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1. Introduction

Let I be a real interval. The translation equation, i.e. a functional equation of the form
F(F(x,5),t) =F(x,s+1) (1)

plays a very important role in the theory of functional equations and iteration theory. It belongs to the class of composite
type functional equations. Every continuous solution F : I x R — [ of (1) satisfying F(x, 0) = x for x € R is called a
dynamical system on I. For more details concerning (1) and its applications we refer to [1,2]. In the present paper we deal
with the case where (1) is satisfied up to some possible error. More precisely, we consider the inequality

[HH(x,s),t) —HX,s+t)]<§ forxel,s, teR, (2)

where § is a fixed nonnegative real number. Our considerations are inspired by a paper [3], where the stability problem for
the translation equation has been studied in a very general setting, but under relatively strong assumptions on H. In a recent
paper [4] an analogous question has been investigated in the case of functions mapping I x (0, co) into I. Stability problem for
(1) in the rings of formal power series has been considered in [5]. Several details concerning stability of functional equations
and a number of references can be found e.g. in [6,7].

The main result of the paper reads as follows.

Theorem 1.1. Let I be an open real interval and § be a nonnegative real number. Assume that a function H : I x R — I satisfies
inequality

|H(H(Xg,s),t) —H(xg,s+t)| <8 fors,t e R (3)

witha § > 0 and an xo € I such that the function H(xg, -) is a continuous surjection of R onto I. Then there exists a
homeomorphism g : R — I such that

[Hx, t) —g(t +g7'(x))| <98 forxel, teR. (4)
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Since, for every homeomorphism g : R — I, a function F : [ x R — [ of the form F(x, t) = g(t + g~ '(x)) forx e R, t € I,
satisfies (1) and, for every x € R, F(x, -) is a continuous surjection of R onto I, from Theorem 1.1 we derive the following
stability result for (1).

Theorem 1.2. Let I be an open real interval. The translation equation is stable in the Hyers-Ulam sense in the class of functions
Fes = {F : I x R — I|F(xp, -) is a continuous surjection for some xy € I},

that is, for every ¢ > QO thereisad (= %e) such that, for every H € F satisfying (2), there exists F € J satisfying (1) such that
|[H(x,t) —F(x,t)| <e¢ forxel, t eR.

2. Proof of Theorem 1.1

Let h := H(xo, -). If h is bijective, then (see [3, p.193]), we get the assertion with g := h and § instead of 9§ (note that
in [3] the continuity of h is not assumed). So, from now on we will assume that h is not injective. A remaining part of the
proof will be divided into four steps.

Step 1. We show that for every o, 8 € R with

h(e) = h(B) (5)
it holds
lh(s) — h(s+ (@ — B))| <25 forseR. (6)

Fix @, B € R and suppose that (5) is valid. Then H(xq, &) = H(xp, B), so in view of (3), for every s € R, we obtain

[h(s) — h(s + (@ — B))| = [H(Xo,5) — H(Xo, s+ (o — B))I
< [H(xo,5) —H(H(x0, B),s — B)| + |[H(H(xo, ), s — B) — H(Xo, s + (& — B))| < 25.
Step 2. For every ¢ € R, let J(c) be a family (possibly empty) of all non-degenerated closed intervals [u, v] C R satisfying
the following two conditions:
(Cy) h(u) = h(v) =c;
(C) h(t) < cfort € [u, v];orh(t) > cfort € [u, v].
Let J := (J.. J(c). Note that as h is not injective, there exist &, 8 € R such that ¢ < g and h(x) = h(B) =: c.

R
If h(t) = c for tcee [o, B] then [«, B] € J(c).If h(ty) # c for some ty € [, B] then the sets A~ := {t € [«, to] : h(t) = c}
and AT := {t € [ty, B] : h(t) = c} are nonempty and closed. Therefore, taking ¢~ := max A~ and ™ := min AT, we get
[a~, a™] € J(c). So we have proved that J # .
Let
S:=sup{v—u:[uv] eJ} (7)

We show that for every sq, s, € R, the following implication holds
Is1 —s2| < S = |h(s1) — h(s2)| < 2. (8)

To this end, fix s1, s, € R such that |s; — s3] < S. Assume for instance that s; < s;. Then there exist u, v € R such that
[u,v] € Jand s, —s; < v — u. Let ¢ € R be such that [u, v] € J(c) and let a function ¢ : [0, v — u — (s — s1)] — R be
defined by:

¢ty =h(u+t)—h(u+t+s,—sy) fort €[0,v—u—(s3—51)] 9)
Clearly,u + s, — sy € [u,v]and v — (s, — s1) € [u, v]. Since [u, v] € J(c), by (C;), we have
P(0)Pp(v —u—(s2 —51) =[c —h(u+s3 —spD][h(v — (s2 —s1)) —c] < 0.

