Approximate dynamical systems on interval

J. Chudziak
Department of Mathematics, University of Rzeszów, Rejtana 16 C, 35-959 Rzeszów, Poland

ARTICLE INFO

Article history:
Received 14 February 2011
Received in revised form 22 September 2011
Accepted 26 September 2011

Keywords:

Dynamical system
Approximate dynamical system
Translation equation
Stability

A B S TRACT

Let I be a an open real interval. We show that if a function $H: I \times \mathbb{R} \rightarrow I$ satisfies the inequality

$$
\left|H\left(H\left(x_{0}, s\right), t\right)-H\left(x_{0}, s+t\right)\right| \leq \delta \quad \text { for } s, t \in \mathbb{R}
$$

with a $\delta \geq 0$ and an $x_{0} \in I$ such that the function $H\left(x_{0}, \cdot\right)$ is a continuous surjection of \mathbb{R} onto I, then there exists a dynamical system F on I such that

$$
|H(x, t)-F(x, t)| \leq 9 \delta \quad \text { for } x \in I, t \in \mathbb{R} .
$$

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let I be a real interval. The translation equation, i.e. a functional equation of the form

$$
\begin{equation*}
F(F(x, s), t)=F(x, s+t) \tag{1}
\end{equation*}
$$

plays a very important role in the theory of functional equations and iteration theory. It belongs to the class of composite type functional equations. Every continuous solution $F: I \times \mathbb{R} \rightarrow I$ of (1) satisfying $F(x, 0)=x$ for $x \in \mathbb{R}$ is called a dynamical system on I. For more details concerning (1) and its applications we refer to [1,2]. In the present paper we deal with the case where (1) is satisfied up to some possible error. More precisely, we consider the inequality

$$
\begin{equation*}
|H(H(x, s), t)-H(x, s+t)| \leq \delta \quad \text { for } x \in I, s, t \in \mathbb{R} \tag{2}
\end{equation*}
$$

where δ is a fixed nonnegative real number. Our considerations are inspired by a paper [3], where the stability problem for the translation equation has been studied in a very general setting, but under relatively strong assumptions on H. In a recent paper [4] an analogous question has been investigated in the case of functions mapping $I \times(0, \infty)$ into I. Stability problem for (1) in the rings of formal power series has been considered in [5]. Several details concerning stability of functional equations and a number of references can be found e.g. in [6,7].

The main result of the paper reads as follows.
Theorem 1.1. Let I be an open real interval and δ be a nonnegative real number. Assume that a function $H: I \times \mathbb{R} \rightarrow I$ satisfies inequality

$$
\begin{equation*}
\left|H\left(H\left(x_{0}, s\right), t\right)-H\left(x_{0}, s+t\right)\right| \leq \delta \quad \text { for } s, t \in \mathbb{R} \tag{3}
\end{equation*}
$$

with $a \delta>0$ and an $x_{0} \in I$ such that the function $H\left(x_{0}, \cdot\right)$ is a continuous surjection of \mathbb{R} onto I. Then there exists a homeomorphism $g: \mathbb{R} \rightarrow I$ such that

$$
\begin{equation*}
\left|H(x, t)-g\left(t+g^{-1}(x)\right)\right| \leq 9 \delta \quad \text { for } x \in I, t \in \mathbb{R} \tag{4}
\end{equation*}
$$

[^0]Since, for every homeomorphism $g: \mathbb{R} \rightarrow I$, a function $F: I \times \mathbb{R} \rightarrow I$ of the form $F(x, t)=g\left(t+g^{-1}(x)\right)$ for $x \in \mathbb{R}, t \in I$, satisfies (1) and, for every $x \in \mathbb{R}, F(x, \cdot)$ is a continuous surjection of \mathbb{R} onto I, from Theorem 1.1 we derive the following stability result for (1).

