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Abstract

In this article, we improve the Strichartz estimates obtained in A. de Bouard, A. Debussche (2010) [12] for the Schrödinger
equation with white noise dispersion in one dimension. This allows us to prove global well posedness when a quintic critical
nonlinearity is added to the equation. We finally show that the white noise dispersion is the limit of smooth random dispersion.
© 2011 Elsevier Masson SAS. All rights reserved.

Résumé

Nous montrons des inégalités de Strichartz pour l’équation de Schrödinger avec dispersion bruit-blanc en dimension un. Cellesci
améliorent celles obtenues dans A. de Bouard, A. Debussche (2010) [12] et nous permettent de montrer que les équations sont
globalement bien posées dans le cas d’une non linéarité critique. Nous montrons aussi que la dispersion bruit-blanc peut être
obtenue comme limite de dispersions aléatoires régulières.
© 2011 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The nonlinear Schrödinger equation with power nonlinearity is a common model in optics. It describes the propa-
gation of waves in a nonlinear dispersive medium. It has been widely studied (see for instance [7,26]). In the case of
a focusing nonlinearity, it has the form:

{
i
du

dt
+ �u + |u|2σ u = 0, x ∈ R, t > 0,

u(0) = u0, x ∈ R
n.
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It is well known that for subcritical nonlinearity, i.e. σ < 2/n, this equation is globally well posed in L2(Rn) and in
H 1(Rn) [21,22,27]. Moreover, solitary waves are stable.

For critical, σ = 2/n, or supercritical, σ > 2/n, nonlinearity, the equation is locally well posed in H 1(Rn).
It is known that there exists solutions which form singularities in finite time. On the contrary, initial data with small
H 1(Rn) norm yield global solutions. Furthermore, solitary waves are unstable.

The effect of a noise on the behavior of the solutions has also been the object of several studies, both in the
physical literature (see for instance [2,5,6,17,23,28]) or in the mathematical literature (see for instance [8–11,14,15,
19,20]). Random effects may be taken into account at various places of the equation. A random forcing term or a
random potential can be added. Also random diffraction index result as a random coefficient before the nonlinear
term. Numerical and theoretical studies have shown that many interesting new behaviors may appear.

For instance, it has been shown that when a random potential which is white in time is added to the equation it
may affect strongly the formation of singularities. If this random potential is smooth in space and the nonlinearity is
supercritical, any initial data yields a solutions which blows up in finite time with positive probability. If the noise
is additive, this is also true for critical nonlinearity. On the contrary, numerical experiments tend to show that, if the
noise acts as a potential and is rough in space, the formation of singularities is prevented and the solution continue to
propagate. The rigorous justification of such statement seems to be completely out of reach at present.

In this work, we consider a noisy dispersion. This is a natural model in dispersion managed optical fibers [1,3,
4,18,24] (see also [29] for a deterministic periodic dispersion). The nonlinear Schrödinger equation with random
dispersion has also been studied mathematically. In [24], the power law nonlinearity is replaced by a smooth bounded
function and it is shown that, in a certain scaling, the solutions to the nonlinear Schrödinger equation converge to the
solutions of the nonlinear Schrödinger equation with white noise dispersion. This result has been extended to the case
of a subcritical nonlinearity in [12]. One of the main improvement in [12] is the use of Strichartz type estimates for
white noise dispersion (see also [13] for the derivation of Strichartz estimates for a stochastic nonlinear Schrödinger
equation).

Note that Strichartz type estimates are not immediate for a white noise dispersion. We have an explicit formula of
the fundamental solution for the linear equation as in the deterministic case:

u(t) = 1

(4iπ(β(t) − β(s)))d/2

∫
Rd

exp

(
i

|x − y|2
4(β(t) − β(s))

)
us(y) dy,

is the solution of the linear equation with white noise dispersion with initial data us at time s (see Proposition 3.1).
Nevertheless, it is not obvious whether the Strichartz type estimate holds or not unlike the deterministic case.

We have two difficulties to prove the Strichartz type estimate. One difficulty is that the dispersion coefficient is highly
degenerate. In fact, for ε > s � 0, the set {t ∈ (s, ε): β(t) − β(s) = 0} has the cardinality of the continuum (see,
e.g. [16], Example 4.1 in Section 7.4). Roughly speaking, in our problem, the dispersion coefficient has so many
zeros that we can not expect that pathwise Strichartz estimates hold. Another difficulty is that the duality argument
(or T T ∗ argument) does not work as well as in the deterministic case. “Duality” corresponds to solving the equation
backwards. For stochastic equations, a backward equation has in general no solution unless the coefficient of the noise
is considered as an unknown, which is not desirable in our situation.

In the present work, we show that in the one-dimensional case it is possible to improve the Strichartz estimates
obtained in [12] and as a result prove that the nonlinear Schrödinger equation with critical nonlinearity and white
noise dispersion is globally well posed in L2(R) and H 1(R). This confirms the fact that such a random dispersion has
a strong stabilizing effect on the equation: in the quintic one-dimensional case considered, it prevents the formation
of singularities and yields global well posedness.

2. Preliminaries and main results

We consider the following stochastic nonlinear Schrödinger (NLS) equation with quintic nonlinearity on the real
line: {

i du + �u ◦ dβ + |u|4udt = 0, x ∈ R, t > 0, (2.1)

u(0) = u0, x ∈ R.
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The unknown u is a random process on a probability space (Ω, F ,P) depending on t > 0 and x ∈ R. The noise term
is given by a Brownian motion β associated to a stochastic basis (Ω, F ,P, (Ft )t�0). The product ◦ is a Stratonovich
product. Classically, we transform this Stratonovitch equation into an Itô equation which is formally equivalent:{

i du + i

2
�2udt + �udβ + |u|4udt = 0, x ∈ R, t > 0,

u(0) = u0.