As ¢ is continuous, from the latter inequality it follows that there existsaz € [0, v — u — (s — s1)] such that ¢ (z) = 0, that
is

h(u+2z) =h@u+z+s, —s9).
Thus, taking @ := u+zand 8 := u + z + s, — s1, we get (5). Hence according to Step 1, we obtain that
[h(s1) — h(s2)| < 28.

In particular, if S = oo then for every s1,s, € R there exists an interval [u, v] € J such thats; — s, < v — u. Hence,
we get that |h(s;) — h(sz)| < 26 for every s1, s, € R. Thus, as h is surjective, we get b — a < 24. So, taking an arbitrary
homeomorphism g : R — (a, b), we get

[Hx, t) —g(t+g7'(x)| <28 forxel, t eR.
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Step 3. Assume that S < oco. Leta := inf I and b := sup I. As h is surjective, we have either

limsuph(t) =a
t—00
or
limsup h(t) = b. (10)
t—00
Since the proof in both cases is similar, assume that (10) holds. Fixap € (%S, S). Then there exists an interval [u, v] € J
such that p < v — u. Furthermore, according to Step 2, for every s, t € R it holds

s —t| =p = I[h(s) —h(®)| = 26. (11)
For every n € Z, we define an interval I, in a following way

I .= [u+2np,u+2(n+ 1)p]. (12)
Let

M, = max h(l,) forneZz
and

m, := min h(I,) forn € Z.

Since the length of every I, is 2p, making use of (11), we conclude that

M, —m, <48 forn e Z. (13)
Furthermore, the continuity of h yields that

m, <M,_,; forneZ. (14)
Therefore

M, —Mp_1 <M,—m, <45 forne Z. (15)

Now, we show that a sequence (M, : n € N) is strictly increasing. For the proof by contradiction suppose that M;, < M;_4
for some n € N. Since h is continuous and (10) holds, this means that there exists an a9 > u 4+ 2(n + 1)p such that

h(ctg) = Mn—1 (16)
and

h(t) <My_; fort e[u+2(n+ 1)p, al. (17)
Let oy € I,_q be such that h(«w;) = M,_1. Then, in view of (16) and (17), we obtain that

g —oy >u+2n+1)p —(u+2np) =2p > S,

which contradicts the definition of S. So, we have proved that the sequence (M, : n € N) is strictly increasing, which
together with (10) gives

lim M, = b. (18)

n—oo
Next, note that if lim inf;_, o, h(t) = a, then liminf,_, .. m, = a, so by (13) and (18), we obtain

b —a = liminf(M,, — m,) < 4§.

n—o0o

Thus we get (4) with an arbitrary homeomorphism g : R — I. In the case where lim inf;_, o, h(t) > a, using the fact that h
is surjective, we have liminf;_, _,, h(t) = a. Therefore, arguing as previously, we obtain that

m_,—m_,_1 <48 forneN, (19)
a sequence (m_, : n € N) is strictly decreasing and so

lim m_, = a. (20)
n—oo

Let g : R — I be a piecewise linear mapping such that

M,_, forn=1,2,...

my forn=0,-1,.... (21)

g(u+2np) = {

Since the sequence (M), : n € N) is strictly increasing and the sequence (m_, : n € N) is strictly decreasing, from (18) and
(20) it follows that g is a homeomorphism of R onto I. Furthermore, for everyn € Z and t € I,,, we get

|h(t) —g(t)| < My — my.
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Thus, in view of (13), we obtain

|h(t) —g(t)] <46 fort e R. (22)
Next, making use of (15) and (19), foreveryn € Z and s, t € I, with s # t, we get
8
lg(s) —g(t)| <2-|s—t| fors,t eR. (23)
p

Now, we show that for every x € [ it holds that
inf{lg ™" (x) — 5| : 5, € R, h(sy) = x} < 2p. (24)
The case where x € [mg, Mp] is obvious. If x > M, then x € [M,,_1, M,,] for some n € N. Thus, by (14), x € [m,,, M,], so
{sx € R, h(sy) =x} NI, 0.
On the other hand, in view of (21), we get
g(u+2np) = Mp—y
and
gu+2(n+ 1)p) = M,

which implies that g~1(x) € I,. Since the length of I, is 2p, this yields (24). If x < my, the similar arguments work.

Step 4. We show that the estimation (4) holds. To this end fix anx € I and at € R. Then, by (24), there exists as, € R
such that

x = h(sy) = H(xo, sx)
and
Isx —g ' ()] < 2p.
Thus, making use of (3), (22) and (23), we obtain
Hx, t) —g(t +g ' ()| = [HH(xo, 50, 1) — gt + g~ ')
< |H(H(x0, $x), t) — H(Xo, sy + D)| + [H(Xo, 5, + 1) — g(t + g7 ()]
<S8+ h(se+10) —gt+g ')l
S+ lh(se+0) — g+ O]+ 1g(se + 1) — gt +g ' ()]

)
58 +2—|sy —g ' (x)| < 98.
p

IA

IA

3. Concluding remarks

Let us begin this section with the following simple example showing that in general a function H € F satisfying (2)
with some positive é can be approximate by several dynamical systems belonging to Fs.