Theorem 1.2. Let I be an open real interval. The translation equation is stable in the Hyers-Ulam sense in the class of functions

$$
\mathfrak{F}_{c s}:=\left\{F: I \times \mathbb{R} \rightarrow I \mid F\left(x_{0}, \cdot\right) \text { is a continuous surjection for some } x_{0} \in I\right\}
$$

that is, for every $\varepsilon>0$ there is a $\delta\left(=\frac{1}{9} \varepsilon\right.$) such that, for every $H \in \mathfrak{F}_{c s}$ satisfying (2), there exists $F \in \mathfrak{F}_{c s}$ satisfying (1) such that

$$
|H(x, t)-F(x, t)| \leq \varepsilon \quad \text { for } x \in I, t \in \mathbb{R}
$$

2. Proof of Theorem 1.1

Let $h:=H\left(x_{0}, \cdot\right)$. If h is bijective, then (see [3, p.193]), we get the assertion with $g:=h$ and δ instead of 9δ (note that in [3] the continuity of h is not assumed). So, from now on we will assume that h is not injective. A remaining part of the proof will be divided into four steps.
Step 1 . We show that for every $\alpha, \beta \in \mathbb{R}$ with

$$
\begin{equation*}
h(\alpha)=h(\beta) \tag{5}
\end{equation*}
$$

it holds

$$
\begin{equation*}
|h(s)-h(s+(\alpha-\beta))| \leq 2 \delta \quad \text { for } s \in \mathbb{R} \tag{6}
\end{equation*}
$$

Fix $\alpha, \beta \in \mathbb{R}$ and suppose that (5) is valid. Then $H\left(x_{0}, \alpha\right)=H\left(x_{0}, \beta\right)$, so in view of (3), for every $s \in \mathbb{R}$, we obtain

$$
\begin{aligned}
|h(s)-h(s+(\alpha-\beta))| & =\left|H\left(x_{0}, s\right)-H\left(x_{0}, s+(\alpha-\beta)\right)\right| \\
& \leq\left|H\left(x_{0}, s\right)-H\left(H\left(x_{0}, \beta\right), s-\beta\right)\right|+\left|H\left(H\left(x_{0}, \alpha\right), s-\beta\right)-H\left(x_{0}, s+(\alpha-\beta)\right)\right| \leq 2 \delta
\end{aligned}
$$

Step 2. For every $c \in \mathbb{R}$, let $J(c)$ be a family (possibly empty) of all non-degenerated closed intervals $[u, v] \subset \mathbb{R}$ satisfying the following two conditions:
$\left(\mathrm{C}_{1}\right) h(u)=h(v)=c$;
$\left(\mathrm{C}_{2}\right) h(t) \leq c$ for $t \in[u, v]$; or $h(t) \geq c$ for $t \in[u, v]$.
Let $\mathrm{J}:=\bigcup_{c \in \mathbb{R}} \mathrm{~J}(\mathrm{c})$. Note that as h is not injective, there exist $\alpha, \beta \in \mathbb{R}$ such that $\alpha<\beta$ and $h(\alpha)=h(\beta)=$: c. If $h(t)=c$ for $t \in[\alpha, \beta]$ then $[\alpha, \beta] \in \mathrm{J}(c)$. If $h\left(t_{0}\right) \neq c$ for some $t_{0} \in[\alpha, \beta]$ then the sets $A^{-}:=\left\{t \in\left[\alpha, t_{0}\right]: h(t)=c\right\}$ and $A^{+}:=\left\{t \in\left[t_{0}, \beta\right]: h(t)=c\right\}$ are nonempty and closed. Therefore, taking $\alpha^{-}:=\max A^{-}$and $\alpha^{+}:=\min A^{+}$, we get $\left[\alpha^{-}, \alpha^{+}\right] \in \mathrm{J}(\mathrm{c})$. So we have proved that $\mathrm{J} \neq \emptyset$.

