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a b s t r a c t

Let I be a an open real interval. We show that if a function H : I × R → I satisfies the
inequality

|H(H(x0, s), t) − H(x0, s + t)| ≤ δ for s, t ∈ R

with a δ ≥ 0 and an x0 ∈ I such that the function H(x0, ·) is a continuous surjection of R
onto I , then there exists a dynamical system F on I such that

|H(x, t) − F(x, t)| ≤ 9δ for x ∈ I, t ∈ R.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let I be a real interval. The translation equation, i.e. a functional equation of the form

F(F(x, s), t) = F(x, s + t) (1)

plays a very important role in the theory of functional equations and iteration theory. It belongs to the class of composite
type functional equations. Every continuous solution F : I × R → I of (1) satisfying F(x, 0) = x for x ∈ R is called a
dynamical system on I . For more details concerning (1) and its applications we refer to [1,2]. In the present paper we deal
with the case where (1) is satisfied up to some possible error. More precisely, we consider the inequality

|H(H(x, s), t) − H(x, s + t)| ≤ δ for x ∈ I, s, t ∈ R, (2)

where δ is a fixed nonnegative real number. Our considerations are inspired by a paper [3], where the stability problem for
the translation equation has been studied in a very general setting, but under relatively strong assumptions onH . In a recent
paper [4] an analogous question has been investigated in the case of functionsmapping I×(0, ∞) into I . Stability problem for
(1) in the rings of formal power series has been considered in [5]. Several details concerning stability of functional equations
and a number of references can be found e.g. in [6,7].

The main result of the paper reads as follows.

Theorem 1.1. Let I be an open real interval and δ be a nonnegative real number. Assume that a function H : I × R → I satisfies
inequality

|H(H(x0, s), t) − H(x0, s + t)| ≤ δ for s, t ∈ R (3)

with a δ > 0 and an x0 ∈ I such that the function H(x0, ·) is a continuous surjection of R onto I. Then there exists a
homeomorphism g : R → I such that

|H(x, t) − g(t + g−1(x))| ≤ 9δ for x ∈ I, t ∈ R. (4)
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Since, for every homeomorphism g : R → I , a function F : I × R → I of the form F(x, t) = g(t + g−1(x)) for x ∈ R, t ∈ I ,
satisfies (1) and, for every x ∈ R, F(x, ·) is a continuous surjection of R onto I , from Theorem 1.1 we derive the following
stability result for (1).

Theorem 1.2. Let I be an open real interval. The translation equation is stable in the Hyers–Ulam sense in the class of functions

Fcs := {F : I × R → I|F(x0, ·) is a continuous surjection for some x0 ∈ I},

that is, for every ε > 0 there is a δ (= 1
9ε) such that, for every H ∈ Fcs satisfying (2), there exists F ∈ Fcs satisfying (1) such that

|H(x, t) − F(x, t)| ≤ ε for x ∈ I, t ∈ R.

2. Proof of Theorem 1.1

Let h := H(x0, ·). If h is bijective, then (see [3, p.193]), we get the assertion with g := h and δ instead of 9δ (note that
in [3] the continuity of h is not assumed). So, from now on we will assume that h is not injective. A remaining part of the
proof will be divided into four steps.
Step 1. We show that for every α, β ∈ R with

h(α) = h(β) (5)

it holds

|h(s) − h(s + (α − β))| ≤ 2δ for s ∈ R. (6)

Fix α, β ∈ R and suppose that (5) is valid. Then H(x0, α) = H(x0, β), so in view of (3), for every s ∈ R, we obtain

|h(s) − h(s + (α − β))| = |H(x0, s) − H(x0, s + (α − β))|

≤ |H(x0, s) − H(H(x0, β), s − β)| + |H(H(x0, α), s − β) − H(x0, s + (α − β))| ≤ 2δ.

Step 2. For every c ∈ R, let J(c) be a family (possibly empty) of all non-degenerated closed intervals [u, v] ⊂ R satisfying
the following two conditions:
(C1) h(u) = h(v) = c;
(C2) h(t) ≤ c for t ∈ [u, v]; or h(t) ≥ c for t ∈ [u, v].

