
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 38, 328-334(1972)

A Generalized Permanent Label Setting

Algorithm for the Shortest Path
between Specified Nodes

GEORGE L. NEMHAUSER

Department of Operations Research, Cornell University,
Ithaca, New York 148.50

Submitted by Richard Bellman

Received October 26, 1970

Given a set of nodes N = (0, l,..., n> and the (n + 1) x (n + 1) distance
matrix D = {&I, where dij is the length of an arc rj directed from node i
to nodej, the problem is to find a shortest length path from node 0 to node 12.
The length of a path is the sum of the arc lengths over the arcs in the path.
It is assumed, for ease of exposition, that there is an arc joining every pair
of nodes. If, in fact, there is no arc between nodes i and j, let dij be a very
large positive number. Otherwise, the dij are arbitrary real numbers, except
dii = 0 and there are no cycles (i.e., closed paths) of negative length.

The shortest path problem has been studied extensively. Dreyfus [l], in a
recent and comprehensive survey, evaluates several methods. An algorithm
of Dijkstra [2] is classified by Dreyfus as being the best method for finding
a shortest path between specified nodes when dii > 0 for all i and j, because
it has the least upper bound on the number of computations.

Our algorithm is a generalization of Dijkstra’s. The upper bound on the
number of computations is, in general, larger. However, in many cases, the
actual number of computations is smaller and the restriction of dij 3 0 is
removed.

PRELIMINARY RESULTS

Let h be a real-valued function with domain N - (0) satisfying the prop-

erty (*)
h(i) < h(j) + & 3 for all i, j E N - (0). (*)

Note that property (*) extends to paths. Consider the path P = (;I ,..., iJ
with length

L(P) = di,i, + *.* + dikel.ik -

328
0 1972 by Academic Press, Inc.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82303569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SHORTEST PATH BETWEEN SPECIFIED NODES

From property (*), we have

329

(1)

Adding all the inequalities of (1) yields

LEMMA. The function h exists if and only if there are no cycles of negative
length.

Proof. Suppose there is a closed path or cycle C = (il ,..., &, i1) of
length L(C) < 0. Applying (*) to the closed path yields

or L(C) > 0, which is a contradiction.
If there are no negative cycles, a shortest path exists between nodes i and n

for every i. Let f (z) be the length of a shortest path between nodes i and n.
It is well-known that f(i) <f(j) + dij for all i, j E N. Therefore, take
h(i) = f (i) for all i. Q.E.D.

THE ALGORITHM

The function h is an input to the algorithm. Its significance will be dis-
cussed after the algorithm is given.

Step 0. Initialize S = {0}, S u R = N, S n R = 4, d(0) = 0,
d(j) = doj , j # 0.

Step 1. Let d(j*) + h(j*) = mini&d(j) + h(j)]. If j* = n terminate,
d(n) = length f o a shortest path from node 0 to node n. Otherwise, let
R = R - {j*}.

Step 2. For all j E R, let

d(j) = min(d(j), d(j*) + djej).

Return to Step 1.

Clearly, the algorithm is finite, since Step 1 cannot be executed more than
n times. Let e(z) be the length of a shortest path from node 0 to node i.

330 NEMHAUSER

THEOREM The choice of j* in Step I is such thet d(j*) = O(j*).

Proof. The proof is inductive. Initially, after Step 0, the following prop-
ositions are true:

1. For all i E S, d(i) = O(i).

2. For all j E R, d(j) = length of a shortest path from 0 to j that contains
no nodes from R except for j itself = O,(j).

Now assume, as an induction hypothesis, that after k - 1 executions of
Step 1 and 2, the two propositions are valid. We claim that after the k-th
execution of Step l,d(j*) = O(j*).Suppose,to the contrary,that d(j*)# O(j*).
By Proposition 2 and the induction hypothesis,d(j*)= O,(j*) > O(j*).There-
fore, there must exist a path P = (0, k, ,..., k, , j*) containing at least one node
from R, other then j*, whose lengthL(P) < d(j*). Let k, be the first node in P
that is in R and L(P) = L(P,) + L(P,), PI = (0 ,..., k,), Pz = (k, ,..., k, , j*).
Since PI contains no nodes from R except K, , without loss of generality, we
can assume L(P,) = a,(&). By Proposition 2 and the induction hypothesis,
L(P,) = d(k,). Therefore,

L(P) = d(kJ + dk,k,+l + ..* + dkij;d* t

and we assume

WJ + 4uk,+l + ... + dktjs < d(j*).