Let

$$
\begin{equation*}
S:=\sup \{v-u:[u, v] \in J\} \tag{7}
\end{equation*}
$$

We show that for every $s_{1}, s_{2} \in \mathbb{R}$, the following implication holds

$$
\begin{equation*}
\left|s_{1}-s_{2}\right|<S \Rightarrow\left|h\left(s_{1}\right)-h\left(s_{2}\right)\right| \leq 2 \delta . \tag{8}
\end{equation*}
$$

To this end, fix $s_{1}, s_{2} \in \mathbb{R}$ such that $\left|s_{1}-s_{2}\right|<S$. Assume for instance that $s_{1}<s_{2}$. Then there exist $u, v \in \mathbb{R}$ such that $[u, v] \in \mathrm{J}$ and $s_{2}-s_{1}<v-u$. Let $c \in \mathbb{R}$ be such that $[u, v] \in \mathrm{J}(\mathrm{c})$ and let a function $\phi:\left[0, v-u-\left(s_{2}-s_{1}\right)\right] \rightarrow \mathbb{R}$ be defined by:

$$
\begin{equation*}
\phi(t)=h(u+t)-h\left(u+t+s_{2}-s_{1}\right) \quad \text { for } t \in\left[0, v-u-\left(s_{2}-s_{1}\right)\right] . \tag{9}
\end{equation*}
$$

Clearly, $u+s_{2}-s_{1} \in[u, v]$ and $v-\left(s_{2}-s_{1}\right) \in[u, v]$. Since $[u, v] \in J(c)$, by (C_{1}), we have

$$
\phi(0) \phi\left(v-u-\left(s_{2}-s_{1}\right)\right)=\left[c-h\left(u+s_{2}-s_{1}\right)\right]\left[h\left(v-\left(s_{2}-s_{1}\right)\right)-c\right] \leq 0 .
$$

As ϕ is continuous, from the latter inequality it follows that there exists a $z \in\left[0, v-u-\left(s_{2}-s_{1}\right)\right]$ such that $\phi(z)=0$, that is

$$
h(u+z)=h\left(u+z+s_{2}-s_{1}\right) .
$$

Thus, taking $\alpha:=u+z$ and $\beta:=u+z+s_{2}-s_{1}$, we get (5). Hence according to Step 1 , we obtain that

$$
\left|h\left(s_{1}\right)-h\left(s_{2}\right)\right| \leq 2 \delta
$$

In particular, if $S=\infty$ then for every $s_{1}, s_{2} \in \mathbb{R}$ there exists an interval $[u, v] \in \mathrm{J}$ such that $s_{1}-s_{2}<v-u$. Hence, we get that $\left|h\left(s_{1}\right)-h\left(s_{2}\right)\right| \leq 2 \delta$ for every $s_{1}, s_{2} \in \mathbb{R}$. Thus, as h is surjective, we get $b-a \leq 2 \delta$. So, taking an arbitrary homeomorphism $g: \mathbb{R} \rightarrow(a, b)$, we get

$$
\left|H(x, t)-g\left(t+g^{-1}(x)\right)\right| \leq 2 \delta \quad \text { for } x \in I, t \in \mathbb{R}
$$

Step 3. Assume that $S<\infty$. Let $a:=\inf I$ and $b:=\sup I$. As h is surjective, we have either

$$
\limsup _{t \rightarrow \infty} h(t)=a
$$

or

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} h(t)=b \tag{10}
\end{equation*}
$$

Since the proof in both cases is similar, assume that (10) holds. Fix a $p \in\left(\frac{1}{2} S, S\right)$. Then there exists an interval $[u, v] \in J$ such that $p<v-u$. Furthermore, according to Step 2 , for every $s, t \in \mathbb{R}$ it holds

$$
\begin{equation*}
|s-t| \leq p \Rightarrow|h(s)-h(t)| \leq 2 \delta \tag{11}
\end{equation*}
$$

For every $n \in \mathbb{Z}$, we define an interval I_{n} in a following way

$$
\begin{equation*}
I_{n}:=[u+2 n p, u+2(n+1) p] . \tag{12}
\end{equation*}
$$

Let

$$
M_{n}:=\max h\left(I_{n}\right) \quad \text { for } n \in \mathbb{Z}
$$

and

$$
m_{n}:=\min h\left(I_{n}\right) \quad \text { for } n \in \mathbb{Z}
$$

Since the length of every I_{n} is $2 p$, making use of (11), we conclude that

$$
\begin{equation*}
M_{n}-m_{n} \leq 4 \delta \quad \text { for } n \in \mathbb{Z} \tag{13}
\end{equation*}
$$

