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One of the features of primate immunodeficiency viruses (HIVs and SIVs) that distinguishes them from other
retroviruses is the array of ‘‘accessory’’ proteins they encode. Here, we discuss recent advances in under-
standing the interactions of the HIV-1 Nef, Vif, Vpu, and Vpr proteins with factors and pathways expressed
in cells of the immune system. In at least three instances, the principal activity of the accessory proteins
appears to be evasion from various forms of cell-mediated (or intrinsic), antiviral resistance. Broadly speaking,
the HIV-1 accessory proteins modify the local environment within infected cells to ensure viral persistence,
replication, dissemination, and transmission.
Introduction
The retrovirus that causes AIDS, human immunodeficiency virus

type-1 (HIV-1), not only persists by populating sanctuary sites

throughout the body but also employs multiple genetic strate-

gies that, together, contribute to lifelong infection after success-

ful transmission. First, by irreversibly integrating its viral DNA into

the host cell genome to establish the provirus, HIV-1 safeguards

its survival for the lifetime of the infected cell. Second, viral se-

quence diversification during spreading infection allows the virus

to escape or tolerate adaptive immune responses. And, third,

despite its compact genome comprising just nine genes, four

of these (nef, vif, vpu, and vpr) now appear to be dedicated to

various aspects of evasion from (and manipulation of) adaptive

and innate immunity. Indeed, as has been recognized for other

viruses (e.g., poxviruses and herpes viruses), these viral immu-

nomodulatory genes are frequently seen as dispensable in

many in vitro cell culture systems—leading to their loss during

long-term propagation—yet are strongly maintained in the con-

text of natural infections in vivo.

The reliance of HIV-1 upon numerous cellular host factors for

nearly every step of viral replication is well appreciated (Brass

et al., 2008; Swanson and Malim, 2008). In many cases, the roles

of viral proteins are to recruit already assembled cellular machin-

ery to perform essential roles in the virus life cycle. For example,

one of the Gag proteins, p6, interacts with ESCRT complexes

during virus assembly to facilitate viral budding, and the Rev pro-

tein recruits nuclear export factors to allow the nucleocytoplas-

mic transport of unspliced viral RNA. In contrast, a more recently

appreciated phenomenon is the role of HIV-1 proteins in antag-

onizing host proteins that have evolved to defend against retro-

viral infections via diverse, cell-autonomous mechanisms: these

have variously been called either intrinsic immunity factors or re-

striction factors. Here, we review how the Vif and Vpu (and prob-

ably Vpr) proteins each suppress the antiviral activity of specific

restriction factors, whereas the multifunctional Nef protein con-
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tributes, inter alia, to partial evasion from adaptive, cell-mediated

immunity. In addition to describing recent advances in our mech-

anistic understanding of these host-pathogen interactions, we

will speculate on the importance of maintaining a balance be-

tween host and viral functions, discuss potential implications

for viral zoonoses, and highlight some important questions for

the future.

Proteasome-Mediated Degradation: A Frequent

Viral Target

A recurring theme throughout this review is the use of protein

degradation, and in particular cullin-RING finger ubiquitin ligases

(Petroski and Deshaies, 2005), to avert the action of host proteins

that interfere with HIV-1 replication. More specifically, Vif, Vpu,

and Vpr all link to members of this superfamily of modular ubiq-

uitin ligases to induce the polyubiquitylation and proteasomal

degradation of their cellular targets (Table 1). At the heart of

each cullin-RING ubiquitin ligase is a cullin—of which there are

seven in vertebrates—that serves as a central scaffold. The C-

terminal region of cullins binds an Rbx/Roc RING finger protein

and recruits an E2 conjugating enzyme to form the catalytic

core of the enzyme. The N terminus binds to an adaptor protein

(e.g., Skp1), which, in turn, recruits a further subunit that func-

tions as the receptor for substrate binding (e.g., b-TrCP). As sub-

strates (e.g., Vpu) engage their receptors, they are brought into

the proximity of the E2 subunit such that they and/or additional

interacting proteins (e.g., CD4, the cell surface receptor for

HIV-1) are ubiquitylated by a poorly understood process that

also involves the cullin-RING finger region. By mixing and match-

ing the wide variety of different ligase subunits, it is easy to see

how one regulatory pathway (ubiquitylation and degradation)

can be coupled to a tremendous diversity of protein interaction

sites. This feature has been exploited by (at least) three HIV-1 ac-

cessory proteins to ensure that an otherwise hostile intracellular

environment becomes conducive to effective viral replication

and spread.
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Figure 1. HIV-1 Nef and Vpu Regulate the Surface Expression and Localization of Host Cell Membrane Proteins
The effects of Nef on MHC class I are specific for HLA-A/B; the -C/E allotypes are not affected as their presence on the cell surface is important for protection from
NK-mediated killing. ER, endoplasmic reticulum; IS, immunological synapse; APC, antigen presenting cell.
Modulation of Host Cell Surface Molecules: Nef and Vpu

Cell surface interactions are crucial for the life cycle and survival

of any intracellular parasite. In the case of HIV-1, the virus enters

target cells at their surface using the entry receptor CD4, and the

coreceptors CCR5 or CXCR4 and newly synthesized viral parti-

cles bud from and are released from the surface of infected cells.

However, the cell surface is also where the adaptive immune

response recognizes virally infected cells in the context of viral

epitopes presented by major histocompatibility class I com-

plexes (MHC class I). Thus, viral accessory proteins that modu-

late the cell surface both aid certain virus replication steps that

occur there, and also help the virus evade immune recognition.