(2.2)

It seems as if the principal part of (2.2) were the double Laplacian, which does not appear to be degenerate. But this
is not true. Indeed, the explicit formula of the fundamental solution for the linear equation shows the high degeneracy
of the principal part (see Proposition 3.1), as is already pointed out in Section 1.

We study this Eq. (2.2) in the framework of the L2(R) based Sobolev spaces denoted by Hs(R), s � 0. We also
use the spaces Lp(R) to treat the nonlinear term thanks to the Strichartz estimates. Note that, in all the article, these
are spaces of complex valued functions.

For time dependent functions on an interval I ⊂ R with values in a Banach space K , we use the spaces: Lr(I ;K),
r � 1. Given a time dependent function f , we use two notations for its values at some time t depending on the context.
We either write f (t) or ft .

The norm of a Banach space K is simply denoted by ‖ · ‖K . When we consider random variables with values in a
Banach space K , we use Lp(Ω;K), p � 1.

For spaces of predictible time dependent processes, we use the subscript P . For instance Lr
P (Ω;Lp(0, T ;K)) is

the subspace of Lr(Ω;Lp(0, T ;K)) consisting of predictible processes.
Our main result is the following:

Theorem 2.1. Let u0 ∈ L2(R) a.s. be F0-measurable, then there exists a unique solution u to (2.2) with paths a.s. in
L5

loc(0,∞;L10(R)); moreover, u has paths in C(R+;L2(R)), a.s. and∥∥u(t)
∥∥

L2(R)
= ‖u0‖L2(R), a.s.

If in addition u0 ∈ H 1(R), then u has paths a.s. in C(R+;H 1(R)).

As in [12], we use this result to justify rigorously the convergence of the solution of the following random equation:⎧⎨
⎩ i

du

dt
+ 1

ε
m

(
t

ε2

)
∂xxu + |u|4u = 0, x ∈ R, t > 0,

u(0) = u0, x ∈ R,

(2.3)

to the solution of (2.2) provided that the real valued centered stationary random process m(t) is continuous and that

for any T > 0, the process t �→ ε
∫ t/ε2

0 m(s)ds converges in distribution to a standard real valued Brownian motion in
C([0, T ]). This is a classical assumption and can be verified in many cases.

To our knowledge, Strichartz estimates are not available for Eq. (2.3). Hence we cannot get solutions in L2(R).
Since the equation is set in space dimension 1, a local existence result can be easily proved in H 1(R). For fixed ε,
we do not expect to have global in time solutions, indeed with a quintic nonlinearity it is known that singularities
appear for the deterministic nonlinear Schrödinger equation. In the following result, we prove that the lifetime of the
solutions converges to infinity when ε goes to zero, and that solutions of (2.3) converge in distribution to the solutions
of the white noise driven Eq. (2.2).

Theorem 2.2. Suppose that m satisfies the above assumption. Then, for any ε > 0, and u0 ∈ H 1(R), there exists a
unique solution uε of Eq. (2.3) with continuous paths in H 1(R) which is defined on a random interval [0, τε(u0)).
Moreover, for any T > 0,

lim
ε→0

P
(
τε(u0) � T

) = 0,

and the process uε1[τε>T ] converges in distribution to the solution u of (2.2) in C([0, T ];H 1(R)).

Remark 2.3. Note that there is a slight improvement compared to the result obtained in [12] where the convergence
was not proved in the H 1(R) topology. This result can be extended to initial data in Hs(R) for s ∈ (1/2,1]. In this
case, the convergence holds in C([0, T ];Hs(R)).
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3. The linear equation and Strichartz type estimates

The Strichartz estimates are crucial to study the deterministic equation. In [12], these have been generalized to
a white noise dispersion. However, the result obtained there was not strong enough to treat the nonlinearity of the
present article. We now show that in dimension 1, it is possible to get a better result.

We consider the following stochastic linear Schrödinger equation:{
i du + i

2
�2udt + �udβ = 0, t � s,

u(s) = us.

(3.1)

We have an explicit formula for the solutions of (3.1). We recall from [12,24] the following result:

Proposition 3.1. For any s � T and us ∈ S ′(Rn), there exists a unique solution of (3.1) almost surely in
C([s, T ]; S ′(Rn)) and adapted. Its Fourier transform in space is given by:

û(t, ξ) = e−i|ξ |2(β(t)−β(s))ûs(ξ), t � s, ξ ∈ R
d .

Moreover, if us ∈ Hσ (R) for some σ ∈ R, then u(·) ∈ C([0, T ];Hσ (R)) a.s. and ‖u(t)‖Hσ = ‖us‖Hσ , a.s. for t � s.
If us ∈ L1(R), the solution u of (3.1) has the expression:

u(t) = S(t, s)us := 1

(4iπ(β(t) − β(s)))d/2

∫
Rd

exp

(
i

|x − y|2
4(β(t) − β(s))

)
us(y) dy, t ∈ [s, T ]. (3.2)

The idea is to obtain Strichartz estimate through smoothing effects of S(t, s) as was done in the deterministic case
in [25].

The first step is the following:

Proposition 3.2. Let f ∈ L4
P (Ω;L1(0, T ;L2(R))) then t �→ D1/2(| ∫ t

0 S(t, s)f (s) ds|2) belongs to L2
P (Ω ×

[0, T ] × R), and

E

T∫
0

∥∥∥∥∥D1/2

(∣∣∣∣∣
t∫

0

S(t, s)f (s) ds

∣∣∣∣∣
2)∥∥∥∥∥

2

L2(R)

dt � 4
√

2πT 1/2
E

(‖f ‖4
L1(0,T ;L2(R))

)
.

