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The one-loop divergences are calculated for the recently proposed ghost-free massive gravity model,
where the action depends on both metric and external tensor field f . The non-polynomial structure
of the massive term is reduced to a more standard form by means of auxiliary tensor field, which is
settled on-shell after quantum calculations are performed. As one should expect, the counter-terms do
not reproduce the form of the classical action. Moreover, the result has the form of the power series in f .
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1. Introduction

It is well known that general relativity is a non-linear dy-
namical theory of symmetric second rank tensor field in curved
space–time. In the linear approximation this theory describes a
propagation of massless spin-2 irreducible representation of the
Poincare group. Dynamical theory of massive spin-2 representa-
tion of the Poincare group has been constructed by Fierz and Pauli
[1] in terms of symmetric second rank tensor field in Minkowski
space. It is natural to think that there should exist a non-linear
dynamical theory in term of symmetric second rank tensor field
in curved space–time, whose linear limit will be the Fierz–Pauli
theory. However, during a long time such theory has not been con-
structed.

An evident way to find non-linear generalization of Fierz–Pauli
theory is to add some kind of massive term into Lagrangian of
general relativity. It could be a cosmological constant, but in the
linear limit the cosmological term does not provide a true mass
term in Fierz–Pauli theory. As a result the only way to insert a
mass term to Lagrangian of general relativity is to use, additionally
to metric, an extra second rank tensor field (reference metric) and
find a coupling of metric to this extra field in such a way that in
the linear approximation for both metric and Minkowski reference
metric, this coupling should generate a true mass term in Fierz–
Pauli theory.

The extension of general relativity described above has been
studied in details by Boulware and Deser [2]. They have shown
that inserting the mass term with the help of additional second
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rank tensor field can yield, in general, the inconsistent theory with
propagating ghost field (BD ghost). However recently there was a
progress in constructing a family of the non-linear dynamical the-
ories which are free of problem of BD ghost [3–6] (see also the
review [7]). As a result, at present one can have the Lagrangians
which satisfy the following set of conditions: (i) describe con-
sistent ghost-free non-linear dynamics of symmetric second rank
tensor field; (ii) have a number of propagating degrees of freedom
exactly corresponding to massive spin-2 field, (iii) depend of ref-
erence metric and on some mass parameter m, while in the limit
m = 0 reproduce the Lagrangian of general relativity without cos-
mological term; (iv) reproduce the Lagrangian of Fierz–Pauli theory
in linear approximation for dynamical metric and for Minkowski
reference metric.

In this Letter we study the quantum aspects of the mas-
sive gravity theory.2 To be more precise, we compute the one-
loop divergences of a minimal massive theory [4] and investi-
gate their structure. Of course, the massive gravity theory is non-
renormalizable as well as general relativity since massive gravity
Lagrangian includes general relativity Lagrangian and hence should
lead to the quadratic in curvature tensor counter-terms at one
loop. In order to find the one-loop divergences we will use the
background field method and Schwinger–DeWitt proper-time tech-
niques [9].

Although the theory under consideration is non-renormalizable,
one can expect it to have many interesting features in quantum
domain. First, the massive term in the action possesses a com-
plicated structure in tensor indices and its background-quantum

2 Alternative approach to quantum aspects of massive gravity is developed in the
papers [8]. Unlike our approach, which starts with complete ghost-free non-linear
theory, in [8] the massive gravity model is treated as deformation of Pauli–Fierz
Lagrangian by some cubic interaction of the fields.
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splitting (decomposition of initial field into background and quan-
tum field, which is the element of the background field method)
is not trivial. Second, a functional determinant, defining the one-
loop effective action, has different and in fact more complicated
structure as compared to the massless case of general relativity.
Therefore, evaluation of effective method may require some nov-
elty in the method of calculation. Third, it is interesting to study
whether the one-loop divergences in massive gravity theory van-
ish on-shell as it is the case for the general relativity without
matter. Fourth, the one-loop divergences in massive gravity the-
ory are expected to depend on the reference metric. As a result
of computations we obtain the one-loop divergences in terms of
the specific general covariant functionals depending on reference
metric. They can be considered as the possible candidates for ac-
tions of reference metric if to treat this metric as a dynamical field.
Problem of Lagrangian for reference metric is broadly discussed in
the literature (see e.g. [4] and reference therein). Fifth, any new
gravitational model deserves a study of quantum aspects in the
hope to extend our understanding of a quantum gravity and to
shead a light on a possible role of gravity in quantum domain.