Furthermore, the continuity of h yields that

$$
\begin{equation*}
m_{n} \leq M_{n-1} \quad \text { for } n \in \mathbb{Z} \tag{14}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
M_{n}-M_{n-1} \leq M_{n}-m_{n} \leq 4 \delta \quad \text { for } n \in \mathbb{Z} \tag{15}
\end{equation*}
$$

Now, we show that a sequence ($M_{n}: n \in \mathbb{N}$) is strictly increasing. For the proof by contradiction suppose that $M_{n} \leq M_{n-1}$ for some $n \in \mathbb{N}$. Since h is continuous and (10) holds, this means that there exists an $\alpha_{0} \geq u+2(n+1) p$ such that

$$
\begin{equation*}
h\left(\alpha_{0}\right)=M_{n-1} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
h(t) \leq M_{n-1} \quad \text { for } t \in\left[u+2(n+1) p, \alpha_{0}\right] . \tag{17}
\end{equation*}
$$

Let $\alpha_{1} \in I_{n-1}$ be such that $h\left(\alpha_{1}\right)=M_{n-1}$. Then, in view of (16) and (17), we obtain that

$$
\alpha_{0}-\alpha_{1} \geq u+2(n+1) p-(u+2 n p)=2 p>S
$$

which contradicts the definition of S. So, we have proved that the sequence ($M_{n}: n \in \mathbb{N}$) is strictly increasing, which together with (10) gives

$$
\begin{equation*}
\lim _{n \rightarrow \infty} M_{n}=b . \tag{18}
\end{equation*}
$$

Next, note that if $\liminf _{t \rightarrow \infty} h(t)=a$, then $\liminf _{n \rightarrow \infty} m_{n}=a$, so by (13) and (18), we obtain

$$
b-a=\liminf _{n \rightarrow \infty}\left(M_{n}-m_{n}\right) \leq 4 \delta
$$

Thus we get (4) with an arbitrary homeomorphism $g: \mathbb{R} \rightarrow I$. In the case where $\lim _{\inf }^{t \rightarrow \infty}$ $h(t)>a$, using the fact that h is surjective, we have $\lim \inf _{t \rightarrow-\infty} h(t)=a$. Therefore, arguing as previously, we obtain that

$$
\begin{equation*}
m_{-n}-m_{-n-1} \leq 4 \delta \quad \text { for } n \in \mathbb{N} \tag{19}
\end{equation*}
$$

a sequence ($m_{-n}: n \in \mathbb{N}$) is strictly decreasing and so

$$
\begin{equation*}
\lim _{n \rightarrow \infty} m_{-n}=a \tag{20}
\end{equation*}
$$

Let $g: \mathbb{R} \rightarrow I$ be a piecewise linear mapping such that

$$
g(u+2 n p)= \begin{cases}M_{n-1} & \text { for } n=1,2, \ldots \tag{21}\\ m_{n} & \text { for } n=0,-1, \ldots\end{cases}
$$

Since the sequence ($M_{n}: n \in \mathbb{N}$) is strictly increasing and the sequence ($m_{-n}: n \in \mathbb{N}$) is strictly decreasing, from (18) and (20) it follows that g is a homeomorphism of \mathbb{R} onto I. Furthermore, for every $n \in \mathbb{Z}$ and $t \in I_{n}$, we get

$$
|h(t)-g(t)| \leq M_{n}-m_{n}
$$

Thus, in view of (13), we obtain

$$
\begin{equation*}
|h(t)-g(t)| \leq 4 \delta \quad \text { for } t \in \mathbb{R} \tag{22}
\end{equation*}
$$

Next, making use of (15) and (19), for every $n \in \mathbb{Z}$ and $s, t \in I_{n}$ with $s \neq t$, we get

$$
\begin{equation*}
|g(s)-g(t)| \leq 2 \frac{\delta}{p}|s-t| \quad \text { for } s, t \in \mathbb{R} \tag{23}
\end{equation*}
$$