From property (*) on h, we have

h(kJ < h(j*) + dk,k,+l + ..* + dktj* .

Adding (2) and (3) yields

(2)

(3)

d(k) + h(k) < 4j*) + h(j*).

Since k, , j* E R, (4) contradicts the assumption that

d(j*) + h(j*) = $$d(j) + WI.

(4)

Finally, defining R = R - (1 ‘*>, the length of a shortest path from 0 to
j E R - {j*} that passes through no nodes in R - {j*} except j itself is, from
Proposition 2 and the induction hypothesis, given by

d(j) = min(d(j), d(j*) + dj*j).

This is precisely what is done in Step 2 of the algorithm. Q.E.D.

SHORTEST PATH BETWEEN SPECIFIED NODES 331

DISCUSSION

If dij 3 0 for all i,i E N, h(i) = 0 for all i E N - (0) satisfies property (*).
With h(i) = 0 for all i E iV - (0}, our algorithm is exactly Dijkstra’s. The book-
keeping procedures described by Dreyfus for tracing an optimal path in
Dijkstra’s algorithm apply as well to our algorithm and will not be discussed
here. Dreyfus’ upper bounds on the number of computations are easily
extended to include nonzero h(i)-exclusive of any calculations required to
determine h(i). The bound on the number of comparisons is still 279, but the
bound on the number of additions increases from n*/2 to n* because of the
additions d(j) + h(j). Th e b ound is achieved whenever all nodes are labelled
permanently (removed from R). Thus, when it is desired to find shortest
paths between node 0 and all other nodes, it will be most efficient to take
h(i) = 0 for all i, provided that h(i) = 0 satisfies property (*).

The generalization of Dijkstra’s algorithm is also applicable to other
permanent label setting shortest path algorithms, e.g., Dantzig’s [3]. Is the
generalization just a mathematical nicety, or can something be gained by
choosing h different from h(i) = 0 for all i E Eli - (0) ? We can suggest two
reasons for using nonzero h(i).

Dijkstra’s algorithm, and all other permanent label setting algorithms that
I know, require dij 3 0. Our algorithm does not have this restriction and
appears to be the first permanent label setting algorithm without it. There are
shortest route algorithms that can treat negative dij , but all of them have
upper bounds on the number of computations that involve n3 (see Dreyfus).
Of course, this apparent advantage of our algorithm could be eradicated by
the effort required to find suitable h(i). Note that when there are negative
dii , h(i) = 0 for all i E N - (0) will not satisfy property (*). We will come
momentarily to the question of determining nonzero h(i).

Our second reason for using nonzero h(i) is to decrease the number of
computations. With all h(i) = 0, the nodes are permanently labeled (removed
from R) in order of increasing O(i). Thus, if node n is far away from node 0,
Steps 1 and 2 will have to be executed many times. Let h(n) = 0, then any
h(i) that satisfy (*) have the property h(i) <f(i), wheref(i) is the length of a
shortest path from i to n. Thus, the h(i) are lower bounds on the length of a
shortest path from i to 71. In our algorithm, the nodes are permanently labeled
in order of increasing O(i)+ h(i). The effect of the h(i) is to hasten the labeling
of the nodes close to n and n itself. For example, in finding a shortest route
between Baltimore and New York, with all /z(i) = 0, it would be necessary
to go in the wrong direction and label Washington. With good bounds the
permanent labeling of Washington could be avoided. Specitically, if n is the
furthest node from 0 and N1 = {i (O(i) + h(i) > O(n)}, then cardinality (Nl)
permanent labelings will be eliminated.