The Letter is organized as follows. In Section 2 we consider
an equivalent representation of the theory via auxiliary tensor
field and the procedure of linearization. The derivation of bilin-
ear form of the action and the details of background field method
are treated in Section 3. In Section 4 we present the results of cal-
culating the one-loop divergences. In Section 5 we present some
discussions of the result and draw our conclusions.

2. Linearization of massive term

Consider the action of a minimal model of massive gravity [4]

S[gμν ] = S0[gμν ] + Sm[gμν ]
=

∫
d4x

√−g
[

R + 2Λ + m2 tr
(√

g−1 f
)]

. (1)

Here m is a mass parameter, f means an external tensor field (ref-
erence metric) fμν , expression g−1 f in action Sm means gμα fαν ,
all other notations are standard.3 According to [4] we have to put
Λ = −3m2, however it is more convenient to perform all calcula-
tions for an arbitrary value of Λ and fix it only in the final result.

To calculate the one-loop divergences of the theory under con-
sideration we should compute the second variational derivative of
action with respect gμν . Such computation for the term Sm is very
non-trivial since the matrices gμα and fαν do not commute.4 We
will avoid this obstacle considering the classically equivalent the-
ory formulated in terms of dynamical metric gμν and auxiliary
field ϕμ

ν .
It is easy to see that the theory, described by the action (1) in

terms of dynamical field gμν , is classically equivalent to the the-
ory in terms of the fields gμν and auxiliary field ϕμ

ν with the
following action

S̃
[

gμν,ϕμ
ν

] = S0[g] + S̃m
[

gμν,ϕμ
ν

]
, (2)

where the action S̃m[gμν,ϕμ
ν ] is given by

S̃m
[

gμν,ϕμ
ν

] = m2

2

∫
d4x

√−g
[

gμν fναϕα
μ + (

ϕ−1)μ
μ

]
. (3)

3 The gravitational constant κ is suppressed.
4 The first variational derivative is computed simply enough [4], however the sec-

ond derivative cannot be computed analogously to [4].
Indeed, the equation of motion that follows from the variation
over ϕμ

ν in (2) has the form

δ S̃

δϕμ
ν

= δ S̃m

δϕμ
ν

= 0.

The solution to this equation is

ϕμ
ν = [(

g−1 f
)−1/2]μ

ν.

Replacing this solution back into (2), we obtain the action (1). It
shows that the two actions are classically equivalent. Starting from
this point we will use the action (2).5

3. Background field method and bilinear form to action

Our main purpose is to develop the background field method
([9], see also the details in [10]) to the theory (2) and use it to
calculate the one-loop divergences of the theory. The first step is
to obtain the bilinear form of the action (2).

According to the background field method, the fields ϕμ
ν and

gμν are replaced by sums of background and quantum fields as
follows

ϕμ
ν → ϕμ

ν + ψμ
ν, gμν → gμν + hμν. (4)

Here ϕμ
ν and gμν are background fields, while ψμ

ν and hμν are
quantum fields. By means of a simple algebra one can obtain the
bilinear form for the actions S0 and S̃m in the form

S(2)
0 + S g f = 1

2

∫
d4x

√−g hμν Ĵμν,αβhαβ, (5)

and

S̃m
(2) = m2

∫
d4x

√−g

{
1

2
hαβ Ĝαβ,μνhμν

− 1

2
ψα

β Âα
β,μ

νψμ
ν + B̂β

αψα
β

}
. (6)

In Eq. (5) we have introduced the so-called minimal gauge fixing
term

S g f = −1

2

∫
d4x

√−g χμχμ, (7)

where

χμ = ∇λhλ
μ − 1

2
∇μh. (8)

The operators Ĵμν,αβ , Ĝαβ,μν , Âα
β,μ

ν and B̂β
α , which were

used in (5) and (6), have the form

Ĵμν,αβ = 1

2
Kμν,αβ� + Rμανβ + gνβ Rμα

− 1

2
(gμν Rαβ + gαβ Rμν) − 1

2
(R + 2Λ)Kμν,αβ,

Ĝαβ,μν = −1

4
Kαβ,μν

[
gστ fτλϕ

λ
σ + (

ϕ−1)σ
σ

]

