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Graviton amplitudes from collinear limits of gauge amplitudes
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We express all tree-level graviton amplitudes in Einstein’s gravity as the collinear limits of a linear 
combination of pure Yang–Mills amplitudes in which each graviton is represented by two gauge bosons, 
each of them carrying exactly one half of graviton’s momentum and helicity.
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The amplitudes describing scattering processes of many gravi-
tons in quantized Einstein’s general relativity are related to the 
amplitudes describing vector gauge boson scattering in Yang–Mills 
theory. As discovered by Kawai, Lewellen and Tye (KLT) [1] in 
1985, gravitational amplitudes can be written as “squares” of gauge 
amplitudes, more precisely as bilinear forms of partial gauge am-
plitudes weighted by the kinematic coefficients presently known 
as the “KLT kernel.” Kawai, Lewellen and Tye discovered these re-
lations in the framework of string theory, as a connection between 
closed and open string amplitudes. Their quadratic form is a direct 
consequence of the factorization of the graviton vertex operator 
into the operators creating non-interacting left- and right-moving 
fluctuations of the world-sheet. They support an intuitive picture 
of the closed string as a loop of two open strings connected at 
the ends [2]. More recently, Cachazo, He and Yuan [3–5] devel-
oped a novel representation of graviton amplitudes, by utilizing 
the so-called scattering equations. Here again, gravity appears as a 
“square” of gauge theory.

In a recent work [6], we expressed tree-level Einstein–Yang–
Mills amplitudes involving one graviton and an arbitrary number 
of gauge bosons as linear combinations of pure Yang–Mills ampli-
tudes in which the graviton appears as a pair of collinear vector 
bosons, each of them carrying exactly one-half of its momentum 
and helicity. This result is a low energy, field theory manifestation 
of a much broader class of linear relations between closed and 
open string amplitudes, which will be discussed elsewhere [7]. It 
indicates that, in some way, the graviton can be considered as a 
pair of gauge bosons beyond the world-sheet, as a bound state in 
physical space–time. Although Weinberg–Witten theorem [8] rules 
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out a massless spin 2 graviton emergent from pure gauge dynam-
ics,1 it is possible that such linear relations reflect something more 
subtle.

In the present work, we express the N-graviton amplitude as 
a collinear limit of a particular linear combination of pure Yang–
Mills (partial) 2N-gluon2 amplitudes. The paper is organized in a 
simple way. First, we establish notation. Then we will state the re-
sult and prove it by showing agreement with the KLT formula. As 
an illustration, we will work out explicitly the three-graviton case.

The momenta ki and helicities λi = ±2 of N − 1 gravitons will 
be split into momenta pi, qi and helicities μi, νi of 2(N −1) gluons 
in the following way:

pi = qi = ki

2
, μi = νi = λi

2
, i = 1,2, . . . , N − 1. (1)

We will also introduce one additional pair of gluons, with the 
momenta p and q, and opposite helicities, μ = +1 and ν = −1, 
respectively. With all momenta assumed to be incoming into the 
scattering process, the momentum conservation is
N−1∑
i=1

pi +
N−1∑
i=1

qi + p + q =
N−1∑
i=1

ki + p + q = 0. (2)

All momenta are on-shell (light-like). It is convenient to represent 
p and q as matrices which factorize into helicity spinor variables 
in the following way:

/p = σpσ̃p , /q = σqσ̃q . (3)

1 This is due to the existence of a Lorentz-covariant energy–momentum tensor in 
Yang–Mills theory.

2 For brevity vector gauge bosons are called “gluons” below. All Yang–Mills ampli-
tudes are partial, associated to a single trace of (arbitrary) gauge group generators 
in the fundamental representation.
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For real light-like momenta p and q, the limit spq = (p + q)2 =
〈pq〉[qp] → 0 at finite p and q constraints the respective three-
momenta to a collinear configuration, i.e. both pointing in the 
same direction.3 Here, however, we will be considering complex 
momenta, which allows two ways of reaching spq = 0:

[pq] → 0 with 〈pq〉 �= 0 : σ̃p → xσ̃q , (4)

where x is an arbitrary number, and similarly,

〈pq〉 → 0 with [pq] �= 0 : σp → xσq . (5)

We will be using the following 2N-gluon Yang–Mills partial am-
plitudes

A[p, N − 1,1,π(2,3, . . . , N − 2),1,ρ(2, . . . , N − 2), N − 1,q]
≡ A[p,μ = +1; pN−1,μN−1; . . . ; p(N−2)π ,μ(N−2)π ;

q1, ν1; . . . ;qN−1, νN−1;q, ν = −1] , (6)

where π, ρ ∈ SN−3 denote permutations of N − 3 elements and 
iπ ≡ π(i), jρ ≡ ρ( j). We will also need the KLT kernel S[π |ρ]
introduced in [1,10,11]