332 NEMH.4USER

The identification of the h(i) as lower bounds on the length of a shortest
path from i to 11 suggests a method for determining the h(i). In many shortest
route problems, particularly those associated with finite stage dynamic
programs, lower bounds satisfying property (*) can be obtained by relaxing
problem constraints. The relaxation is constructed such that the minimization
problem at node i has a feasible solution with objective value h(j) + dij ,
where h(j) is the lower bound at node j.

For example, in one dynamic programming or shortest route formulation
of the knapsack problem, a state or a node corresponds to the yet unfilled space
of the knapsack and to a subset of items not yet considered. A lower bound on
the node is obtained by removing the integer constraints on the items. Let
ct be the unit cost of an item and a, its unit weight. Given dij = atR , a a
nonnegative integer, the bounds h(i) and h(j) are obtained from

h(i) = min 1 cPvt

i . apt = 2
f=l

Xt 30, t = l,..., k

and
k-1

h(j) = min C cPXt
t=1

k-l

c ' .
cZ,X,=Z-~.&=J.

t=1

xt > 0, t = 1, . ..) K - 1.

It is clear that h(i) < h(j) + 01~~ .
In the shortest route (dynamic programming) formulation of the traveling

salesman problem, a node (state) corresponds to a subset of unvisited cities.
Bounds satisfying (*) can be found by solving an assignment problem on the
unvisited cities. Taking this approach yields an algorithm for the traveling
salesman problem that is a combination of branch-and-bound and dynamic
programming. In fact, as shown by Doulliez [4], branch-and-bound can be
imbedded into a dynamic program to reduce the number of states that must
be evaluated. Since all finite state, N-stage dynamic programs are shortest
route problems, our method can be considered as a generalized branch-and-
bound, dynamic programming algorithm. Note that, in the spirit of branch-
and-bound, if the graph is not completely connected, h(j) would not have to

SHORTEST PATH BETWEEN SPECIFIED NODES 333

be calculated until a node i such that arc ij existed was permanently labeled
and bounds could be changed during the course of calculation.

AN EXAMPLE

Consider the problem shown in Fig. 1. Because d,, = - 2, we cannot begin
with all h(i) = 0. However, by inspection, /z(l) = - 2, h(j) = 0 otherwise,
satisfies (*). It is desired to find the length of a shortest path between nodes
0 and 5.

FIGURE 1

The calculations are given below.

Step 0. S = {0}, R = {I, 2, 3, 4, 5}, d(O) = 0, d(1) = 2, d(2) = 1,
d(j) = a, otherwise.

Step 1. d(l) + h(l) = 0 < d(2) + h(2) = 1, j* = I, R = {2, 3, 4, 5}.

Step 2. d(2) = min(1, 2 - 2) = 0,
d(3) = 2 + 1 = 3.

Step 1. j* = 2, R = (3, 4, 5).

Step 2. d(3) = min(3, 0 + 1) = 1,
d(4) = 0 + 3 = 3.

Step 1. j*=3, R={4,5}.

Step 2. d(4) = min(3, 1 + 2) = 3,
d(5) = 1 + 3 = 4.

Step 1. j* = 4, R = (5).

Step 2. d(5) = min(4, 3 + 2) = 4.

Step 1. j* = 5, d(5) = 4.

334 NEiVHAUSER

ACKNOWLEDGIVIENT

I IvYant to thank Guy de Ghellinck for several helpful suggestions.

REFERENCES

1. S. E. DREYFUS, An appraisal of some shortest-path algorithms, Opevatiom Res. 17
(1969), 395-412.

2. E. W. DIJKSTRA, A Note on Two Problems in Connexion with Graphs, Namer.
Muth. 1 (1959), 269-271.

3. G. B. DANTZIG, On the shortest route through a network, Management Sci. 6
(1960), 187-190.

4. P. DOULLIEZ, Optimal Capacity Planning of Multiterminal Networks, Doctoral
Dissertation, UniversitC Catholique de Louvain, Louvain, Belgium, 1969.