Proof. By density, it is sufficient to prove that the inequality is valid for sufficiently smooth f . Set, for ξ ∈ R,

A(ξ) =
∣∣∣∣∣F

[∣∣∣∣∣
t∫

0

S(t, s)f (s) ds

∣∣∣∣∣
2]

(ξ)

∣∣∣∣∣
2

.

Then, by Plancherel identity,

E

T∫
0

∥∥∥∥∥D1/2

(∣∣∣∣∣
t∫

0

S(t, s)f (s) ds

∣∣∣∣∣
2)∥∥∥∥∥

2

L2(R)

dt = E

T∫
0

∫
R

|ξ |A(ξ)dξ dt.

We have, by Proposition 3.1 and easy computations,

F
[∣∣∣∣∣

t∫
0

S(t, s)f (s) ds

∣∣∣∣∣
2]

(ξ) =
∫
R

t∫
0

t∫
0

e−i(βt−βs1 )(ξ−ξ1)
2+i(βt−βs2 )ξ2

1 f̂s1(ξ − ξ1)
ˆ̄f s2

(ξ1) ds1 ds2 dξ1.

We deduce:

A(ξ) =
∫ ∫
R2

∫ ∫ ∫ ∫
[0,t]4

e−i(βt−βs1 )(ξ−ξ1)
2+i(βt−βs2 )ξ2

1 ei(βt−βs3 )(ξ−ξ2)
2−i(βt−βs4 )ξ2

2

× f̂s1(ξ − ξ1)
ˆ̄f s (ξ1)

¯̂
f s (ξ − ξ2)

¯̂̄
f s (ξ2) ds1 ds2 ds3 ds4 dξ1 dξ2.
2 3 4
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Let us split [0, t]4 = ⋃
i=1,...,4 Ri with

Ri = {
(s1, s2, s3, s4) ∈ [0, t]4; si = max{s1, s2, s3, s4}

}
,

and split accordingly

A(ξ) =
∑

i=1,...,4

Ii(ξ).

We then write, using (ξ − ξ1)
2 − ξ2

1 − (ξ − ξ2)
2 + ξ2

2 = 2ξ(ξ2 − ξ1),

E

( ∫
R

|ξ |I1(ξ) dξ

)
= E

( ∫
R1

∫ ∫ ∫
R3

|ξ |e−2i(βt−βs1 )ξ(ξ2−ξ1)−i(βs1−βs2 )ξ2
1 +i(βs1 −βs3 )(ξ−ξ2)

2−i(βs1−βs4 )ξ2
2

× f̂s1(ξ − ξ1)
ˆ̄f s2

(ξ1)
¯̂

f s3
(ξ − ξ2)

¯̂̄
f s4

(ξ2) ds1 ds2 ds3 ds4 dξ1 dξ2 dξ

)
.

Clearly e−2i(βt−βs1 )ξ(ξ2−ξ1) is independent to the other factors. Moreover:

E
(
e−2i(βt−βs1 )ξ(ξ2−ξ1)

) = e−2(t−s1)ξ
2(ξ2−ξ1)

2
.

We deduce:

E

( ∫
R

|ξ |I1(ξ) dξ

)
� E

( ∫
R1

∫ ∫ ∫
R3

|ξ |e−2(t−s1)ξ
2(ξ2−ξ1)

2 ∣∣f̂s1(ξ − ξ1)
∣∣∣∣ ˆ̄f s2

(ξ1)
∣∣

× ∣∣f̂s3(ξ − ξ2)
∣∣∣∣ ˆ̄f s4

(ξ2)
∣∣ds1 ds2 ds3 ds4 dξ1 dξ2 dξ

)
.

Note that∫ ∫ ∫
R3

|ξ |e−2(t−s1)ξ
2(ξ2−ξ1)

2 ∣∣f̂s1(ξ − ξ1)
∣∣∣∣ ˆ̄f s2

(ξ1)
∣∣∣∣f̂s3(ξ − ξ2)

∣∣∣∣ ˆ̄f s4
(ξ2)

∣∣dξ1 dξ2 dξ

=
∫
R

|ξ |
( ∫

R

∣∣f̂s1(ξ − ξ1)
∣∣∣∣ ˆ̄f s2

(ξ1)
∣∣( ∫

R

e−2(t−s1)ξ
2(ξ2−ξ1)

2 ∣∣f̂s3(ξ − ξ2)
∣∣∣∣ ˆ̄f s4

(ξ2)
∣∣dξ2

)
dξ1

)
dξ.

Since
∫

R
e−2(t−s1)ξ

2η2
dη =

√
π

|ξ |(2(t−s1)
)1/2 , we deduce by Young’s and Schwarz’s inequalities:

∫ ∫ ∫
R3

|ξ |e−2(t−s1)ξ
2(ξ2−ξ1)

2 ∣∣f̂s1(ξ − ξ1)
∣∣∣∣ ˆ̄f s2

(ξ1)
∣∣∣∣f̂s3(ξ − ξ2)

∣∣∣∣ ˆ̄f s4
(ξ2)

∣∣dξ1 dξ2 dξ

�
√

π

(2(t − s1))1/2

∫
R

( ∫
R

∣∣f̂s1(ξ − ξ1)
∣∣2∣∣ ˆ̄f s2

(ξ1)
∣∣2

dξ1

)1/2( ∫
R

∣∣f̂s3(ξ − ξ2)
∣∣2∣∣ ˆ̄f s4

(ξ2)
∣∣2

dξ2

)1/2

dξ

�
√

π

(2(t − s1))1/2

( ∫
R

∫
R

∣∣f̂s1(ξ − ξ1)
∣∣2∣∣ ˆ̄f s2

(ξ1)
∣∣2

dξ1 dξ

)1/2( ∫
R

∫
R

∣∣f̂s3(ξ − ξ2)
∣∣2∣∣ ˆ̄f s4

(ξ2)
∣∣2

dξ2 dξ

)1/2

=
√

π

(2(t − s1))1/2
‖fs1‖L2(R)‖fs2‖L2(R)‖fs3‖L2(R)‖fs4‖L2(R).