Example 3.1. Letd : R — R be given by

d(t) = min{|t —n|:ne€ Z} fort eR.
Note that

ld(s+t) —d(s) —d(t)] <1 fors,t €R. (25)
Define a function H : R x R — R by

H(x,t) =x+t+d(t) forx,teR.

Then H € F (with I = R). Moreover, making use of (25), we obtain that (2) holds with § = 1. Next, given an o € [0, 1),
define a function g, : R — R by

g, (t) =t +ad(t) fort eR.

Then, for every « € [0, 1), g, is a homeomorphism on R with g, (0) = 0. Furthermore, we have

IH(O0, £) — g, ()] = (1 — a)d(t) < 1%“ fort € R (26)
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and

|22 (5) — Zu()] < (1+a)|s—t]| fort eR. 27)
Now, for every o € [0, 1), put

Fu(x,t) = g4(g, ' (x) +t) forx,t € R.

Since, for every o € [0, 1), it holds that F, (0, t) = g, (t) for t € R, we conclude that F, € § and F, # Fg whenever o # B.
Note also that similarly as in the proof of Theorem 1.1, we obtain that for every x € R thereisas, € R such that H(0, sy) = x
and |sy — g~ '(x)| < 1. Therefore, taking into account (25)-(27), for every x, t € R, we get
IH(x, t) — Fy(x, 0)| = [H(H(0, 5, 1) — g (g, ' (x) + 1)
< [H(H(0, 5), t) — H(O, sy + )| + [H(O, 5x + £) — 8o (Sx + )|
+ 182 (5 + 1) — galg, (0 + 0

IA

ld(sy + 1) — d(s,) — d()| + I_Ta + (1 +a)lsy— g, ¥

1— 5
§1+—33+1+a:—§ﬁ<3=3&

The next remarks concern the case where the interval I is not open.
Remark 3.1. The assertions of Steps 1 and 2 are true (with the same argumentation) also in the case where I is not open.

Remark 3.2. Assume that I is a not open real interval, say a := inf I € I. Suppose that H € § satisfies (3) with a positive
d and an xo € I such that a function h := H(xo, -) is a continuous surjection of R onto I. We claim that the length of I
is at most 44. First note that as h is a continuous surjection of R onto I, there is a t; € R such that h(t,) = a and either
h((—o0, tg)) C h((tg, 00)) = I or h((ts, 00)) C h((—o0, t;)) = I. Assume for instance that the first possibility is valid.
Suppose that the length of I is greater than 44. Then h(ty) > a + 44 for some t; € (t;, 00). Fixat; € (—o0, 2t; — tp). Then
t1 < tg+ (tg—to) < tg,sothereexistsat, € (tz, 0o) with h(t;) = h(t;). Thus, applying Remark 3.1, from (6) we deduce that

la —h(ta + (tz — t1)| = |h(ta) — h(ta + (&2 — t1))] < 28,
thatis

h(ts + (&2 — 1)) < a+ 26.
Furthermore, we have

ta <ty <2y—t; <tg+ (& —t1).

Hence, as h is continuous and h(ty) > a+ 44§, we conclude that there existau € (t;, tgp) andav € (to, ty+ (t, —t1)] such that
h(u) = h(v) = a+ 28§ and h(t) > a+ 26 fort € [u, v]. Therefore [u, v] € J(a+ 2§) andsoty —u < v —u < S, where S is
given by (7). Hence, applying again Remark 3.1, from (8) we derive that |h(ty) —h(u)| < 26.Thus h(ty) < h(u)+2§ = a+44,
which yields a contradiction.

Remark 3.3. From Remark 3.2 it follows that if the interval I is non-degenerated and not open then for sufficiently small §
(namely, for § smaller than % of the length of I) there is no H € J satisfying (2). In particular, taking § = 0, we get that if
the interval I is non-degenerated and not open then Eq. (1) has no solutions in the class Fc.

Remark 3.4. Theorem 1.2 and Remark 3.3 imply that for every real interval I, Eq. (1) is stable in the Hyers-Ulam sense in the
class Fs. Note however that if I is a not open bounded interval with a positive length |I| then taking an arbitrary H € J, we
get (2) with § = |I|, but according to Remark 3.3, Eq. (1) has no solutions in the class §.. Hence, H can not be approximated
by such a solution.

We conclude the paper with the following problem.

Problem 3.1. Let ] be an open real interval and § : R> — [0, co). Under what reasonable assumptions on 8, every function
H : I x R — [ satisfying the inequality
|H(H(xo,5s),t) —H(xp,s+t)] <d(s,t) fors,teR

with an xq € I such that the function H(xo, -) is a continuous surjection of R onto I, can be approximated (in some sense) by
a dynamical system belonging to .
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