Now, we show that for every $x \in I$ it holds that

$$
\begin{equation*}
\inf \left\{\left|g^{-1}(x)-s_{x}\right|: s_{x} \in \mathbb{R}, h\left(s_{x}\right)=x\right\} \leq 2 p \tag{24}
\end{equation*}
$$

The case where $x \in\left[m_{0}, M_{0}\right]$ is obvious. If $x>M_{0}$ then $x \in\left[M_{n-1}, M_{n}\right]$ for some $n \in \mathbb{N}$. Thus, by (14), $x \in\left[m_{n}, M_{n}\right]$, so

$$
\left\{s_{x} \in \mathbb{R}, h\left(s_{x}\right)=x\right\} \cap I_{n} \neq \emptyset
$$

On the other hand, in view of (21), we get

$$
g(u+2 n p)=M_{n-1}
$$

and

$$
g(u+2(n+1) p)=M_{n},
$$

which implies that $g^{-1}(x) \in I_{n}$. Since the length of I_{n} is $2 p$, this yields (24). If $x<m_{0}$, the similar arguments work.
Step 4. We show that the estimation (4) holds. To this end fix an $x \in I$ and a $t \in \mathbb{R}$. Then, by (24), there exists a $s_{x} \in \mathbb{R}$ such that

$$
x=h\left(s_{x}\right)=H\left(x_{0}, s_{x}\right)
$$

and

$$
\left|s_{x}-g^{-1}(x)\right| \leq 2 p
$$

Thus, making use of (3), (22) and (23), we obtain

$$
\begin{aligned}
\left|H(x, t)-g\left(t+g^{-1}(x)\right)\right| & =\left|H\left(H\left(x_{0}, s_{x}\right), t\right)-g\left(t+g^{-1}(x)\right)\right| \\
& \leq\left|H\left(H\left(x_{0}, s_{x}\right), t\right)-H\left(x_{0}, s_{x}+t\right)\right|+\left|H\left(x_{0}, s_{x}+t\right)-g\left(t+g^{-1}(x)\right)\right| \\
& \leq \delta+\left|h\left(s_{x}+t\right)-g\left(t+g^{-1}(x)\right)\right| \\
& \leq \delta+\left|h\left(s_{x}+t\right)-g\left(s_{x}+t\right)\right|+\left|g\left(s_{x}+t\right)-g\left(t+g^{-1}(x)\right)\right| \\
& \leq 5 \delta+2 \frac{\delta}{p}\left|s_{x}-g^{-1}(x)\right| \leq 9 \delta .
\end{aligned}
$$

3. Concluding remarks

Let us begin this section with the following simple example showing that in general a function $H \in \mathfrak{F}_{c s}$ satisfying (2) with some positive δ can be approximate by several dynamical systems belonging to $\mathfrak{F}_{c s}$.

Example 3.1. Let $d: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
d(t)=\min \{|t-n|: n \in \mathbb{Z}\} \quad \text { for } t \in \mathbb{R}
$$

Note that

$$
\begin{equation*}
|d(s+t)-d(s)-d(t)| \leq 1 \quad \text { for } s, t \in \mathbb{R} \tag{25}
\end{equation*}
$$

Define a function $H: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$
H(x, t)=x+t+d(t) \quad \text { for } x, t \in \mathbb{R}
$$

Then $H \in \mathfrak{F}_{\text {cs }}$ (with $I=\mathbb{R}$). Moreover, making use of (25), we obtain that (2) holds with $\delta=1$. Next, given an $\alpha \in[0,1$), define a function $g_{\alpha}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
g_{\alpha}(t)=t+\alpha d(t) \quad \text { for } t \in \mathbb{R}
$$

Then, for every $\alpha \in[0,1), g_{\alpha}$ is a homeomorphism on \mathbb{R} with $g_{\alpha}(0)=0$. Furthermore, we have

$$
\begin{equation*}
\left|H(0, t)-g_{\alpha}(t)\right|=(1-\alpha) d(t) \leq \frac{1-\alpha}{2} \quad \text { for } t \in \mathbb{R} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|g_{\alpha}(s)-g_{\alpha}(t)\right| \leq(1+\alpha)|s-t| \quad \text { for } t \in \mathbb{R} . \tag{27}
\end{equation*}
$$