It follows:

E

( ∫
|ξ |I1(ξ) dξ

)
� E

∫ √
π

(2(t − s1))1/2
‖fs1‖L2(R)‖fs2‖L2(R)‖fs3‖L2(R)‖fs4‖L2(R) ds1 ds2 ds3 ds4,
R R1



368 A. Debussche, Y. Tsutsumi / J. Math. Pures Appl. 96 (2011) 363–376
and

E

T∫
0

∫
R

|ξ |I1(ξ) dξ dt �
√

2πT 1/2
E

(( T∫
0

‖fs‖L2(R) ds

)4)
.

The three other terms are treated similarly and the result follows. �
Proposition 3.3. There exists a constant κ > 0 such that for any s ∈ R, T � 0 and f ∈ L4

P (Ω;L1(s, s + T ;L2(R))),

the mapping t �→ ∫ t

s
S(t, σ )f (σ )dσ belongs to L4

P (Ω;L5(s, s + T ;L10(R))), and∥∥∥∥∥
·∫

s

S(·, σ )f (σ )dσ

∥∥∥∥∥
L4(Ω;L5(s,s+T ;L10(R)))

� κT 1/10‖f ‖L4(Ω;L1(s,s+T ;L2(R))).

Remark 3.4. This result is very similar to the classical Strichartz estimates in the case of dimension 1 considered
here. Indeed (5,10) and (∞,2) are admissible pairs. However, it is more powerful. Indeed, we have the extra factor
T 1/10. This is a major difference and allows us to construct solution for the quintic nonlinearity. Recall that in the
deterministic case, it is known that there are singular solutions for this equation. The proof below extends easily to the
same result with (5,10) replaced by any admissible pair (r,p), i.e. satisfying 2

r
= 1

2 − 1
p

. Of course, the power of T

changes in this case; but it remains positive.

Proof of Proposition 3.3. We treat only the case s = 0. The generalization is easy. Also, it is sufficient to prove that
the inequality holds for sufficiently smooth f .

We use the following lemma. Its proof is given below for the reader’s convenience.

Lemma 3.5. Let g ∈ L1(R) such that D1/2g ∈ L2(R), then g ∈ L5(R), and

‖g‖L5(R) � C‖g‖1/5
L1(R)

∥∥D1/2g
∥∥4/5

L2(R)
.

Let us write:∥∥∥∥∥
·∫

0

S(·, σ )f (σ )dσ

∥∥∥∥∥
4

L4(Ω;L5(0,T ;L10(R)))

=
∥∥∥∥∥
∣∣∣∣∣

·∫
0

S(·, σ )f (σ )dσ

∣∣∣∣∣
2∥∥∥∥∥

2

L2(Ω;L5/2(0,T ;L5(R)))

.

Therefore, by Lemma 3.5, Hölder inequality and Proposition 3.2,∥∥∥∥∥
·∫

0

S(·, σ )f (σ )dσ

∥∥∥∥∥
4

L4(Ω;L5(0,T ;L10(R)))

� cE

(( T∫
0

∥∥∥∥∥
∣∣∣∣∣

t∫
0

S(t;σ)fσ dσ

∣∣∣∣∣
2∥∥∥∥∥

1/2

L1(R)

∥∥∥∥∥D1/2

∣∣∣∣∣
t∫

0

S(t;σ)fσ dσ

∣∣∣∣∣
2∥∥∥∥∥

2

L2(R)

dt

)4/5)

� cE

(∥∥∥∥∥
∣∣∣∣∣

·∫
0

S(·;σ)fσ dσ

∣∣∣∣∣
2∥∥∥∥∥

2/5

L∞(0,T ;L1(R))

∥∥∥∥∥D1/2

∣∣∣∣∣
·∫

0

S(·;σ)fσ dσ

∣∣∣∣∣
2∥∥∥∥∥

8/5

L2(0,T ;L2(R))

)

� cE

(∥∥∥∥∥
∣∣∣∣∣

·∫
0

S(·;σ)fσ dσ

∣∣∣∣∣
2∥∥∥∥∥

2

L∞(0,T ;L1(R))

)1/5

E

(∥∥∥∥∥D1/2

∣∣∣∣∣
·∫

0

S(·;σ)fσ dσ

∣∣∣∣∣
2∥∥∥∥∥

2

L2(0,T ;L2(R))

)4/5

� T 2/5
E

(‖f ‖4
L1(0,T ;L2(R))

)
. �

Proof of Lemma 3.5. By Gagliardo–Nirenberg inequality, we have:

‖g‖L5(R) � c
∥∥D1/2g

∥∥3/5
2 ‖g‖2/5

2 . (3.3)

L (R) L (R)
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Moreover,

‖g‖2
L2(R)

= ‖ĝ‖2
L2(R)

=
∫

|ξ |�R

∣∣ĝ(ξ)
∣∣2

dξ +
∫

|ξ |�R

∣∣ĝ(ξ)
∣∣2

dξ

�
∫

|ξ |�R

|ξ |
R

∣∣ĝ(ξ)
∣∣2

dξ + 2R‖ĝ‖2
L∞(R)

� 1

R

∥∥D1/2g
∥∥2

L2(R)
+ 2R‖g‖2

L1(R)
.