− 1

2
gαβ fνσ ϕσ

μ + gμβ fνσ ϕσ
α,

Âα
β,μ

ν = −1

2

[(
ϕ−1)σ

α

(
ϕ−1)β

μ

(
ϕ−1)ν

σ

+ (
ϕ−1)σ

μ

(
ϕ−1)ν

α

(
ϕ−1)β

σ

]
,

B̂β
α = −1

2
hβλ fλα, (9)

5 We assume that this equivalence is fulfilled on the quantum level as well, since
there is no any source for possible anomaly.
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where we define

Kαβ,μν = δαβ,μν − 1

2
gαβ gμν (10)

and use notation

δαβ,μν = 1

2
(gαμgβν + gαν gβμ)

for the DeWitt identity matrix in the space of symmetric matrices.
In the expressions (9) one has to assume symmetrization in both
couples of indices μν and αβ . Let us note that the expression for
Ĵμν,αβ in (9) is one for the usual Einstein quantum gravity with
the cosmological constant and the other terms here are because of
the massive terms in Eq. (1).

It is easy to see that the path integral over the quantum field
ψμ

ν can be taken at once. It is well known that the following
identity holds for Hermitian matrices A(y, x):
∫

Dψ exp

{
− i

2

∫
dy

∫
dxψ(y)A(y, x)ψ(x)

+ i

∫
dx B(x)ψ(x)

}

= (Det A)−1/2 × exp

{
i

2

∫
dy

∫
dx B(y)A−1(y, x)B(x)

}
. (11)

Let us note that the quantity (Det A)−1/2 corresponds to the deter-
minant of a numerical matrix. Since we assume dimensional regu-
larization here, this object is irrelevant to the analysis of quantum
corrections to the effective action and therefore will not be omit-
ted. Using Eq. (11) in the expression for the generating functional
of Green functions, we present the bilinear form for the action (2)
as follows

S̃(2) = S(2)
0 + S g f + S̃(2)

m = 1

2

∫
d4x

√−g hαβ Ĥαβ,μνhμν,

where the operator Ĥαβ,μν is given by

Ĥαβ,μν = Ĵμν,αβ + m2Ĝαβ,μν + 1

4
m2 fβλ

(
Â−1)

α
λ,μ

σ fνσ . (12)

In order to obtain the matrix A−1, let us consider the follow-
ing procedure. The result (11) is valid for the Hermitian matrix A.
Therefore we need to take only symmetric part of the matrix A.
Consider first the matrix A which is not symmetrized. It is an easy
exercise to find its inverse, however one has to work a little bit
more to do the same with the symmetric part of it. One can write
A as

Aα
β,μ

ν = −(
ϕ−1)σ

α

(
ϕ−1)β

μ

(
ϕ−1)ν

σ . (13)

The corresponding inverse matrix is given by

(
A

−1)
β
α, σ

ρ = −ϕρ
τϕ

τ
βϕα

σ . (14)

Consider now the following symmetric structure

Xβ
α, σ

ρ = −ϕρ
τϕ

τ
βϕα

σ − ϕα
τϕ

τ
σ ϕρ

β. (15)

Then we arrive at the equation

Âμ
ν, α

β × Xβ
α, σ

ρ = Zμ
ρ, σ

ν = δ
ρ
μδν

σ + Y μ
ρ, σ

ν, (16)

where

Y μ
ρ, σ

ν = 1 (
ϕ−1)ρ

μϕν
σ + 1 (

ϕ−1)ν
σ ϕρ

μ. (17)

2 2
Finally, we have the inverse to the symmetrized matrix in the
form of the series

(
Â−1)

μ
ν, α

β = Xμ
ν, λ

σ × (
Z−1)

σ
λ, α

β, (18)

where the matrix (Z−1)σ
λ, α

β is given by

(
Z−1)

σ
λ, α

β = δλ
σ δ

β
α − Y σ

λ, α
β + Y σ

λ, ρ
τ Y τ

ρ, α
β

− Y σ
λ, ρ

τ Y τ
ρ, χ

δY δ
χ , α

β + · · · . (19)

