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Given a set of nodes N = (0, l,..., n> and the (n + 1) x (n + 1) distance 
matrix D = {&I, where dij is the length of an arc rj directed from node i 
to nodej, the problem is to find a shortest length path from node 0 to node 12. 
The length of a path is the sum of the arc lengths over the arcs in the path. 
It is assumed, for ease of exposition, that there is an arc joining every pair 
of nodes. If, in fact, there is no arc between nodes i and j, let dij be a very 
large positive number. Otherwise, the dij are arbitrary real numbers, except 
dii = 0 and there are no cycles (i.e., closed paths) of negative length. 

The shortest path problem has been studied extensively. Dreyfus [l], in a 
recent and comprehensive survey, evaluates several methods. An algorithm 
of Dijkstra [2] is classified by Dreyfus as being the best method for finding 
a shortest path between specified nodes when dii > 0 for all i and j, because 
it has the least upper bound on the number of computations. 

Our algorithm is a generalization of Dijkstra’s. The upper bound on the 
number of computations is, in general, larger. However, in many cases, the 
actual number of computations is smaller and the restriction of dij 3 0 is 
removed. 

PRELIMINARY RESULTS 

Let h be a real-valued function with domain N - (0) satisfying the prop- 

erty (*) 
h(i) < h(j) + & 3 for all i, j E N - (0). (*) 

Note that property (*) extends to paths. Consider the path P = (;I ,..., iJ 
with length 

L(P) = di,i, + *.* + dikel.ik - 
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From property (*), we have 
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(1) 

Adding all the inequalities of (1) yields 

LEMMA. The function h exists if and only if there are no cycles of negative 
length. 

Proof. Suppose there is a closed path or cycle C = (il ,..., &, i1) of 
length L(C) < 0. Applying (*) to the closed path yields 

or L(C) > 0, which is a contradiction. 
If there are no negative cycles, a shortest path exists between nodes i and n 

for every i. Let f (z) be the length of a shortest path between nodes i and n. 
It is well-known that f(i) <f(j) + dij for all i, j E N. Therefore, take 
h(i) = f (i) for all i. Q.E.D. 

THE ALGORITHM 

The function h is an input to the algorithm. Its significance will be dis- 
cussed after the algorithm is given. 

Step 0. Initialize S = {0}, S u R = N, S n R = 4, d(0) = 0, 
d(j) = doj , j # 0. 

Step 1. Let d(j*) + h(j*) = mini&d(j) + h(j)]. If j* = n terminate, 
d(n) = length f o a shortest path from node 0 to node n. Otherwise, let 
R = R - {j*}. 

Step 2. For all j E R, let 

d(j) = min(d( j), d(j*) + djej). 

Return to Step 1. 

Clearly, the algorithm is finite, since Step 1 cannot be executed more than 
n times. Let e(z) be the length of a shortest path from node 0 to node i. 
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THEOREM The choice of j* in Step I is such thet d( j*) = O( j*). 

Proof. The proof is inductive. Initially, after Step 0, the following prop- 
ositions are true: 

1. For all i E S, d(i) = O(i). 

2. For all j E R, d(j) = length of a shortest path from 0 to j that contains 
no nodes from R except for j itself = O,(j). 

Now assume, as an induction hypothesis, that after k - 1 executions of 
Step 1 and 2, the two propositions are valid. We claim that after the k-th 
execution of Step l,d(j*) = O( j*).Suppose,to the contrary,that d( j*)# O(j*). 
By Proposition 2 and the induction hypothesis,d(j*)= O,( j*) > O(j*).There- 
fore, there must exist a path P = (0, k, ,..., k, , j*) containing at least one node 
from R, other then j*, whose lengthL(P) < d( j*). Let k, be the first node in P 
that is in R and L(P) = L(P,) + L(P,), PI = (0 ,..., k,), Pz = (k, ,..., k, , j*). 
Since PI contains no nodes from R except K, , without loss of generality, we 
can assume L(P,) = a,(&). By Proposition 2 and the induction hypothesis, 
L(P,) = d(k,). Therefore, 

L(P) = d(kJ + dk,k,+l + ..* + dkij;d* t 

and we assume 

WJ + 4uk,+l + ... + dktjs < d( j*). 

From property (*) on h, we have 

h(kJ < h(j*) + dk,k,+l + ..* + dktj* . 

Adding (2) and (3) yields 

(2) 

(3) 

d(k) + h(k) < 4j*) + h(j*). 

Since k, , j* E R, (4) contradicts the assumption that 

d(j*) + h(j*) = $$d(j) + WI. 

(4) 

Finally, defining R = R - (1 ‘*>, the length of a shortest path from 0 to 
j E R - {j*} that passes through no nodes in R - {j*} except j itself is, from 
Proposition 2 and the induction hypothesis, given by 

d(j) = min(d( j), d( j*) + dj*j). 

This is precisely what is done in Step 2 of the algorithm. Q.E.D. 
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DISCUSSION 

If dij 3 0 for all i,i E N, h(i) = 0 for all i E N - (0) satisfies property (*). 
With h(i) = 0 for all i E iV - (0}, our algorithm is exactly Dijkstra’s. The book- 
keeping procedures described by Dreyfus for tracing an optimal path in 
Dijkstra’s algorithm apply as well to our algorithm and will not be discussed 
here. Dreyfus’ upper bounds on the number of computations are easily 
extended to include nonzero h(i)-exclusive of any calculations required to 
determine h(i). The bound on the number of comparisons is still 279, but the 
bound on the number of additions increases from n*/2 to n* because of the 
additions d(j) + h(j). Th e b ound is achieved whenever all nodes are labelled 
permanently (removed from R). Thus, when it is desired to find shortest 
paths between node 0 and all other nodes, it will be most efficient to take 
h(i) = 0 for all i, provided that h(i) = 0 satisfies property (*). 