It suffices to take R = ‖D1/2g‖L2(R)‖g‖−1
L1(R)

and to insert the result in (3.3) to conclude. �
We also need to have estimates on the action of S(t, s) on an initial data.

Proposition 3.6. Let s � 0 and us ∈ L4(Ω;L2(R)) be Fs measurable, then t �→ S(t, s)us belongs to
L4

P (Ω;L5(s, s + T ;L10(R))), and∥∥S(·, s)us

∥∥
L4(Ω;L5(s,s+T ;L10(R)))

� cT 1/10‖us‖L4(Ω;L2(R)).

Proof. The proof is similar. Again, we only treat the case s = 0. We first write:∣∣F
(∣∣S(t,0)u0

∣∣2)∣∣2 =
∫ ∫

R2

e−2iβt ξ(ξ2−ξ1)û0(ξ − ξ1) ˆ̄u0(ξ1) ¯̂u0(ξ − ξ2)
¯̂̄
u0(ξ2) dξ1 dξ2,

and

E
(∥∥D1/2

∣∣S(t,0)u0
∣∣2∥∥2

L2(0,T ;L2(R))

)

= E

T∫
0

∫ ∫ ∫
R3

|ξ |e−2tξ2(ξ2−ξ1)
2
û0(ξ − ξ1) ˆ̄u0(ξ1) ¯̂u0(ξ − ξ2)

¯̂̄
u(ξ2) dξ1 dξ2 dξ dt

� E

T∫
0

∫
R

|ξ |
( ∫

R

û0(ξ − ξ1) ˆ̄u0(ξ1)

( ∫
R

e−2tξ2(ξ2−ξ1)
2 ¯̂u0(ξ − ξ2)

¯̂̄
u(ξ2) dξ2

)
dξ1

)
dξ dt.

Therefore by Young’s and Schwarz’s inequalities:

E
(∥∥D1/2

∣∣S(t,0)u0
∣∣2∥∥2

L2(0,T ;L2(R))

)
� E

T∫
0

√
πt−1/2

E
(‖u0‖4

L2(R)

)
dt

� 2
√

πT 1/2
E

(‖u0‖4
L2(R)

)
.

We then use Lemma 3.5 and Hölder inequality:∥∥S(·,0)u0
∥∥

L4(Ω;L5(0,T ;L10(R)))
� c

∥∥∣∣S(·,0, u0)
∣∣2∥∥1/10

L2(Ω;L∞(0,T ;L1(R)))

∥∥D1/2
∣∣S(·,0, u0)

∣∣2∥∥4/10
L2(Ω;L2(0,T ;L2(R)))

� cT 1/10
E

(‖u0‖4
L2(R)

)
. �

4. Proof of Theorem 2.1

As is classical, we first construct a local solution of Eq. (2.2) thanks to a cut-off of the nonlinearity. Proceeding as
in [8,9,12], we take θ ∈ C∞

0 (R) be such that θ = 1 on [0,1], θ = 0 on [2,∞) and for s ∈ R, u ∈ L5
loc(s,∞;L10(R)),

R � 1 and t � 0, we set:

θs
R(u)(t) = θ

(‖u‖L5(s,s+t;L10(R))

)
.

R
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For s = 0, we set θ0
R = θR .

The truncated form of Eq. (2.2) is given by:⎧⎨
⎩ i duR + i

2
�2uR dt + �uR dβ + θR

(
uR

)∣∣uR
∣∣4

uR dt = 0,

uR(0) = u0.

(4.1)

We interpret it in the mild sense

uR(t) = S(t,0)u0 + i

t∫
0

S(t, s)θR

(
uR

)
(s)

∣∣uR(s)
∣∣4

uR(s) ds. (4.2)

Proposition 4.1. For any F0-measurable u0 ∈ L4(Ω;L2(R)), there exists a unique solution of (4.2) uR in
L4

P (Ω;L5(0, T ;L10(R))) for any T > 0. Moreover uR is a weak solution of (4.1) in the sense that for any
ϕ ∈ C∞

0 (Rd) and any t � 0,

i
(
uR(t) − u0, ϕ

)
L2(R)

= − i

2

t∫
0

(
uR,�2ϕ

)
L2(R)

ds −
t∫

0

θR

(
uR

)(∣∣uR
∣∣4

uR,ϕ
)
L2(R)

ds −
t∫

0

(
uR,�ϕ

)
L2(R)

dβ(s), a.s.

Finally, the L2(R) norm is conserved:∥∥uR(t)
∥∥

L2(R)
= ‖u0‖L2(R), t � 0, a.s.

and u ∈ C([0, T ];L2(R)) a.s.

Proof. In order to lighten the notations we omit the R dependence in this proof. By Proposition 3.6, we know that
S(·,0)u0 ∈ L4

P (Ω;L5(0, T ;L10(R))). Then, by Proposition 3.3, for u,v ∈ L4
P (Ω;L5(0, T ;L10(R))),

∥∥∥∥∥
t∫

0

S(t, s)
(
θ(u)(s)

∣∣u(s)
∣∣4

u(s) − θ(v)(s)
∣∣v(s)

∣∣4
v(s)

)
ds

∥∥∥∥∥
L4(Ω;L5(0,T ;L10(R)))

� cT 1/10
∥∥θ(u)|u|4u − θ(v)|v|4v∥∥

L4(Ω;L1(0,T ;L2(R)))

� cT 1/10R4‖u − v‖L4(Ω;L5(0,T ;L10(R))).