Multiplying the operator Ĥαβ,μν by the operator 2K̂ −1
λσ , αβ ,

where

K̂ −1
λσ , αβ = δλσ , αβ − 1

2
gλσ gαβ,

we arrive at

2K̂ −1
αβ, λσ Ĥλσ ,μν ≡ Ôαβ,μν = δαβ,μν� + Π̂αβ,μν, (20)

where we have

Π̂αβ,μν = 2Rαμβν + 2gβν Rαμ − gαβ Rμν

− gμν Rαβ − R Kαβ,μν − 2Λδαβ,μν

+ m2

2
fρ(α

(
Â−1)

β)
ρ,μ

τ fντ

− m2

4
gαβ fσρ

(
Â−1)σρ

,μ
τ fντ + 2m2 fνσ ϕσ

(β gα)μ

− m2

2
δαβ,μν

[
gστ fτλϕ

λ
σ + (

ϕ−1)σ
σ

]
. (21)

4. Derivation of one-loop divergences

The one-loop quantum corrections to effective action are writ-
ten by standard way (see e.g. [11])

Γ (1) = i

2
Ln Det(Ĥ) = i

2
Tr Ln(Ĥ), (22)

where the operator Ĥ corresponds to the bilinear part of the action
in quantum fields and Tr means the functional trace.

The divergent part of Tr Ln Ĥ can be obtained by calculating
Tr Ln(K̂ −1 Ĥ) and then subtracting the Tr Ln K̂ −1

−Tr Ln Ĥ = −Tr Ln
(

K̂ −1 Ĥ
) + Tr Ln K̂ −1. (23)

However, as far as we are interested in the logarithmic divergent
part of the effective action, the contribution of the last term can
be safely omitted.

The computation of (22) can be performed by the use of the
Schwinger–DeWitt proper-time technique [9]. This technique pro-
vides the efficient method of evaluating the Ln Det Ô , where the
operator Ô has the form (see e.g. [12,13])

Ô = 1̂� + 2ĥμ∇μ + Π̂. (24)

Also we introduce the operators

P̂ = Π̂ + 1

6
R1̂ − ∇μĥμ − ĥμĥμ,

Ŝμν = 1̂[∇μ,∇ν ] + ∇ν ĥμ − ∇μĥν + [ĥν, ĥμ]. (25)

In our case, exactly as for the Einstein quantum gravity, the ĥμ = 0
and this essentially simplifies the calculations.
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In the framework of dimensional regularization, the quantity
Γ (1) is written as follows

Γ
(1)

div = − μn−4

(4π)2(n − 4)
Tr

{
1̂

180

(
R2

μναβ − R2
μν

)

+ 1

2
P̂ 2 + 1

12
Ŝ2
μν

}
, (26)

where μ is the parameter of dimensional regularization, the oper-
ators P̂ , Ŝμν are defined above and the surface terms are ignored.

In our case the operators P̂ and Ŝμν have the form

P̂αβ,μν = 2Rαμβν + 2gβν Rαμ − gαβ Rμν − gμν Rαβ

− 5

6
Rδαβ,μν + 1

2
Rgαβ gμν − 2Λδαβ,μν

− m2

2
δαβ,μν

[
gστ fτλϕ

λ
σ + (

ϕ−1)σ
σ

]

+ 2m2 fνσ ϕσ
(α gβ)μ + m2

2
fρ(α

(
Â−1)

β)
ρ,μ

τ fντ

− m2

4
gαβ fσρ

(
Â−1)σρ

,μ
τ fντ ,

Ŝλτ = [ Ŝλτ ]μν,αβ = −2Rμαλτ gνβ . (27)

Replacing these operators in the expression (26), after some alge-
bra we obtain the expression for the divergent part of the one-loop
effective action,

Γ
(1)

div|Λ=−3m2 = − 2μn−4

(4π)2(n − 4)

∫
dnx

√−g

{
53

90
E + 7

20
R2

μν

+ 1

120
R2 + m2

2
R(λ|α|σ )β fστ

(
Â−1)

λ
τ

(α
|ρ| fβ)ρ

− m2

48
R
[
948 + 236

(√
g−1 f

)μ
μ

+ 5
(

g−1 f
)λ

β

(
Â−1)

αλ,
ασ

(
g−1 f

)β
σ

+ 5 fαλ

(
Â−1)βλ,ασ fβσ − 5 fαβ

(
Â−1)αβ,μν fμν

]