Such is the case for the Nef and Vpu proteins of HIV-1, which

regulate the activity, localization, and abundance of surface

membrane proteins in ways that profoundly influence viral repli-

cation, dissemination, and persistence.

Nef is a �27 kD myristoylated protein that is associated with

the cytoplasmic face of cellular membranes. It is one of the first

viral proteins to be expressed following infection, implying

perhaps that it plays an important role in helping set the tempo

or magnitude of infectious virus propagation. Despite its seem-

ingly erroneous name (negative factor), the importance of

Nef as a critical determinant of pathogenicity has been estab-

lished through the observed long-term survival of humans or

rhesus macaques infected with HIV-1 or SIV (simian immuno-

deficiency virus) strains lacking intact nef genes (Deacon

et al., 1995), a view that is further supported by recent work

indicating that Nef may help dictate pathogenic outcome in

natural infections of different species of primates (Schindler

et al., 2006).
The intracellular trafficking of a number of cell surface proteins

of helper T cells and macrophages (the targets of HIV-1 infection)

with central roles in immunity and the virus life cycle is regulated

by Nef (Roeth and Collins, 2006). Prominent among these is CD4,

the primary entry receptor for this virus. It has long been known

that the endocytosis of CD4 from the surface of infected cells is

accelerated in response to Nef. This occurs through the interac-

tion of Nef with the cytoplasmic tail of CD4, the recruitment of

AP2 (clathrin adaptor protein complex 2), internalization through

clathrin coated pits, and subsequent transport to endosomes

and then lysozomes for degradation (Figure 1) (Chaudhuri

et al., 2007). The involvement of a number of other participants

in vesicular trafficking has been documented (Roeth and Collins,

2006), but a complete understanding of their respective roles in

CD4 regulation is awaited.

Importantly, HIV-1 also employs another accessory protein,

Vpu, to reduce the surface expression of CD4 (Figure 1) (a sec-

ond major activity of Vpu is discussed in the following section).

Vpu is an 81 amino acid dimeric integral membrane protein

that induces the turnover of CD4 by recruiting a cullin1-Skp1

ubiquitin ligase complex to the cytoplasmic tail of CD4 (Table 1)

(Margottin et al., 1998). Like Nef, Vpu interacts with the cytoplas-

mic tail of CD4, but in this case the interaction is with CD4 that

has been retained in the endoplasmic reticulum (ER) by binding

to the nascently synthesized viral Env glycoprotein, gp160, that

would otherwise traffic to the cell surface for incorporation into

assembling virus particles. As noted above, Vpu also binds to

the Skp1-binding receptor protein, b-TrCP, thereby connecting

the ligase complex to the cytoplasmic tail of CD4 and triggering

polyubiquitylation and proteasomal degradation. The mechanism
Cell Host & Microbe 3, June 2008 ª2008 Elsevier Inc. 389
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Table 1. HIV-1 Accessory Proteins Recruit Cullin-RING Finger Ubiquitin Ligases to Eliminate Host Cell Proteins that Impede

Replication

Accessory Protein Cellular Substrate(s) Receptor Protein Adaptor Protein(s) Cullin Scaffold Benefit to Virus

Vif APOBEC3G;

APOBEC3F

none elongin B/C cullin5 protection from APOBEC-mediated

inhibition and G-to-A hypermutation

Vpu CD4 b-TrCP Skp1 cullin1 efficient release of virus particles

from infected cells

Vpr (and Vpx) unknown DCAF1(VprBP) DDB1 cullin4A G2/M arrest; suppression of

postentry ‘‘restriction’’
for extracting CD4 from the ER membrane is not yet fully under-

stood, with evidence for and against a dependence upon ER-as-

sociated protein degradation (ERAD) components having been

described (Binette et al., 2007; Meusser and Sommer, 2004). Ul-

timately, because two different HIV-1 accessory proteins con-

tribute to the downregulation of CD4 from the cell surface, it is

logical to infer that this must be important for viral propagation:

for instance, cultured cell assays where surface interactions be-

tween CD4 and Env have been prevented show enhancements

in virus release and Env incorporation (Lama et al., 1999; Ross

et al., 1999). Consistent with this, experimental challenges of

rhesus macaques with SIV carrying nef mutations that prevent

Nef-AP2 interactions result in less virulent infections with lower

viral loads (Brenner et al., 2006). However, these effects are dif-

ficult to assign to specific molecular defects, as other attributes

of Nef such as effects on other cell surface proteins and/or viral

infectivity (see below) were also influenced by these mutations.

MHC class I and specifically the HLA-A and -B allotypes, are

also downregulated from the surface of HIV-1 infected cells by

Nef (Roeth and Collins, 2006). Two alternative mechanisms

have been proposed for this (Figure 1): first, Nef interacts with

the cytoplasmic tail of HLA-A/B and recruits AP1 complexes to

mis-route MHC class I from the trans-Golgi network to endo-

somes (rather than to the cell surface) (Lubben et al., 2007; Nov-

iello et al., 2008; Roeth et al., 2004); or, second, Nef assembles

a multicomponent Src-family kinase containing cascade to in-

duce the endocytosis of MHC class I from the cell surface (Atkins

et al., 2008). Irrespective of the precise mechanism, it seems

plausible that it would be a selective advantage for the virus to

suppress MHC class I function in order to blunt cytotoxic T cell

(CTL) recognition of infected cells. This is supported by data

from the rhesus macaque/SIV model showing that mutations in

nef that prevent (solely) MHC class I downregulation are associ-

ated with heightened SIV-specific CTL responses or by muta-

tions in nef that restore downregulation (Swigut et al., 2004).