It follows that

T R :u �→ S(t,0)u0 + i

t∫
0

S(t, s)θ
(
u(s)

)∣∣u(s)
∣∣4

u(s) ds (4.3)

defines a strict contraction on L4
P (Ω;L5(0, T ;L10(R))) provided T � T0 where T0 depends only on R. Iterating this

construction, one easily ends the proof of the first statement. The proof that u is in fact a weak solution is classical.
Let M � 0 and uM = PMu be a regularization of the solution u defined by a truncation in Fourier space:

ûM(t, ξ) = θ(
|ξ |
M

)û(t, ξ). We deduce from the weak form of the equation that

i duM + i

2
�2uM dt + �uM dβ + PM

(
θ(u)|u|4u)

dt = 0.

We apply Itô formula to ‖uM‖2
L2(R)

and obtain:

∥∥uM(t)
∥∥2

L2(R)
= ‖u0‖2

L2(R)
+ Re

(
i

t∫ (
θ(u)|u|4u,uM

)
ds

)
, t ∈ [0, T ].
0
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We know that u ∈ L5(0, T ;L10(R)) a.s. By the integral equation,

∥∥u(t)
∥∥

L2(R)
�

∥∥S(t,0)u0
∥∥

L2(R)
+

t∫
0

∥∥S(t, s)θ
(
u(s)

)∣∣u(s)
∣∣4

u(s)
∥∥

L2(R)
ds

� ‖u0‖L2(R) +
t∫

0

∥∥u(s)
∥∥5

L10(R)
ds.

We deduce that u ∈ L∞(0, T ;L2(R)) a.s. and

lim
M→∞uM = u in L∞(

0, T ;L2(R)
)
, a.s.

we may let M go to infinity in the above equality and obtain:

lim
M→∞

∥∥uM(t)
∥∥

L2(R)
= ‖u0‖L2(R), t ∈ [0, T ], a.s.

This implies u(t) ∈ L2(R) for any t ∈ [0, T ] and ‖u(t)‖L2(R) = ‖u0‖L2(R). As easily seen from the weak form of the
equation, u is almost surely continuous with values in H−4(R). It follows that u is weakly continuous with values in
L2(R). Finally the continuity of t �→ ‖u(t)‖L2(R) implies u ∈ C([0, T ];L2(R)). �

The construction of a global solution and the end of the proof of Theorem 2.1 are now very similar to what was
done in [12]. We briefly recall the ideas for the reader’s convenience.

There is no loss of generality in assuming that u0 ∈ L2(R) is deterministic. Uniqueness is clear since two solutions
are solutions of the truncated equation on a random interval. We fix T0 and construct a solution on [0, T0].

We define,

τR = inf
{
t ∈ [0, T ], ∥∥uR

∥∥
L5(0,t;L10(R))

� R
}
,

so that uR is a solution of (2.2) on [0, τR].

Lemma 4.2. There exist constants c1, c2 such that if

T 2/5 � c1R
−16,

then

P(τR � T ) �
c2‖u0‖4

L2(R)

R4
.

Proof. We write:

uR(t)1[0,τR ](t) = S(t,0)u01[0,τR ](t) + i

t∫
0

S(t, s)
∣∣uR

∣∣4
uR1[0,τR ](s) ds1[0,τR ](t). (4.4)

Thus for T � T0,∥∥uR1[0,τR ]
∥∥

L5(0,T ;L10(R))

�
∥∥S(·,0)u01[0,τR ]

∥∥
L5(0,T ;L10(R))

+
∥∥∥∥∥

t∫
0

S(t, s)
∣∣uR

∣∣4
uR1[0,τR ](s) ds

∥∥∥∥∥
L5(0,T ;L10(R))

.

Propositions 3.3 and 3.6 yield:

E
(∥∥uR1[0,τR ]

∥∥4
L5(0,T ;L10(R))

)
� c(T0)‖u0‖4

L2(R)
+ cT 2/5

E
(∥∥∣∣uR

∣∣51[0,τR)

∥∥4
L1(0,T ;L2(R))

)
� c(T0)‖u0‖4

L2(R)
+ cT 2/5

E
(∥∥uR1[0,τR)

∥∥20
L5(0,T ;L10(R))

)
� c(T0)‖u0‖4

2 + cT 2/5R16
E

(∥∥uR1[0,τR)

∥∥4
5 10

)
.

L (R) L (0,T ;L (R))
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Hence, if cT 2/5R16 � 1
2 ,

E
(∥∥uR1[0,τR ]

∥∥4
L5(0,T ;L10(R))

)
� 2c(T0)‖u0‖4

L2(R)
,

and by Markov inequality

P(τR � T ) �
2c(T0)‖u0‖4

L2(R)

R4
. �

In order to construct a solution to (2.2) on [0, T0], we iterate the local construction. We fix R > 0 and have a local
solution on [0, τR]. We set τ 0

R = τR . We then consider recursively the equation for u. For n � 0, we set T n
R = ∑n

k=0 τn
R

and define:

u
(
t + T n

R

) = S
(
t + T n

R,T n
R

)
u
(
T n

R

) +
t∫

0

S
(
t + T n

R, s + T n
R

)
θ

T n
R

R (u)(s)
∣∣u(

s + T n
R

)∣∣2σ
u
(
s + T n

R

)
ds.

The local construction can be reproduced and we obtain a unique global solution of this equation on [T n
R,T n

R + τn+1
R ],

where

τn+1
R = inf

{
t ∈ [0, T ], |u|L5(T n

R ,t+T n
R ;L10(R)) � R

}
.