+ m2

4
Rλα

[
12

(√
g−1 f

)
αλ

+ (
g−1 f

)β
ρ

(
Â−1)

λ
ρ

(α
|τ | fβ)τ

+ fλρ

(
Â−1)βρ

(α
|τ | fβ)τ

− 2 fστ

(
Â−1)στ

α
ρ fλρ

] + m4

16

[
1440

+ 12
(

g−1 f
)λ

β

(
Â−1)

αλ,
ασ

(
g−1 f

)β
σ

+ 12 fαλ

(
Â−1)βλ,ασ fβσ − 12 fαβ

(
Â−1)αβ,μν fμν

− 240
(√

g−1 f
)μ

μ + 24
(

g−1 f
)μ

μ

+ 4
(√

g−1 f
)μ

μ

(√
g−1 f

)ν
ν

+ (
g−1 f

)λ
(ρ

(
Â−1)

τ )λμ
σ
(

g−1 f
)ν

σ

× (
g−1 f

)ρ
θ

(
Â−1)τθμ

α

(
g−1 f

)α
ν

+ (
g−1 f

)λ
(ρ

(
Â−1)

τ )λ
μ

σ

(
g−1 f

)σ
ν

× (
g−1 f

)ρ
θ

(
Â−1)τθν

α

(
g−1 f

)α
μ

− 4
(√

g−1 f
)λ

λ

(
g−1 f

)β
ϕ fθ(α

(
Â−1)

β)
θαϕ

+ 2
(√

g−1 f
)λ

λ fαβ

(
Â−1)αβ,μν fμν
− 4 fρθ

(√
g−1 f

)λ
(α fϕ)λ

(
Â−1)ρθαϕ

+ 2 fαθ fλϕ

(√
g−1 f

)λ
ρ

(
Â−1)ρθαϕ

+ 2 fβλ

(
g−1 f

)β
ϕ

(√
g−1 f

)λ
θ

(
Â−1)

α
θαϕ

+ 2
(

g−1 f
)θ

λ

(
g−1 f

)λ
ϕ

(√
g−1 f

)α
ρ

(
Â−1)ρ

θα
ϕ

+ 2
(

g−1 f
)τ

θ fλϕ

(√
g−1 f

)α
τ

(
Â−1)λθ

α
ϕ
]}

, (28)

where we included the mass-independent ghost contribution and
used the special value Λ = −3m2. In Eq. (28) E = R2

μναβ − 4R2
μν +

R2 is the integrand of the Gauss–Bonnet topological term and the
expression ( Â−1)αβμν has been defined in Eq. (16). One has to
note that the matrix ( Â)−1 is an infinite power series on the
external field f and hence the divergences (28) have essentially
non-polynomial structure in this field too.

Let us note that before the use of the condition Λ = −3m2 the
divergences represent the corresponding expression for Einstein
quantum gravity [12] with the contribution of the cosmological
term and the rest of the expression is due to additional mass de-
pendent term in the action. The reason for such a result is that we
performed calculations is the situation when the diffeomorphism
symmetry is unbroken. This means we treat fμν as external ten-
sor field which does not violate general covariance of the theory,
hence the number of physical degrees of freedom does not change
due to the extra massive term in (1). Indeed, our approach follows
the standard practice when, e.g., the divergences in the Yang–Mills
theory with the spontaneous symmetry breaking are calculated in
the unbroken phase. It would be, definitely, interesting to perform
the calculation in the broken phase, however it is not immediately
clear how this can be done in the softly broken non-Abelian theory
such as quantum gravity.

An interesting observation concerning Eq. (28) is that there is
an explicit simple hierarchy of the terms, for example the ones
with higher derivatives do not depend on mass and/or on the
field f . At the same time, if we consider the classical action with
the algebraic structures presented in (28), we note that there are
no derivatives acting on f there. However, despite there are no
such derivatives of f , this field will be dynamical in action (28) be-
cause of the mixture with Ricci tensor and scalar curvature which
emerge in the third line of the expression.