The generalization of Dijkstra’s algorithm is also applicable to other 
permanent label setting shortest path algorithms, e.g., Dantzig’s [3]. Is the 
generalization just a mathematical nicety, or can something be gained by 
choosing h different from h(i) = 0 for all i E Eli - (0) ? We can suggest two 
reasons for using nonzero h(i). 

Dijkstra’s algorithm, and all other permanent label setting algorithms that 
I know, require dij 3 0. Our algorithm does not have this restriction and 
appears to be the first permanent label setting algorithm without it. There are 
shortest route algorithms that can treat negative dij , but all of them have 
upper bounds on the number of computations that involve n3 (see Dreyfus). 
Of course, this apparent advantage of our algorithm could be eradicated by 
the effort required to find suitable h(i). Note that when there are negative 
dii , h(i) = 0 for all i E N - (0) will not satisfy property (*). We will come 
momentarily to the question of determining nonzero h(i). 

Our second reason for using nonzero h(i) is to decrease the number of 
computations. With all h(i) = 0, the nodes are permanently labeled (removed 
from R) in order of increasing O(i). Thus, if node n is far away from node 0, 
Steps 1 and 2 will have to be executed many times. Let h(n) = 0, then any 
h(i) that satisfy (*) have the property h(i) <f(i), wheref(i) is the length of a 
shortest path from i to n. Thus, the h(i) are lower bounds on the length of a 
shortest path from i to 71. In our algorithm, the nodes are permanently labeled 
in order of increasing O(i)+ h(i). The effect of the h(i) is to hasten the labeling 
of the nodes close to n and n itself. For example, in finding a shortest route 
between Baltimore and New York, with all /z(i) = 0, it would be necessary 
to go in the wrong direction and label Washington. With good bounds the 
permanent labeling of Washington could be avoided. Specitically, if n is the 
furthest node from 0 and N1 = {i ( O(i) + h(i) > O(n)}, then cardinality (Nl) 
permanent labelings will be eliminated. 
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The identification of the h(i) as lower bounds on the length of a shortest 
path from i to 11 suggests a method for determining the h(i). In many shortest 
route problems, particularly those associated with finite stage dynamic 
programs, lower bounds satisfying property (*) can be obtained by relaxing 
problem constraints. The relaxation is constructed such that the minimization 
problem at node i has a feasible solution with objective value h(j) + dij , 
where h(j) is the lower bound at node j. 

For example, in one dynamic programming or shortest route formulation 
of the knapsack problem, a state or a node corresponds to the yet unfilled space 
of the knapsack and to a subset of items not yet considered. A lower bound on 
the node is obtained by removing the integer constraints on the items. Let 
ct be the unit cost of an item and a, its unit weight. Given dij = atR , a a 
nonnegative integer, the bounds h(i) and h(j) are obtained from 

h(i) = min 1 cPvt 

i . apt = 2 
f=l 

Xt 30, t = l,..., k 

and 
k-1 

h(j) = min C cPXt 
t=1 

k-l 

c ' . 
cZ,X,=Z-~.&=J. 

t=1 

xt > 0, t = 1, . ..) K - 1. 

It is clear that h(i) < h(j) + 01~~ . 
In the shortest route (dynamic programming) formulation of the traveling 

salesman problem, a node (state) corresponds to a subset of unvisited cities. 
Bounds satisfying (*) can be found by solving an assignment problem on the 
unvisited cities. Taking this approach yields an algorithm for the traveling 
salesman problem that is a combination of branch-and-bound and dynamic 
programming. In fact, as shown by Doulliez [4], branch-and-bound can be 
imbedded into a dynamic program to reduce the number of states that must 
be evaluated. Since all finite state, N-stage dynamic programs are shortest 
route problems, our method can be considered as a generalized branch-and- 
bound, dynamic programming algorithm. Note that, in the spirit of branch- 
and-bound, if the graph is not completely connected, h(j) would not have to 
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be calculated until a node i such that arc ij existed was permanently labeled 
and bounds could be changed during the course of calculation. 

AN EXAMPLE 

Consider the problem shown in Fig. 1. Because d,, = - 2, we cannot begin 
with all h(i) = 0. However, by inspection, /z(l) = - 2, h(j) = 0 otherwise, 
satisfies (*). It is desired to find the length of a shortest path between nodes 
0 and 5. 

FIGURE 1 

The calculations are given below. 

Step 0. S = {0}, R = {I, 2, 3, 4, 5}, d(O) = 0, d(1) = 2, d(2) = 1, 
d(j) = a, otherwise. 

Step 1. d(l) + h(l) = 0 < d(2) + h(2) = 1, j* = I, R = {2, 3, 4, 5}. 

Step 2. d(2) = min(1, 2 - 2) = 0, 
d(3) = 2 + 1 = 3. 

Step 1. j* = 2, R = (3, 4, 5). 

Step 2. d(3) = min(3, 0 + 1) = 1, 
d(4) = 0 + 3 = 3. 

Step 1. j*=3, R={4,5}. 

Step 2. d(4) = min(3, 1 + 2) = 3, 
d(5) = 1 + 3 = 4. 

Step 1. j* = 4, R = (5). 

Step 2. d(5) = min(4, 3 + 2) = 4. 

Step 1. j* = 5, d(5) = 4. 
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