However, paradoxically, HIV-1 and SIV mutations driven by es-

cape from CTL recognition are well described in the HIV-1 liter-

ature (Goulder and Watkins, 2004), implying that the presenta-

tion of viral epitopes by MHC class I continues throughout the

course of infection. Thus, although the ability of Nef to down-

regulate MHC class I is well conserved during natural infection

and across multiple lineages of primate lentiviruses (Lewis

et al., 2008; Specht et al., 2008), in reality this effect can only

be partial in vivo, thus making mutation-assisted escape from

CTL recognition a critical driver of immune evasion.

A third cell surface complex that has emerged as a target for

Nef regulation is the T cell receptor (TCR-CD3). TCR-CD3 is

a critical component of the ‘‘immunological synapse’’ that forms
390 Cell Host & Microbe 3, June 2008 ª2008 Elsevier Inc.
between antigen-presenting cells (APCs) and T cells for antigen

recognition and sustained T cell activation. In mixed cell culture

systems in which antigen-pulsed APCs contact HIV-1 infected T

cells and form immunological synapses, the endocytosis of

TCR-CD3 from the cell surface and its transport through recy-

cling endosomes were retarded by Nef (Thoulouze et al.,

2006). This results not only in reduced clustering of TCR-CD3

at the immunological synapse, but also in inefficient synapse for-

mation (Figure 1). Comparatively less is known about the molec-

ular interactions that govern TCR-CD3 regulation by Nef, though

Nef has been shown to: interact with the z chain of CD3 (Howe

et al., 1998); induce the accumulation of Lck, a kinase important

for sustained signaling from the immunological synapse, in the

recycling endosome (Thoulouze et al., 2006); and inhibit the

activity of N-WASP, a positive regulator of actin polymerization

and critical mediator of T cell activation (Haller et al., 2006).

It has been proposed that differences in the capacity of Nef

proteins from different primate lentiviruses (which comprise

HIV-1, HIV-2, and many SIVs) to downregulate TCR-CD3 may

play a central role in dictating pathogenic outcome (Schindler

et al., 2006). The SIVs are generally not pathogenic in their natu-

ral hosts, but, like HIV-1 in humans, can be pathogenic when

transferred to a novel host species. Indeed, for the majority of

SIV/HIV Nef proteins tested, the capacity to downregulate

TCR-CD3 in human T cells correlated with a lack of both T cell

activation and pathogenicity during infection of the natural host

with the corresponding virus. For instance, Nef proteins derived

from nonpathogenic SIVs such as the virus found in African

green monkeys (SIV-AGM) are very effective at removing TCR-

CD3 from the cell surface. In contrast, the action of HIV-1 Nef ap-

pears to be more subtle: while it appears to negatively regulate

the movement of TCR-CD3 to the synapse (Figure 1), it does

not inhibit the overall cell surface expression of TCR-CD3. By

perturbing TCR-CD3 trafficking in this manner, the capacity of

T cells to respond to activation cues from APCs is diminished

(Thoulouze et al., 2006). Why would dampening T cell activation,

a process that stimulates virus replication, be advantageous for

the virus? One possibility is that by extending the survival of in-

fected cells, and perhaps inhibiting homeostatic processes

such as apoptosis (Geleziunas et al., 2001), Nef may balance T

cell activation to limit the deleterious effects of infection on

host immunity, while helping ensure prolonged (albeit less ram-

pant) viral production and long-term persistence. Nonetheless,

it should be pointed out that either through differences in exper-

imental systems, or perhaps variations in the phenotypes of dif-

ferent HIV-1 nef alleles, some apparently conflicting ideas re-

garding the functional consequences (impaired or enhanced T

cell activation) (Fenard et al., 2005; Haller et al., 2006; Thoulouze
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Figure 2. Vif, Vpu, and Vpr Inhibit Host Cell Restriction Factors to Promote Efficient Virus Replication
The inset depicts the genomic organization of HIV-1 and highlights the presence of accessory genes.
et al., 2006) of the influence of Nef on TCR-CD3 remain. In addi-

tion, a positive correlation between Nef and a significant defect in

T cell responses to viral epitopes presented by APCs in vivo re-

mains to be demonstrated.

In addition to Env/CD4-associated effects that modulate HIV-

1 infectivity, Nef further enhances HIV-1 infectivity by facilitating

viral core penetration of the cortical actin network during the ini-

tial phases of infection. Recent new insight into this enigmatic

phenotype comes from the finding that dynamin 2, a GTPase

that is required for clathrin-mediated endocytosis, interacts

with Nef and is essential for Nef’s effect on infectivity (Figure 1)

(Pizzato et al., 2007). While the molecular basis for this is ob-

scure, it has been suggested that the recruitment of dynamin 2

by Nef to certain membranes, and perhaps sites of viral assem-

bly and budding, may manipulate the local composition of such

membranes and, hence, of progeny virus particles themselves

(Pizzato et al., 2007). Taken together, it is evident that Nef

manipulates the composition of the infected cell surface in a

variety of ways that may benefit viral propagation. Major chal-

lenges for the future include defining which of these (as well as

other) demonstrable—and in some cases seemingly oppos-

ing—phenotypes are important in the context of natural infec-

tion, and determining how they integrate with each other with

respect to various pathogenic outcomes, immune evasion, and

viral replication.