We thus obtain a solution of the non-truncated equation on [0,
∑∞

n=0 τn
R]. By Lemma 4.2, the strong Markov property

and the conservation of the L2(R) norm,

P
(
τn+1
R � T

∣∣FT n
R

) = P
(
τn+1
R � T

∣∣u(
T n

R

))
�

c2|u(T n
R)|4

L2(R)

R4
=

c2|u0|4L2(R)

R4
, a.s.,

provided T 2/5 � c1R
−16. Note that

P

(
lim

n→+∞ τn
R = 0

)
= lim

ε→0
lim

N→+∞ P
(
τn
R � ε, n � N

)
.

Finally we choose R large enough and ε2/5 � c1R
−16 so that, for all n ∈ N,

P
(
τn+1
R � ε

∣∣FT n
R

)
� 1

2
, a.s.

Then, since P(τM
R � ε|F

T M−1
R

) = E(1τM
R �ε|F

T M−1
R

), we have for 0 � N � M :

P
(
τn
R � ε, M � n � N

) = E

( ∏
M�n�N

1τn
R�ε

)

= E

(
E(1τM

R �ε|F
T M−1

R
)

∏
M−1�n�N

1τn
R�ε

)

� 1

2
E

( ∏
M−1�n�N

1τn
R�ε

)
.

Repeating the last inequality, we deduce

P
(
τn
R � ε, M � n � N

)
� 1

2M−N
,

and

P
(
τn
R � ε, n � N

)
� lim

M→∞P
(
τn
R � ε, M � n � N

)
� lim

M→∞
1

2M−N
= 0.

Hence, P(limn→+∞ τn
R = 0) = 0 so that τ 0

R + · · · + τn
R goes to infinity a.s. and we have constructed a global solution.

The conservation of the L2-norm and the fact that u ∈ C(R+;L2(R)) a.s. was proved in Theorem 4.1.
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Finally, assume that u0 ∈ H 1(R). Then going back to T R defined in (4.3), and applying the same estimates as in
the proof of Lemma 4.2, after having taken first order space derivatives, lead to∥∥T Ru

∥∥
L4(Ω;L5(0,T ;W 1,10(R)))

� CT
1/10
0 ‖u0‖H 1(R) + C′T 1/10R16‖u‖L4(Ω;L5(0,T ;W 1,10(R))).

This proves that B = B(0,R0), the ball of radius R0 in L4(Ω;L5(0, T ;W 1,10(R))) is invariant by T R provided
T � T̃0, where T̃0 depends only on R and not on R0. Since closed balls of L4(Ω;L5(0, T ;W 1,10(R))) are closed
in L4(Ω;L5(0, T ;L10(R))), this implies that the fixed point of T R , which is the solution uR of (4.2), is in
L4(Ω;L5(0, T ;W 1,10(R))).

We deduce that u has paths in L5(0, T0;W 1,10(R)) and |u|4u in L1(0, T0;H 1(R)).
It is easily proved that t �→ ∫ t

0 S(t, s)f (s) ds is in Lp(Ω;C([0, T ];H 1(R))) provided f ∈ Lp(Ω;L1(0, T ;H 1(R)))

and that t �→ S(t,0)u0 is in Lp(Ω;C([0, T ];H 1(R)) for u0 ∈ Lp(Ω;H 1(R)).
By a localization argument, we conclude that u is continuous with values in H 1(R) for u0 ∈ H 1(R). �

5. Eq. (2.1) as limit of NLS equation with random dispersion

The proof of Theorem 2.2 uses similar arguments as in [12], however there are some modifications which enable
us to get a stronger result. We fix T � 0.

Consider the following nonlinear Schrödinger equation written in the mild form:

un(t) = Sn(t)u0 + i

t∫
0

Sn(t, σ )F
(∣∣u(σ )

∣∣2)
u(σ )dσ,

where F is a smooth function with compact support, n is a real valued function and we have denoted by
Sn(t, σ ) = F −1e−i(n(t)−n(σ ))ξ2/2 F , the evolution operator associated to the linear equation:

i
dv

dt
+ ṅ(t)∂xxv = 0, x ∈ R, t > 0.

Since Sn(t, σ ) is an isometry on H 1(R), it is easily shown that for u0 ∈ H 1(R) there exists a unique un in
C([0, T ];H 1(R)), provided that n is a continuous function of t .

Let (nk) be a sequence in C([0, T ];R) which converges to n ∈ C([0, T ];R) uniformly on [0, T ]. Then, for u0 ∈
H 1(R), we have:∥∥unk

(t) − un(t)
∥∥

H 1(R)
�

∥∥(
Snk

(t,0) − Sn(t,0)
)
u0

∥∥
H 1(R)

+
t∫

0

∥∥(
Snk

(t, σ ) − Sn(t, σ )
)
F

(∣∣un(σ )
∣∣2)

un(σ )
∥∥

H 1(R)
dσ

+
t∫

0

∥∥Snk
(t, σ )

(
F

(∣∣un(σ )
∣∣2)

un(σ ) − F
(∣∣unk

(σ )
∣∣2)

unk
(σ )

)∥∥
H 1(R)

dσ.

Since F is smooth and has compact support, there exists MF such that∥∥F
(|u|2)u − F

(|v|2)v∥∥
H 1(R)

� MF

(‖u − v‖H 1(R) + ‖u‖H 1(R)‖u − v‖L∞(R)

)
� MF

(‖u − v‖H 1(R) + ‖u‖H 1(R)‖u − v‖H 1(R)

)
.