Let J :=


c∈R J(c). Note that as h is not injective, there exist α, β ∈ R such that α < β and h(α) = h(β) =: c .
If h(t) = c for t ∈ [α, β] then [α, β] ∈ J(c). If h(t0) ≠ c for some t0 ∈ [α, β] then the sets A−

:= {t ∈ [α, t0] : h(t) = c}
and A+

:= {t ∈ [t0, β] : h(t) = c} are nonempty and closed. Therefore, taking α−
:= max A− and α+

:= min A+, we get
[α−, α+

] ∈ J(c). So we have proved that J ≠ ∅.
Let

S := sup{v − u : [u, v] ∈ J}. (7)

We show that for every s1, s2 ∈ R, the following implication holds

|s1 − s2| < S ⇒ |h(s1) − h(s2)| ≤ 2δ. (8)

To this end, fix s1, s2 ∈ R such that |s1 − s2| < S. Assume for instance that s1 < s2. Then there exist u, v ∈ R such that
[u, v] ∈ J and s2 − s1 < v − u. Let c ∈ R be such that [u, v] ∈ J(c) and let a function φ : [0, v − u − (s2 − s1)] → R be
defined by:

φ(t) = h(u + t) − h(u + t + s2 − s1) for t ∈ [0, v − u − (s2 − s1)]. (9)

Clearly, u + s2 − s1 ∈ [u, v] and v − (s2 − s1) ∈ [u, v]. Since [u, v] ∈ J(c), by (C1), we have

φ(0)φ(v − u − (s2 − s1)) = [c − h(u + s2 − s1)][h(v − (s2 − s1)) − c] ≤ 0.

As φ is continuous, from the latter inequality it follows that there exists a z ∈ [0, v − u− (s2 − s1)] such that φ(z) = 0, that
is

h(u + z) = h(u + z + s2 − s1).

Thus, taking α := u + z and β := u + z + s2 − s1, we get (5). Hence according to Step 1, we obtain that

|h(s1) − h(s2)| ≤ 2δ.

In particular, if S = ∞ then for every s1, s2 ∈ R there exists an interval [u, v] ∈ J such that s1 − s2 < v − u. Hence,
we get that |h(s1) − h(s2)| ≤ 2δ for every s1, s2 ∈ R. Thus, as h is surjective, we get b − a ≤ 2δ. So, taking an arbitrary
homeomorphism g : R → (a, b), we get

|H(x, t) − g(t + g−1(x))| ≤ 2δ for x ∈ I, t ∈ R.
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Step 3. Assume that S < ∞. Let a := inf I and b := sup I . As h is surjective, we have either

lim sup
t→∞

h(t) = a

or

lim sup
t→∞

h(t) = b. (10)

Since the proof in both cases is similar, assume that (10) holds. Fix a p ∈ ( 1
2S, S). Then there exists an interval [u, v] ∈ J

such that p < v − u. Furthermore, according to Step 2, for every s, t ∈ R it holds

|s − t| ≤ p ⇒ |h(s) − h(t)| ≤ 2δ. (11)

For every n ∈ Z, we define an interval In in a following way

In := [u + 2np, u + 2(n + 1)p]. (12)

Let

Mn := max h(In) for n ∈ Z

and

mn := min h(In) for n ∈ Z.

Since the length of every In is 2p, making use of (11), we conclude that

Mn − mn ≤ 4δ for n ∈ Z. (13)

Furthermore, the continuity of h yields that

mn ≤ Mn−1 for n ∈ Z. (14)

Therefore

Mn − Mn−1 ≤ Mn − mn ≤ 4δ for n ∈ Z. (15)

Now, we show that a sequence (Mn : n ∈ N) is strictly increasing. For the proof by contradiction suppose that Mn ≤ Mn−1
for some n ∈ N. Since h is continuous and (10) holds, this means that there exists an α0 ≥ u + 2(n + 1)p such that

h(α0) = Mn−1 (16)

and

h(t) ≤ Mn−1 for t ∈ [u + 2(n + 1)p, α0]. (17)

Let α1 ∈ In−1 be such that h(α1) = Mn−1. Then, in view of (16) and (17), we obtain that

α0 − α1 ≥ u + 2(n + 1)p − (u + 2np) = 2p > S,

which contradicts the definition of S. So, we have proved that the sequence (Mn : n ∈ N) is strictly increasing, which
together with (10) gives

lim
n→∞

Mn = b. (18)

Next, note that if lim inft→∞ h(t) = a, then lim infn→∞ mn = a, so by (13) and (18), we obtain

b − a = lim inf
n→∞

(Mn − mn) ≤ 4δ.