Modulation of Antiviral Activities at the Cell Surface: Vpu

Type 1 interferons induce a large number of host genes with

diverse antiviral functions. The effects of such activities on HIV-1

include the inhibition of late stages of replication and, in the case
of interferon-a, the dramatic attachment of fully assembled HIV-1

particles to the surface of infected cells (Neil et al., 2007). Experi-

mentally, particles retained in this manner can be liberated by

adding a protease, suggesting that a protein linkage ‘‘tethers’’

them to the cell surface (Neil et al., 2006). Significantly, this restric-

tion to the release of viruses that have completed membrane

fission can be completely overcome by the HIV-1 Vpu protein

(Figure 2).

The influence of Vpu is cell-type specific: some cells require

Vpu for virus release, while others do not. By employing classical

cell fusions between cells in which efficient release is Vpu depen-

dent or Vpu independent, it was shown that the Vpu-depen-

dency phenotype is dominant, indicating that such cells express

Vpu-sensitive cellular factor(s) that prevent HIV-1 release (Var-

thakavi et al., 2003). The interferon-induced restriction factor

that prevents retrovirus release from the plasma membrane,

and is counteracted by Vpu, was recently identified (Neil et al.,

2008; Van Damme et al., 2008) as a cellular protein of previously

unknown function called B cell stromal factor 2 (BST-2) or

CD317: it has also been called ‘‘tetherin’’ to reflect its antiviral

activity (Neil et al., 2008).

Tetherin is a heavily glycosylated membrane protein that is

anchored to lipid bilayers both by an N-terminal transmembrane

region, and by a C-terminal glycosylphosphatidylinositol (GPI)

linker; thus, its N terminus is predicted to be cytosolic with the

remainder of the protein positioned on the outside of the

membrane (Kupzig et al., 2003). Its cellular localization is also

known to be highly dynamic, with a plasma membrane pool

that is associated with lipid rafts but continuously internalized
Cell Host & Microbe 3, June 2008 ª2008 Elsevier Inc. 391
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to the trans-Golgi network (Rollason et al., 2007). Viral particles

made in the absence of Vpu in tetherin-expressing cells still

form at the plasma membrane with similar kinetics as virions

made in the presence of Vpu. However, the failure of these par-

ticles to be released results not only in their striking accumulation

at the exterior of the cell, but also in subsequent transport to

endosomes (Neil et al., 2006).

It is not yet clear how tetherin prevents virus release; however,

the mechanism must be relatively nonspecific since tetherin

affects the release of very distinct classes of virus. For example,

tetherin blocks the release of diverse retroviruses as well as

Ebola virus-like particles (Gottlinger et al., 1993; Neil et al.,

2007), and it is likely that it affects the Kaposi’s sarcoma-asso-

ciated herpesvirus (KSHV) since this virus encodes a protein,

K5, that induces the degradation of tetherin (Bartee et al.,

2006). It therefore seems unlikely that there is specific recogni-

tion between tetherin and viral structural proteins. One espe-

cially intriguing hypothesis derives from the notion that tetherin

serves to link cholesterol-rich lipid rafts together on the plasma

membrane (Kupzig et al., 2003): Accordingly, since many envel-

oped viruses, and HIV-1 in particular, are known to accumulate

and bud from lipid raft-rich regions of the plasma membrane,

tetherin may form connections between lipid rafts on plasma

and viral membranes and thereby physically prevent virus

egress.

It is also not yet evident how Vpu counteracts tetherin function.

Given that Vpu induces the proteasomal degradation of CD4 and

the KSHV K5 protein is a RING-type ubiquitin ligase, it made

sense that Vpu might also target tetherin for degradation. How-

ever, although overexpressed Vpu has been reported to reduce

tetherin expression levels (Bartee et al., 2006), the physiological

pertinence of this remains questionable since similar effects

have not been observed in the context of HIV-1 infection (Neil

et al., 2008). Moreover, the CD4 degradation function of Vpu (de-

scribed above) is dispensable for the ability of Vpu to enhance

virus release (Schubert et al., 1996). What currently seems more

likely is that Vpu either interferes with tetherin function directly

and/or alters the trafficking of tetherin between different cytoplas-

mic sites. By colocalizing closely with tetherin at various cellular

membranes (Neil et al., 2008; Van Damme et al., 2008), Vpu ap-

pears to be appropriately placed to interact with tetherin (either

directly or indirectly) and influence activity or localization. In keep-

ing with the second possibility, Vpu significantly reduces the sur-

face expression of tetherin (Van Damme et al., 2008) as well as its

colocalization with the HIV-1 Gag protein (Neil et al., 2008), and

disruption of protein sorting through early/recycling endosomes

has been shown to prevent Vpu-induced virus release (Varthakavi

et al., 2006). Thus, Vpu can be considered to be somewhat anal-

ogous to Nef in that it may modulate the subcellular compartmen-

talization of a host membrane protein to help promote viral dis-

semination and replication. Important next steps in this area are

to elucidate tetherin function in molecular terms, determine

whether Vpu influences this directly, and identify the trafficking

pathways and connecting factors that underlie the ability of Vpu

to overcome tetherin. It will also be interesting to see if the capac-

ity of Vpu function as an ion channel (a ‘‘viroporin’’) is important for

the suppression of tetherin since a number of other viruses also

encode viroporins that play roles in virus release and/or protein

trafficking (Gonzalez and Carrasco, 2003).
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Since tetherin is induced by interferon-a, it is almost certainly

part of a broad antiviral defense system that retains budding vi-

ruses on the surfaces of cells. Such a system might play a direct

role in increasing the likelihood that viral antigens will be better

presented to the adaptive immune system, or its existence

may reflect an evolutionary selection to prevent long-range virus

transmission between hosts (although under certain experimen-

tal selective pressures, retention of virus particles on the cell sur-

face actually increases cell-to-cell transmission [Gummuluru

et al., 2000]). Thus, one might anticipate that the ability of HIV-1

Vpu to counteract tetherin is not unique: indeed, as well as the

KHSV K5 protein described above, the HIV-2 Env protein also

stimulates virus release (Bour and Strebel, 1996). In addition,

because cells from AGMs encode an interferon-inducible factor

(presumably the AGM version of tetherin) that is effective against

HIV-1, yet is not overcome by Vpu (Neil et al., 2007), it is most

likely that this form of cell-mediated viral inhibition is an ancient

one and that the evolution of Vpu is one of the critical factors that

allowed the SIVs that are direct ancestors of HIV-1 to become

established in chimpanzees and gorillas, and then, ultimately,

in humans.