Since Snk
(t, σ ) is an isometry, we deduce:



374 A. Debussche, Y. Tsutsumi / J. Math. Pures Appl. 96 (2011) 363–376
t∫
0

∥∥Snk
(t, σ )

(
F

(∣∣un(σ )
∣∣2)

un(σ ) − F
(∣∣unk

(σ )
∣∣2)

unk
(σ )

)∥∥
H 1(R)

dσ

� C

t∫
0

∥∥un(σ ) − unk
(σ )

∥∥
H 1(R)

dσ,

with C = MF (1 + supt∈[0,T ] ‖un(t)‖H 1(R)). It is easily checked that∥∥(
Snk

(t,0) − Sn(t,0)
)
u0

∥∥
H 1(R)

→ 0, (5.1)

as k → ∞. Finally, note that {un(σ ); σ ∈ [0, T ]} is compact in H 1(R). By continuity of u �→ F(|u|2)u on H 1(R),
we deduce that {F(|un(σ )|2)un(σ ); σ ∈ [0, T ]} is also compact in H 1(R). It follows that for any δ, we can find an
Rδ such that

sup
σ∈[0,T ]

∥∥|ξ |F
(
F

(∣∣un(σ )
∣∣2)

un(σ )
)
1|ξ |�Rδ

∥∥
L2(R)

� δ.

Moreover, there exists Nδ ∈ N such that, for k � Nδ ,

sup
0�σ�t�T

∥∥|ξ |(e−i(n(t)−n(s))ξ2/2 − e−i(nk(t)−nk(s))ξ
2/2)F

(
F

(∣∣un(σ )
∣∣2)

un(σ )
)
1|ξ |�Rδ

∥∥
L2(R)

� δ.

We deduce,
t∫

0

∥∥(
Snk

(t, σ ) − Sn(t, σ )
)
F

(∣∣un(σ )
∣∣2)

un(σ )
∥∥

H 1(R)
dσ � 3T δ,

for k � Nδ . By (5.1), we may assume that∥∥(
Snk

(t,0) − Sn(t,0)
)
u0

∥∥
H 1(R)

� δ,

for k � Nδ . By Gronwall Lemma, we finally prove

sup
t∈[0,T ]

∥∥unk
(t) − un(t)

∥∥
H 1(R)

� (3T + 1)eCT δ.

This proves that the map n → un is continuous form C([0, T ]) into C([0, T ];H 1(R)).
Under our assumption, the process t �→ ∫ t

0
1
ε
m( s

ε2 ) ds converges in distribution in C([0, T ]) to a Brownian motion,
and so we deduce that the solution of⎧⎨

⎩ i
du

dt
+ 1

ε
m

(
t

ε2

)
∂xxu + F

(|u|2)u = 0, x ∈ R, t > 0,

u(0) = u0, x ∈ R,

(5.2)

converges in distribution in C([0, T ];H 1(R)) to the solution of{
i du + �u ◦ dβ + F

(|u|2)udt = 0, x ∈ R, t > 0,

u(0) = u0, x ∈ R.

We now want to extend this result to the original power nonlinear term. Let us introduce the truncated equations,
where θ is as in Section 4,⎧⎨

⎩ i
du

dt
+ 1

ε
m

(
t

ε2

)
∂xxu + θ

( |u|2
M

)
|u|4u = 0, x ∈ R, t > 0,

u(0) = u0, x ∈ R,

(5.3)

and ⎧⎨
⎩ i du + �u ◦ dβ + θ

( |u|2
M

)
|u|4udt = 0, x ∈ R, t > 0, (5.4)
u(0) = u0, x ∈ R.
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We denote by uM
ε and uM their respective solutions. By the previous arguments, these solutions exist and are unique

in C([0, T ];H 1(R)). Note that setting,

τ̃M
ε = inf

{
t � 0:

∥∥uM
ε (t)

∥∥
L∞(R)

� M
}
,

and uε = uM
ε on [0, τ̃M

ε ], defines a unique local solution uε of Eq. (2.3) on [0, τε) with τε = limM→∞ τ̃M
ε .

We also set:

τ̃M = inf
{
t � 0:

∥∥uM(t)
∥∥

L∞(R)
� M

}
.

By the above result, for each M , uM
ε converges to uM in distribution in C([0, T ];H 1(R)). By Skorohod Theorem,

after a change of probability space, we can assume that for each M the convergence of uM
ε to uM holds almost surely

in C([0, T ];H 1(R)). To conclude, let us notice that for 0 < δ � 1, if

τ̃M−1 � T and
∥∥uM

ε − uM
∥∥

C([0,T ];H 1(R))
� δ

then uM = u, the solution of (2.2), on [0, T ]. Moreover, by the Sobolev embedding H 1(R) ⊂ L∞(R), we have:∥∥uM
ε − uM

∥∥
C([0,T ];L∞(R))

� cδ,

for some c > 0. We deduce |uM
ε |C([0,T ];L∞(R)) � M provided δ is small enough. Therefore

τε > τ̃M
ε � T and uM

ε = uε on [0, T ].
It follows that for δ > 0 small enough,

P
(
τε(u0) � T

) + P
(
τε(u0) > T and ‖uε − u‖C([0,T ];H 1(R)) > δ

)
� P

(∥∥uM
ε − uM

∥∥
C([0,T ];H 1(R))

> δ
) + P

(
τ̃M−1 < T

)
.

Since u0 ∈ H 1(R), we know that u is almost surely in C(R+;H 1(R)); we deduce:

lim
M→∞P

(
τ̃M−1 < T

) = 0.

Choosing first M large and then ε small we obtain:

lim
ε→0

P
(
τε(u0) � T

) = 0,

and

lim
ε→0

P
(
τε(u0) > T and ‖uε − u‖C([0,T ];H 1(R)) > δ

) = 0.

The result follows. �
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