects significantly the migration distance. For the 
biconcave capsule initially aligned with the laser beam axis, the incident ray from the laser beam intersects with the 
capsule surface three or four times due to the presence of the dimple, during passing through the capsule. As a result, 
the biconcave capsule with θ = π/2 can be more migrated than the non-inclined case. As shown in Fig. 6(e)-(h), 
although the initially inclined biconcave capsules except for θ = π/2 case are not exactly aligned with the laser beam 
axis, the capsules are sufficiently rotated near the laser beam axis. Hence, the biconcave capsules can be similarly 
migrated, except for the non-inclined case having a smaller migration distance. 

The above results for the elastic capsules with different shapes show that the spherical shape is beneficial for the 
lateral migration in the COPS. The effect of the initial inclination angle on the migration distance is different 
according to the shape of the capsule. Unlike the oblate capsule, the biconcave capsule aligned with the laser beam 
axis can be more migrated than the non-inclined case. The migration distance of the oblate capsule obeying the NH 
or SK constitutive law show different trends for different initial inclination angles because the SK membrane is 
relatively stiffer than the NH membrane. 

 

 

Fig. 6. Instantaneous shapes and optical force distribution of (a)-(d) the oblate capsule with b/a = 0.5 and (e)-(h) biconcave capsule. 

4. Conclusions 

In the present study, the lateral migration of the elastic capsules in the COPS was numerically investigated. To 
simulate such system, the pIBM for the fluid-membrane interaction was adopted, and the optical force was obtained 
by the dynamic ray tracing method. First, the oblate capsule with b/a = 0.5 obeying the NH constitutive law was 
considered. The effects of the surface Young’s modulus and the initial inclination angle on the migration distance 
were presented. The results showed that the oblate capsule with higher surface Young’s modulus was more migrated. 
The differently inclined oblate capsule was similarly migrated, except for the initially non-inclined case having a 
higher migration distance. Next, the behavior of the elastic capsule with different shapes obeying the SK constitutive 
law was examined. It was shown that the migration of the spherical capsule was the largest. Since the biconcave 
capsule aligned with the laser beam axis received more momentum from the laser beam than the non-inclined case, 
the migration distance of the initially non-inclined biconcave capsule was smaller than the differently inclined ones. 
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