Inhibition of Cytoplasmic Defenses: Vif

The HIV-1 Vif protein (virion infectivity factor) is 192 amino acid

cytoplasmic protein whose essential role in replication in primary

T cells and during natural infection has long been established.

Though certain cultured cell lines are able to support growth of

vif-deficient viruses, cell fusion experiments indicated that

such cells lack expression of inhibitory factor(s) that naturally

block viral replication when Vif is absent. By comparing mRNA

expression profiles in cells where Vif is, or is not, required for

HIV-1 replication, the human gene APOBEC3G (A3G) was iden-

tified as being fully sufficient to prevent productive infection in

the absence of Vif (Sheehy et al., 2002).

The rather cumbersome name for this protein, apolipoprotein B

mRNA-editing enzyme catalytic polypeptide-like 3G, provided an

immediate clue regarding the possible mechanism for viral

suppression. Specifically, A3G is a member of the APOBEC fam-

ily of editing enzymes, many of which can mutate polynucleotides

by deaminating cytidine (C) to uridine (U) (Conticello et al., 2005;

Harris and Liddament, 2004; Holmes et al., 2007b). Indeed, in the

absence of Vif, newly synthesized A3G is packaged into budding

viral particles through a combination of A3G-RNA and A3G-Gag

interactions (Bogerd and Cullen, 2008; Soros et al., 2007) and

consequently carried forward to newly infected cells where it de-

aminates C residues to U residues in nascent minus (first) strand

reverse transcripts (Conticello et al., 2005; Harris and Liddament,

2004; Holmes et al., 2007b). Should these changes become

fixed, they register as guanosine (G)-to-adenosine (A) transitions

in plus strand sequence: since �10% of G residues can be mu-

tated, this phenomenon is called G-to-A hypermutation and, by

itself, is sufficient to stop further viral spread through the gross

loss of genetic integrity (a form of error catastrophe). Indeed,

evidence from examining the fossil record of endogenous retro-

viruses in the genome of mice and humans indicates that some

‘‘ancient’’ retroviral infections were inactivated by APOBEC3-

mediated mutations (Esnault et al., 2005; Jern et al., 2007; Y.N.

Lee, M.H.M., and P.D. Bieniasz, unpublished data).

In the majority of wild-type viral infections, Vif effectively an-

tagonizes the antiviral effects of A3G through the recruitment
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of a cullin-RING ubiquitin ligase and the induction of polyubiqui-

tylation (of A3G and Vif itself) and degradation (Table 1; Figure 2)

(Mehle et al., 2004; Yu et al., 2003). In the case of A3G, Vif simul-

taneously binds to a specific region of A3G centered around an

aspartic acid residue at position 128, as well as to the elonginC

and cullin5 components of the cullin5-elonginB/C complex, via

its BC box (a peptide motif that binds elonginB/C) and a zinc co-

ordinating motif, respectively (Huthoff and Malim, 2007; Mehle

et al., 2006; Yu et al., 2004). By eliminating A3G from virus-pro-

ducing cells, and perhaps by impeding packaging via a more

direct mechanism, Vif therefore allows progeny particles to be

produced that are free of A3G. Interestingly, phosphorylation

of a conserved serine in Vif’s BC box inhibits binding to elonginC

(Mehle et al., 2004), suggesting that the degradation of A3G in in-

fected cells may also be regulated by signaling pathways that

have yet to be explored in detail.

Like aspects of Nef biology described above (Schindler et al.,

2006), Vif function is also species specific. Vif proteins from HIVs

and SIVs whose ancestors have established infections in

humans efficiently inhibit human-A3G, whereas Vifs from SIVs

whose ancestors have not been transmitted to humans do not

(Gaddis et al., 2004). For A3G, the molecular basis for specificity

corresponds to Vif binding (Holmes et al., 2007b). For example,

HIV-1 Vif binds human-A3G but not A3G from AGMs; conversely,

SIV-AGM Vif binds AGM-A3G but not human A3G. Thus, the abil-

ity to overcome the APOBEC proteins of a recipient species cor-

relates with transmission potential, thus marking Vif as an impor-

tant determinant of lentivirus transmission. Importantly, A3G is

only one of a set of seven cytidine deaminase genes encoded

by a locus on human chromosome 22 (APOBEC3A-H), and the

anti-HIV-1 phenotypes of these other APOBEC proteins have

been extensively cataloged using cultured cell assays (Holmes

et al., 2007b). In sum, A3G has the most potent inhibitory effect

and A3F is also very active, while A3B is much less so. Of these,

A3B is not regulated by Vif and is barely expressed in T cells,

which suggests a lack of relevance in vivo for HIV-1 infections.

A3F, like A3G, is also linked to the cullin5-elonginB/C ligase by

Vif and correspondingly degraded (Table 1) (Liu et al., 2005). In-

terestingly, mutations have been described in Vif that segregate

the ability to downregulate A3G versus A3F (Russell and Pathak,

2007; Simon et al., 2005; Tian et al., 2006), implying that the

adaptation of HIV-1 to humans necessitated that Vif maintain at

least two distinguishable APOBEC3 binding interfaces.