Now, for every $\alpha \in[0,1)$, put

$$
F_{\alpha}(x, t)=g_{\alpha}\left(g_{\alpha}^{-1}(x)+t\right) \quad \text { for } x, t \in \mathbb{R}
$$

Since, for every $\alpha \in[0,1)$, it holds that $F_{\alpha}(0, t)=g_{\alpha}(t)$ for $t \in \mathbb{R}$, we conclude that $F_{\alpha} \in \mathfrak{F}_{c s}$ and $F_{\alpha} \neq F_{\beta}$ whenever $\alpha \neq \beta$. Note also that similarly as in the proof of Theorem 1.1, we obtain that for every $x \in \mathbb{R}$ there is a $s_{x} \in \mathbb{R}$ such that $H\left(0, s_{x}\right)=x$ and $\left|s_{x}-g^{-1}(x)\right| \leq 1$. Therefore, taking into account (25)-(27), for every $x, t \in \mathbb{R}$, we get

$$
\begin{aligned}
\left|H(x, t)-F_{\alpha}(x, t)\right|= & \left|H\left(H\left(0, s_{x}\right), t\right)-g_{\alpha}\left(g_{\alpha}^{-1}(x)+t\right)\right| \\
\leq & \left|H\left(H\left(0, s_{x}\right), t\right)-H\left(0, s_{x}+t\right)\right|+\left|H\left(0, s_{x}+t\right)-g_{\alpha}\left(s_{x}+t\right)\right| \\
& +\left|g_{\alpha}\left(s_{x}+t\right)-g_{\alpha}\left(g_{\alpha}^{-1}(x)+t\right)\right| \\
\leq & \left|d\left(s_{x}+t\right)-d\left(s_{x}\right)-d(t)\right|+\frac{1-\alpha}{2}+(1+\alpha)\left|s_{x}-g_{\alpha}^{-1}(x)\right| \\
\leq & 1+\frac{1-\alpha}{2}+1+\alpha=\frac{5+\alpha}{2}<3=3 \delta .
\end{aligned}
$$

The next remarks concern the case where the interval I is not open.
Remark 3.1. The assertions of Steps 1 and 2 are true (with the same argumentation) also in the case where I is not open.
Remark 3.2. Assume that I is a not open real interval, say $a:=\inf I \in I$. Suppose that $H \in \mathfrak{F}_{c s}$ satisfies (3) with a positive δ and an $x_{0} \in I$ such that a function $h:=H\left(x_{0}, \cdot\right)$ is a continuous surjection of \mathbb{R} onto I. We claim that the length of I is at most 4δ. First note that as h is a continuous surjection of \mathbb{R} onto I, there is a $t_{a} \in \mathbb{R}$ such that $h\left(t_{a}\right)=a$ and either $h\left(\left(-\infty, t_{a}\right)\right) \subset h\left(\left(t_{a}, \infty\right)\right)=I$ or $h\left(\left(t_{a}, \infty\right)\right) \subset h\left(\left(-\infty, t_{a}\right)\right)=I$. Assume for instance that the first possibility is valid. Suppose that the length of I is greater than 4δ. Then $h\left(t_{0}\right)>a+4 \delta$ for some $t_{0} \in\left(t_{a}, \infty\right)$. Fix a $t_{1} \in\left(-\infty, 2 t_{a}-t_{0}\right)$. Then $t_{1}<t_{a}+\left(t_{a}-t_{0}\right)<t_{a}$, so there exists a $t_{2} \in\left(t_{a}, \infty\right)$ with $h\left(t_{1}\right)=h\left(t_{2}\right)$. Thus, applying Remark 3.1, from (6) we deduce that

$$
\left|a-h\left(t_{a}+\left(t_{2}-t_{1}\right)\right)\right|=\left|h\left(t_{a}\right)-h\left(t_{a}+\left(t_{2}-t_{1}\right)\right)\right| \leq 2 \delta,
$$