The next problem is to see what happens with the result (28)
on-shell. For this end we have to derive the classical equations of
motion and replace them into (28). The equation of motion for the
theory (1) with Λ = −3m2 has the form

Rμν − 1

2
Rgμν = −3m2 gμν + 1

2
m2 gμν

(√
g−1 f

)α
α

− 1

2
m2(√g−1 f

)νμ
. (29)

After using this relation in Eq. (28), we arrive at the following on-
shell result

Γ
(1)

div|on shell = − μn−4

(4π)2(n − 4)

∫
dnx

√−g

[
53

45
E

+ m2 R(λ|α|σ )β fστ

(
Â−1)

λ
τ

(α
|ρ| fβ)ρ

]

− m4μn−4

8(4π)2(n − 4)

∫
dnx

√−g

[
1.5 · 32 · 111

− 8 fαλ

(
Â−1)βλ,ασ fβσ + 0.4 · 77

(√
g−1 f

)μ
μ
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+ 7

5

(
g−1 f

)μ
μ

+ 1.5 · 13 · 29
(√

g−1 f
)μ

μ

(√
g−1 f

)ν
ν

+ (
g−1 f

)λ
(ρ

(
Â−1)

τ )λμ
σ
(

g−1 f
)ν

σ

× (
g−1 f

)ρ
θ

(
Â−1)τθμ

α

(
g−1 f

)α
ν

+ (
g−1 f

)λ
(ρ

(
Â−1)

τ )λ
μ

σ

(
g−1 f

)σ
ν

× (
g−1 f

)ρ
θ

(
Â−1)τθν

α

(
g−1 f

)α
μ

− 4
(√

g−1 f
)λ

λ

(
g−1 f

)β
ϕ fθ(α

(
Â−1)

β)
θαϕ

+
[

3

2

(√
g−1 f

)λ
λ + 16

]
fαβ

(
Â−1)αβ,μν fμν

− 4 fρθ

(√
g−1 f

)λ
(α fϕ)λ

(
Â−1)ρθαϕ

+ 2 fαθ fλϕ

(√
g−1 f

)λ
ρ

(
Â−1)ρθαϕ

+ 2 fβλ

(
g−1 f

)β
ϕ

(√
g−1 f

)λ
θ

(
Â−1)

α
θαϕ

+ 2
(

g−1 f
)θ

λ

(
g−1 f

)λ
ϕ

(√
g−1 f

)α
ρ

(
Â−1)ρ

θα
ϕ

− 2
(

g−1 f
)τ

θ fλϕ

(√
g−1 f

)α
τ

(
Â−1)λθ

α
ϕ

−
[

1

2

(√
g−1 f

)μ
μ + 6

]

× (
g−1 f

)α
ρ

(
Â−1)βρ

(α
|τ | fβ)τ

+ 2
(√

g−1 f
)α

λ

(
g−1 f

)λ
ρ

(
Â−1)βρ

(α
|τ | fβ)τ

+ 2
(√

g−1 f
)α

λ

(
g−1 f

)β
ρ

(
Â−1)λρ

(α
|τ | fβ)τ

+
[

32 − 5

2

(√
g−1 f

)μ
μ

]

× (
g−1 f

)λ
β

(
Â−1)

αλ
ασ

(
g−1 f

)β
σ

]
. (30)

It is easy to see that the on-shell result does not vanish as it was
for the massless theory [12]. Moreover, in the first and second lines
one can see the term which explicitly depends on the Riemann
tensor which is mixed with the components of fστ . It is easy to
see that the specific tuning of the mass term which results (af-
ter symmetry breaking) in the ghost-free massive theory, does not
hold at the quantum level.

5. Conclusion

We have developed the background field method and calcu-
lated the one-loop divergences for minimal massive gravity models
suggested in [4]. The divergences are formulated in terms of geo-
metrical invariants constructed from metric and reference metric
and contain the inverse matrix (16) which is an infinite power
series in the reference metric fμν . There are no doubts that the
divergences for the non-minimal, more complicated actions of [4]
will have qualitatively the same structure. The final expression (28)
shows that the UV completion of the massive gravity theory would
be essentially more complicated than the one of Einstein quantum
gravity. Along with the usual fourth-derivative metric-dependent
terms such completion should include also dependence on the
reference metric fμν . Furthermore, this field gains dynamics due
to the mixture with curvature tensor components. Therefore the
counter-term (28) can be considered as the action functional defin-
ing dynamics of reference metric.
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