Though A3G and A3F are each suppressed by Vif, there is

persuasive evidence to support their functional interaction with

HIV-1 during natural infections. Specifically, analyses of HIV-1

sequences from infected persons frequently reveal subsets of

sequences that are distinguished by excessive G-to-A hypermu-

tation (Janini et al., 2001). The local nucleotide sequence prefer-

ences for such mutations have been calculated and match those

determined for A3G (predominantly) and A3F in transfection-

based experiments (Holmes et al., 2007b), suggesting that these

APOBEC proteins are the most significant for driving HIV-1 hy-

permutation in vivo. Presumably, such sequences arise when

A3G/F occasionally escape Vif-mediated inhibition and become

encapsidated into viral particles.

Hypermutation, while clearly central to the profound impact of

A3G on HIV-1 infection, is not the only mechanism through which

antiviral effects are exerted. First, and noted originally by exam-
ining deaminase-deficient proteins, infectivity can be reduced in

the absence of DNA editing (Newman et al., 2005). While not yet

entirely explained at the molecular level, these effects are asso-

ciated with diminished reverse transcription (Holmes et al.,

2007a; Iwatani et al., 2007; Mbisa et al., 2007). Second, and per-

haps mechanistically related, A3G residing in target cells (i.e., not

present in virions) has been reported to impede the synthesis of

viral DNA by incoming viral particles in quiescent T cells without

inducing hypermutation (Chiu et al., 2005). However, the relative

contributions of deamination-dependent versus -independent

effects of the APOBEC3 proteins during physiologic infections

remains unresolved and may well differ among different family

members (Holmes et al., 2007a; Miyagi et al., 2007; Schumacher

et al., 2008). A further area of uncertainty is the fate of the uridines

generated by deamination: it had been proposed that U residues

would be recognized by cellular DNA repair enzymes, perhaps

initiating viral DNA degradation, but the inhibition of such en-

zymes neither ameliorates the A3G antiviral phenotype nor pro-

motes the accumulation of viral DNA (Kaiser and Emerman,

2006; Langlois and Neuberger, 2008).

Different retroviruses have adopted different strategies to

evade suppression by APOBEC proteins. Human T cell leukemia

virus type 1, like HIV-1, replicates in CD4 T cells but averts signif-

icant inhibition by not packaging A3G into virions through the ac-

tion of sequences in the nucleocapsid (NC) region of Gag, thus

avoiding the need for a Vif-like factor (Derse et al., 2007). In con-

trast, the HIVs and SIVs have adopted the more elaborate tactic

of acquiring an additional regulatory protein, namely Vif. Be-

cause a regulatory interaction has the potential to be variable

in its extent, sporadic partial inhibition of A3G/F by Vif (e.g.,

through variation in either A3G/F expression or Vif sequences

[Simon et al., 2005]) may allow sufficient levels of these proteins

to survive and confer low levels of editing. Rather than being det-

rimental for the virus in the way that hypermutation is, this has the

potential to afford the virus an additional mechanism for promot-

ing beneficial sequence diversification that could, for instance,

facilitate escape from adaptive immunity or help drive pheno-

typic changes in the virus: indeed, detailed analyses of recently

transmitted viruses indicate that A3G/F can contribute to single-

nucleotide sequence variation (Keele et al., 2008). Population

level studies of HIV-1 infected cohorts also support the notion

that the balance between APOBEC proteins and their downregu-

lation by Vif is dynamic and subject to variation: specifically,

there is evidence that genetic polymorphisms in A3G or cullin5

are associated with differences in the rates of disease progres-

sion (An et al., 2007).

As potential DNA mutagens, especially those that accumulate

in the nucleus (A3A, A3B, and A3C), it seems intuitive that APO-

BEC3 protein function would be negatively regulated in some

manner in the absence of viral infection to protect against dele-

terious mutation of cellular genomic DNA. Conversely, some

level of constitutive expression may be necessary to control

the movement of the many endogenous retroviruses and retro-

transposons (LTR and non-LTR types such as LINE-1 and Alu el-

ements) that have been shown to be inhibited to various degrees

(and in different ways) by many APOBEC3 proteins (Esnault

et al., 2005; Holmes et al., 2007b). Such questions of fine-tuning

are starting to receive attention: enzymatic measurements have

shown that T cells tightly control A3G mediated deamination
Cell Host & Microbe 3, June 2008 ª2008 Elsevier Inc. 393
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(Thielen et al., 2007), and biochemical analyses have shown that

the association of A3G with an array of cytoplasmic ribonucleo-

protein complexes that localize to important sites of RNA func-

tion, storage, and metabolism can also modulate enzymatic ac-

tivity (Chiu et al., 2005, 2006; Gallois-Montbrun et al., 2007;

Kozak et al., 2006; Wichroski et al., 2006). Among A3G’s (and

A3F’s) interactions with cellular proteins, those with the Argo-

naute proteins, the effector components of RNA-induced silenc-

ing complexes, are notable (Gallois-Montbrun et al., 2007, 2008;

Wichroski et al., 2006). Whether APOBEC proteins are therefore

able to modulate RNA silencing pathways and translational reg-

ulation (Huang et al., 2007), and what possible connections there

may be to cellular function and/or HIV-1 replication, remains

largely unexplored (readers should refer to the accompanying

Review by Gottwein and Cullen on page 375 that discusses

interactions between viruses, microRNAs, and RNA silencing).