that is

$$
h\left(t_{a}+\left(t_{2}-t_{1}\right)\right) \leq a+2 \delta .
$$

Furthermore, we have

$$
t_{a}<t_{0}<2 t_{a}-t_{1}<t_{a}+\left(t_{2}-t_{1}\right)
$$

Hence, as h is continuous and $h\left(t_{0}\right)>a+4 \delta$, we conclude that there exist a $u \in\left(t_{a}, t_{0}\right)$ and a $v \in\left(t_{0}, t_{a}+\left(t_{2}-t_{1}\right)\right]$ such that $h(u)=h(v)=a+2 \delta$ and $h(t) \geq a+2 \delta$ for $t \in[u, v]$. Therefore $[u, v] \in J(a+2 \delta)$ and so $t_{0}-u<v-u<S$, where S is given by (7). Hence, applying again Remark 3.1, from (8) we derive that $\left|h\left(t_{0}\right)-h(u)\right| \leq 2 \delta$. Thus $h\left(t_{0}\right) \leq h(u)+2 \delta=a+4 \delta$, which yields a contradiction.

Remark 3.3. From Remark 3.2 it follows that if the interval I is non-degenerated and not open then for sufficiently small δ (namely, for δ smaller than $\frac{1}{4}$ of the length of I) there is no $H \in \mathfrak{F}_{c s}$ satisfying (2). In particular, taking $\delta=0$, we get that if the interval I is non-degenerated and not open then Eq. (1) has no solutions in the class $\mathfrak{F}_{\text {cs }}$.

Remark 3.4. Theorem 1.2 and Remark 3.3 imply that for every real interval I, Eq. (1) is stable in the Hyers-Ulam sense in the class $\mathfrak{F}_{c s}$. Note however that if I is a not open bounded interval with a positive length $|I|$ then taking an arbitrary $H \in \mathfrak{F}_{c s}$, we get (2) with $\delta=|I|$, but according to Remark 3.3, Eq. (1) has no solutions in the class $\mathfrak{F}_{\text {cs }}$. Hence, H can not be approximated by such a solution.

We conclude the paper with the following problem.
Problem 3.1. Let I be an open real interval and $\delta: \mathbb{R}^{2} \rightarrow[0, \infty)$. Under what reasonable assumptions on δ, every function $H: I \times \mathbb{R} \rightarrow I$ satisfying the inequality

$$
\left|H\left(H\left(x_{0}, s\right), t\right)-H\left(x_{0}, s+t\right)\right| \leq \delta(s, t) \quad \text { for } s, t \in \mathbb{R}
$$

with an $x_{0} \in I$ such that the function $H\left(x_{0}, \cdot\right)$ is a continuous surjection of \mathbb{R} onto I, can be approximated (in some sense) by a dynamical system belonging to $\mathfrak{F}_{c s}$.

Acknowledgements

The Author is grateful to Professor Zenon Moszner for thoughtful comments.

References

[1] Z. Moszner, The translation equation and its applications, Demonstratio Math. 6 (1973) 309-327.
[2] Z. Moszner, General theory of the translation equation, Aequationes Math. 50 (1995) 17-37.
[3] A. Mach, Z. Moszner, On stability of translation equation in some classes of functions, Aequationes Math. 72 (2006) 191-197.
[4] B. Przebieracz, On the stability of the translation equation, Publ. Math. Debrecen 75 (2009) 285-298.
[5] W. Jabłoński, L. Reich, Stability of the translation equation in rings of formal power series and partial extensibility of one-parameter groups of truncated formal power series, Österreich. Akad. Wiss. Math. - Natur. Kl. Sitzungsber. II 215 (2006) 127-137.
[6] M. Eshaghi Gordji, H. Khodaei, Stability of Functional Equations, LAP Lambert Academic Publishing, 2010.
[7] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.

[^0]: E-mail address: chudziak@univ.rzeszow.pl.
 0893-9659/\$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
 doi:10.1016/j.aml.2011.09.052