Thus we get (4) with an arbitrary homeomorphism g : R → I . In the case where lim inft→∞ h(t) > a, using the fact that h
is surjective, we have lim inft→−∞ h(t) = a. Therefore, arguing as previously, we obtain that

m−n − m−n−1 ≤ 4δ for n ∈ N, (19)

a sequence (m−n : n ∈ N) is strictly decreasing and so

lim
n→∞

m−n = a. (20)

Let g : R → I be a piecewise linear mapping such that

g(u + 2np) =


Mn−1 for n = 1, 2, . . .
mn for n = 0, −1, . . . . (21)

Since the sequence (Mn : n ∈ N) is strictly increasing and the sequence (m−n : n ∈ N) is strictly decreasing, from (18) and
(20) it follows that g is a homeomorphism of R onto I . Furthermore, for every n ∈ Z and t ∈ In, we get

|h(t) − g(t)| ≤ Mn − mn.
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Thus, in view of (13), we obtain

|h(t) − g(t)| ≤ 4δ for t ∈ R. (22)

Next, making use of (15) and (19), for every n ∈ Z and s, t ∈ In with s ≠ t , we get

|g(s) − g(t)| ≤ 2
δ

p
|s − t| for s, t ∈ R. (23)

Now, we show that for every x ∈ I it holds that

inf{|g−1(x) − sx| : sx ∈ R, h(sx) = x} ≤ 2p. (24)

The case where x ∈ [m0,M0] is obvious. If x > M0 then x ∈ [Mn−1,Mn] for some n ∈ N. Thus, by (14), x ∈ [mn,Mn], so

{sx ∈ R, h(sx) = x} ∩ In ≠ ∅.

On the other hand, in view of (21), we get

g(u + 2np) = Mn−1

and

g(u + 2(n + 1)p) = Mn,

which implies that g−1(x) ∈ In. Since the length of In is 2p, this yields (24). If x < m0, the similar arguments work.
Step 4. We show that the estimation (4) holds. To this end fix an x ∈ I and a t ∈ R. Then, by (24), there exists a sx ∈ R
such that

x = h(sx) = H(x0, sx)

and

|sx − g−1(x)| ≤ 2p.

Thus, making use of (3), (22) and (23), we obtain

|H(x, t) − g(t + g−1(x))| = |H(H(x0, sx), t) − g(t + g−1(x))|
≤ |H(H(x0, sx), t) − H(x0, sx + t)| + |H(x0, sx + t) − g(t + g−1(x))|
≤ δ + |h(sx + t) − g(t + g−1(x))|
≤ δ + |h(sx + t) − g(sx + t)| + |g(sx + t) − g(t + g−1(x))|

≤ 5δ + 2
δ

p
|sx − g−1(x)| ≤ 9δ.

3. Concluding remarks

Let us begin this section with the following simple example showing that in general a function H ∈ Fcs satisfying (2)
with some positive δ can be approximate by several dynamical systems belonging to Fcs.

Example 3.1. Let d : R → R be given by

d(t) = min{|t − n| : n ∈ Z} for t ∈ R.

Note that

|d(s + t) − d(s) − d(t)| ≤ 1 for s, t ∈ R. (25)

Define a function H : R × R → R by

H(x, t) = x + t + d(t) for x, t ∈ R.

Then H ∈ Fcs (with I = R). Moreover, making use of (25), we obtain that (2) holds with δ = 1. Next, given an α ∈ [0, 1),
define a function gα : R → R by

gα(t) = t + αd(t) for t ∈ R.

Then, for every α ∈ [0, 1), gα is a homeomorphism on R with gα(0) = 0. Furthermore, we have

|H(0, t) − gα(t)| = (1 − α)d(t) ≤
1 − α

2
for t ∈ R (26)
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and

|gα(s) − gα(t)| ≤ (1 + α)|s − t| for t ∈ R. (27)

Now, for every α ∈ [0, 1), put

Fα(x, t) = gα(g−1
α (x) + t) for x, t ∈ R.