Primates have a total of eleven APOBEC genes, yet birds and

fish have only two each, which suggests that evolutionary pres-

sures have driven the expansion of this gene family (Conticello

et al., 2005; Harris and Liddament, 2004). Moreover, compari-

sons among the A3G sequences of a large panel of diverse pri-

mates revealed that these genes have been subject to nearly

constant severe positive selection throughout the past 33 million

years of primate evolution (Sawyer et al., 2004) and comparison

of the entire cluster of APOBEC3 genes indicates that most of

them have rapidly evolved since human-chimpanzee speciation

(Sawyer et al., 2004). What could have applied such pressures?

Since many retroviruses and retrotransposons, as well as hepa-

titis B virus, can be inhibited by APOBEC3 family members

(Holmes et al., 2007b), and the human genome contains active

LINE-1 and Alu elements, it is likely that the APOBEC3 genes

have evolved to defend against genomic assaults by a broad

spectrum of retrovirus-like parasites. Given that many of the

APOBEC3 proteins are expressed in the testes and/or ovaries

(e.g., Jarmuz et al., 2002), this appears, perhaps not unexpect-

edly, to be of particular importance for the protection of germ-

line. Recent results showing that two very different DNA viruses,

adeno-associated virus and human papillomavirus, can be in-

hibited or subjected to G-to-A editing, respectively, by APO-

BEC3 proteins reveals that the range of substrates for these en-

zymes extends beyond those requiring reverse transcription

(Chen et al., 2006; Vartanian et al., 2008). It will be fascinating

to see how many additional classes of virus are also targeted

by APOBEC proteins, either as inhibitors of replication or as

sources for sequence variation, and to determine whether

such effects are subjected to regulation by proteins analogous

to Vif.

Modulation of the Intracellular Environment: Vpr

Vpr is a 96 amino acid protein that is packaged into mature vi-

rions, but whose function has been difficult to elucidate. Vpr is

cytopathic to cells, although there has been some debate as to

whether or not the cell death is apoptotic (Muthumani et al.,

2005) or necrotic (Sakai et al., 2006). However, the whole ques-

tion of whether or not HIV-1-induced cyopathicity is important for

its pathogenesis has been called into question with recent find-

ings made during nonpathogenic infections of natural sooty

mangabey (SM) or AGM hosts with SIV-SM or SIV-AGM, respec-

tively, where the turnover time of infected cells was found to be

just as short as seen in HIV-1 infection of humans (Gordon et al.,
394 Cell Host & Microbe 3, June 2008 ª2008 Elsevier Inc.
2008; Pandrea et al., 2008). Nevertheless, one unambiguous at-

tribute of Vpr expression is its ability to delay or arrest cells in the

G2 phase of the cell cycle. The bulk of the data indicates that the

cell death phenotype induced by Vpr is linked to the pathway

leading to G2 arrest (Andersen et al., 2006), but in some culture

systems those two phenotypes might be independent (Bolton

and Lenardo, 2007). These differences notwithstanding, the pre-

sumed relevance of the ability of Vpr to cause a G2 cell-cycle ar-

rest is illustrated not only by its conservation among the HIV and

SIV Vpr proteins, but also by the observation that infected cells

in HIV-1 infected people appear to be enriched for cells in G2

(Zimmerman et al., 2006).

The distal events that lead to G2 arrest by Vpr appear to mimic

a DNA stress/damage checkpoint arrest by involving the DNA

damage-sensing kinase ATR (Zimmerman et al., 2004). How-

ever, since Vpr does not appear to cause DNA damage directly

(Lai et al., 2005), it was not immediately clear how the pathway

became activated in the first place. A flurry of recent papers

has provided some important clues. Mass spectrometry and

protein-protein interaction assays revealed that Vpr, like Vpu

and Vif, engages a cullin-RING ubiquitin ligase (Table 1; Figure 2).

In this case, it is the cullin4A-DDB1 complex, with Vpr making

contact via a receptor called DCAF1 (originally VprBP) that links

it to DDB1 (Belzile et al., 2007; DeHart et al., 2007; Hrecka et al.,

2007; Le Rouzic et al., 2007; Schrofelbauer et al., 2007; Tan

et al., 2007; Wen et al., 2007). Experiments showing that prevent-

ing Vpr’s interaction with DCAF1 or inhibiting DCAF1 expression

using RNAi both block Vpr-induced G2 arrest attest to the signif-

icance of the cullin4A-DDB1-DCAF1-Vpr complex (Dehart and

Planelles, 2008).

Interestingly, DCAF1 was also identified as an HIV-1-depen-

dency factor (i.e., a protein whose expression promotes replica-

tion) in a large-scale siRNA screen using a viral strain that was

deficient for Vpr (Brass et al., 2008). This suggests that the cull-

in4A-DDB1-DCAF1 complex is involved in an important step of

the viral life cycle, and that the role of Vpr might be to stabilize

the normal activity of the complex in a way that benefits the virus.

Supporting this, recent data show that the binding of Vpr to cull-

in4A-DDB1-DCAF1 augments its activity and is associated with

an increase in cullin4A neddylation—a posttranslational modifi-

cation with the ubiquitin-like protein Nedd8 that stimulates cullin

ligase function by facilitating E2 recruitment (Hrecka et al., 2007).

If this hypothesis is correct, then it becomes very important to

identify the relevant substrates of the cullin4A-DDB1-DCAF1

complex, to determine how their (presumed) degradation affects

HIV-1, and to resolve whether Vpr acts simply to improve the

efficiency of this process.

Rather than increasing the activity of the cullin4A-DDB1-

DCAF1 complex toward normal substrates, an alternative model

is that Vpr recruits a novel substrate (whose expression is neces-

sary for cell-cycle progression) for ubiquitylation (and degrada-

tion). Evidence supporting this view comes from the finding

that some mutations in the C terminus of Vpr do not affect bind-

ing to DCAF1, but abolish Vpr-triggered G2 arrest. Given that

such proteins are dominant inhibitors of cell-cycle arrest induced

by wild-type Vpr (DeHart et al., 2007; Le Rouzic et al., 2007), the

simplest explanation is that the C terminus of Vpr recruits a novel

substrate to the cullin4A-DDB1-DCAF1 for ubiquitylation (Fig-

ure 2). It is not known what this substrate could be; determining
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whether it is among the many previous binding partners de-

scribed for Vpr, or awaits identification, will be central to under-

standing the effect of Vpr on the cell cycle.

In addition to G2 arrest, HIV-1 Vpr also facilitates infection of

macrophages. Earlier data attributed this effect to the stimulation

of viral nuclear import, but this model has not held up (Yamashita

and Emerman, 2005). Viruses of the HIV-2/SIV-SM phylogenetic

lineage encode both Vpr and a paralog, Vpx, whereas HIV-1 and

the SIVs of the remaining lineages encode just Vpr. The two main

functions of HIV-1 Vpr are segregated in HIV-2/SIV-SM with Vpr

causing cell-cycle arrest and Vpx being important for the infec-

tion of macrophages, though HIV-2/SIV-SM Vpx seems to be

much more important for macrophage infection than HIV-1

Vpr. Indeed, recent studies on Vpx may have provided key in-

sight into the ultimate role of Vpr in the viral life cycle: specifically,

HIV-2/SIV-SM vectors can only infect macrophages or mono-

cyte-derived dendritic cells efficiently if the vpx gene is intact

(Goujon et al., 2007; Sharova et al., 2008). Moreover, the Vpx

protein can be supplied in trans to allow macrophage or dendritic

cell infection and, in fact, can be added to allow HIV-1, as well as

more distantly related retroviruses, to infect these cells (Goujon

et al., 2007; Sharova et al., 2008). In this respect, Vpx appears

to act in a somewhat analogous way that excess viral capsids

can be added to cells to saturate the host restriction factor,

TRIM5a (Towers, 2007).

Importantly, Vpx, like Vpr, binds to DCAF1 (Le Rouzic et al.,

2007; Srivastava et al., 2008), and the ability of Vpx to interact

with the same cullin4A-DDB1-DCAF1 complex as Vpr is essen-

tial for promoting SIV-SM infection of macrophages (Sharova

et al., 2008; Srivastava et al., 2008). Thus, a plausible explanation

for the effect of Vpx on the early stages of macrophage infection

is that it is introduced into cells by virtue of its association with

incoming viral cores and then interacts with a host defense

protein to target that protein to cullin4A-DDB1-DCAF1 for elimi-

nation (Figure 2). This notion is further supported by cell-fusion

experiments in which macrophages were shown to harbor

a dominantly acting, but Vpx-sensitive, repressor of SIV-SM

infection (Sharova et al., 2008).

Whether HIV-1 Vpr also interacts with this putative restriction

factor, and whether this factor plays a role in Vpr-induced G2 ar-

rest, will only be answered once its identity is resolved. While G2

arrest by Vpr can be rationalized by the finding that HIV-1 tran-

scription is more active in G2 (and therefore more virus is pro-

duced) (Goh et al., 1998), it is also possible that G2 arrest is an

unavoidable by-product of the destruction of a host protein

that plays one role in cell-cycle progression and another in

host-mediated protection against viruses. Indeed, evolutionary

analysis suggests that such a class of host genes that both act

in the DNA-repair pathway in nonhomologous end joining and

also show evolutionary signs of pathogen defense genes (be-

cause of they are under positive selection) does exist in yeast

(Sawyer and Malik, 2006). Moreover, there is precedence with

the V protein of paramyxoviruses, which also binds to DDB1,

and although the mechanism is entirely different, also causes

both cell-cycle arrest and is involved in abrogation of host de-

fense through interference with interferon signaling (Horvath,

2004). Thus, while speculative at this time, it is possible that cer-

tain proteins that are involved in DNA repair or cell-cycle pro-

gression may also serve a dual purpose in host antiviral defense,
and that these are targeted by Vpr for degradation. If true, then

this implies that Vpr, like Vif and Vpu, is fundamentally a viral

countermeasure to host-mediated restriction.

Conclusion
While HIV-1 is a relatively new human infection, human ances-

tors have been infected with retroviruses for many millions of

years. We know this because nearly 8% of the human genome

is comprised of endogenous retroviruses (Bannert and Kurth,

2004), of which at least some of each family must have been

the result of an exogenous retroviral infection that entered the

germline and then became fixed within the species. Many of

these infections are quite old (over 25 million years), but episodic

infections have continued even since human/chimpanzee speci-

ation (Bannert and Kurth, 2004). Thus, host defenses that are

operative against HIV-1 were not selected to inhibit this virus.

Rather, they were likely selected to work against much more

ancient viral infections. HIV-1, on the other hand, must have

adapted to humans (or more likely to hominoids since HIV-1 itself

is a direct descendant of similar chimpanzee and gorilla viruses)

through the evolution of viral genes that allowed it to replicate in

the face of ancient antiviral defense mechanisms. As these

defenses are still active, finding ways to stabilize or derepress

them in the presence of the HIV-1 accessory proteins is a poten-

tial strategy for antiviral drug development that would turn the

naturally hostile environment of human cells into a more effective

one for viral control.
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