Since, for every α ∈ [0, 1), it holds that Fα(0, t) = gα(t) for t ∈ R, we conclude that Fα ∈ Fcs and Fα ≠ Fβ whenever α ≠ β .
Note also that similarly as in the proof of Theorem 1.1, we obtain that for every x ∈ R there is a sx ∈ R such thatH(0, sx) = x
and |sx − g−1(x)| ≤ 1. Therefore, taking into account (25)–(27), for every x, t ∈ R, we get

|H(x, t) − Fα(x, t)| = |H(H(0, sx), t) − gα(g−1
α (x) + t)|

≤ |H(H(0, sx), t) − H(0, sx + t)| + |H(0, sx + t) − gα(sx + t)|
+ |gα(sx + t) − gα(g−1

α (x) + t)|

≤ |d(sx + t) − d(sx) − d(t)| +
1 − α

2
+ (1 + α)|sx − g−1

α (x)|

≤ 1 +
1 − α

2
+ 1 + α =

5 + α

2
< 3 = 3δ.

The next remarks concern the case where the interval I is not open.

Remark 3.1. The assertions of Steps 1 and 2 are true (with the same argumentation) also in the case where I is not open.

Remark 3.2. Assume that I is a not open real interval, say a := inf I ∈ I . Suppose that H ∈ Fcs satisfies (3) with a positive
δ and an x0 ∈ I such that a function h := H(x0, ·) is a continuous surjection of R onto I . We claim that the length of I
is at most 4δ. First note that as h is a continuous surjection of R onto I , there is a ta ∈ R such that h(ta) = a and either
h((−∞, ta)) ⊂ h((ta, ∞)) = I or h((ta, ∞)) ⊂ h((−∞, ta)) = I . Assume for instance that the first possibility is valid.
Suppose that the length of I is greater than 4δ. Then h(t0) > a + 4δ for some t0 ∈ (ta, ∞). Fix a t1 ∈ (−∞, 2ta − t0). Then
t1 < ta + (ta − t0) < ta, so there exists a t2 ∈ (ta, ∞)with h(t1) = h(t2). Thus, applying Remark 3.1, from (6) we deduce that

|a − h(ta + (t2 − t1))| = |h(ta) − h(ta + (t2 − t1))| ≤ 2δ,

that is

h(ta + (t2 − t1)) ≤ a + 2δ.

Furthermore, we have

ta < t0 < 2ta − t1 < ta + (t2 − t1).

Hence, as h is continuous and h(t0) > a+4δ, we conclude that there exist a u ∈ (ta, t0) and a v ∈ (t0, ta+(t2− t1)] such that
h(u) = h(v) = a + 2δ and h(t) ≥ a + 2δ for t ∈ [u, v]. Therefore [u, v] ∈ J(a + 2δ) and so t0 − u < v − u < S, where S is
given by (7). Hence, applying again Remark 3.1, from (8) we derive that |h(t0)−h(u)| ≤ 2δ. Thus h(t0) ≤ h(u)+2δ = a+4δ,
which yields a contradiction.

Remark 3.3. From Remark 3.2 it follows that if the interval I is non-degenerated and not open then for sufficiently small δ
(namely, for δ smaller than 1

4 of the length of I) there is no H ∈ Fcs satisfying (2). In particular, taking δ = 0, we get that if
the interval I is non-degenerated and not open then Eq. (1) has no solutions in the class Fcs.

Remark 3.4. Theorem 1.2 and Remark 3.3 imply that for every real interval I , Eq. (1) is stable in the Hyers–Ulam sense in the
class Fcs. Note however that if I is a not open bounded interval with a positive length |I| then taking an arbitrary H ∈ Fcs, we
get (2) with δ = |I|, but according to Remark 3.3, Eq. (1) has no solutions in the class Fcs. Hence, H can not be approximated
by such a solution.

We conclude the paper with the following problem.

Problem 3.1. Let I be an open real interval and δ : R2
→ [0, ∞). Under what reasonable assumptions on δ, every function

H : I × R → I satisfying the inequality

|H(H(x0, s), t) − H(x0, s + t)| ≤ δ(s, t) for s, t ∈ R

with an x0 ∈ I such that the function H(x0, ·) is a continuous surjection of R onto I , can be approximated (in some sense) by
a dynamical system belonging to Fcs.
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