S[π |ρ] ≡ S[π(2, . . . , N − 2) |ρ(2, . . . , N − 2) ]

=
N−2∏
i=2

(
s1,iπ +

i−1∑
j=2

θ(iπ , jπ ) siπ , jπ

)
, (7)

where si, j ≡ (pi + p j)
2 and θ(iπ , jπ ) = 1 if the ordering of the 

legs (iπ , jπ ) and (iρ, jρ) is the same for π(2, . . . , N − 2) and 
ρ(2, . . . , N − 2), and zero otherwise.4

Theorem. The N-graviton amplitude in Einstein’s gravity is given at the 
tree level by:

AE [k1, λ1; . . . ;kN−1, λN−1;kN = p + q, λN = +2]

= lim[pq]→0

(
1

2x

)4 [pq]
〈pq〉 s2

pq

×
∑

π,ρ∈S N−3

S[π |ρ]A[p, N − 1,1,π(2,3, . . . , N − 2),

1,ρ(2, . . . , N − 2), N − 1,q] , (8)

where the limit is defined in Eq. (4). Similarly,

AE [k1, λ1; . . . ;kN−1, λN−1;kN = p + q, λN = −2]
= lim〈pq〉→0

(
2x

)4 〈pq〉
[pq] s2

pq

×
∑

π,ρ∈S N−3

S[π |ρ] A[p, N − 1,1,π(2,3, . . . , N − 2),

1,ρ(2, . . . , N − 2), N − 1,q] , (9)

with the limit defined5 in Eq. (5).

Proof. In order to prove Eq. (8), we note that [pq]s2
pq ∼ s3

pq , there-
fore the limit [pq] → 0 pushes the Yang Mills amplitude on the 
r.h.s. of (8) into a highly singular (triple “factorization pole”) kine-
matic configuration. In the first step, we factorize on the pole in 

3 We are using standard notation of the helicity formalism [9].
4 Note, that the kernel (7) does not depend explicitly on the momenta p and q.
5 In the above relations, we omit constant factors involving Yang–Mills and grav-

itational coupling constants.
Fig. 1. Factorization in the N-gluon channel.

Fig. 2. Factorization of subamplitudes.

the N-gluon channel shown in Fig. 1, with the total momentum 
of:

l =
N−1∑
i=1

pi + p = p − q

2
, l2 = − spq

4
. (10)

Furthermore, the subamplitude on the left side of Fig. 1 develops 
a pole in the two-gluon channel with

pN = p − l = p + q

2
= kN

2
, p2

N = spq

4
, (11)

as shown in Fig. 2. Similarly, the subamplitude on the right side of 
Fig. 1 develops a pole in the two-gluon channel with

qN = q + l = p + q

2
= kN

2
, q2

N = spq

4
. (12)

It is easy to show that in the limit (4), there is a unique helicity 
configuration contributing to the triple pole

A[p, N − 1,1,π(2,3, . . . , N − 2),1,ρ(2, . . . , N − 2), N − 1,q]

→
(

4

spq

)3

×
× A[p+,−l−,−p−

N ]
× A[pN ,μN = +1; N − 1,1,π(2,3, . . . , N − 2)]
× A[1,ρ(2, . . . , N − 2), N − 1;qN , νN = +1]
× A[q−, l+,−q−

N ] , (13)

where we used ± superscripts to indicate the respective ±1 vector 
boson helicities. In this limit, the three-gluon amplitudes reduce 
to:

A[p+,−l−,−p−
N ] = x3

2
〈pq〉 , A[q−, l+,−q−

N ] = x

2
〈pq〉 . (14)

After inserting Eqs. (13) and (14) into Eq. (8), we obtain

AE [k1, λ1; . . . ;kN−1, λN−1;kN , λN = +2]
=

∑
π,ρ∈S N−3

S[π |ρ]

× A[pN ,μN = +1; N − 1,1,π(2,3, . . . , N − 2)]
× A[1,ρ(2, . . . , N − 2), N − 1;qN , νN = +1] , (15)
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which is the KLT formula for the N-graviton amplitude [1,10]. The 
proof of Eq. (9) proceeds in a similar way.6 �
Example (Three-graviton amplitude). For N = 3, the KLT kernel is 
trivial and Eq. (8) reads

AE [k1, λ1;k2, λ2;k3 = p + q, λ3 = +2]

= lim[pq]→0

(
1

2x

)4 [pq]
〈pq〉 s2

pq A[p,2, {1,1},2,q] , (16)

where we used curly brackets to indicate symmetrization in 
{p1, q1} before setting p1 = q1. The symmetrization removes the 
collinear singularity at p1 = q1; it is necessary in the N = 3 case 
only. The r.h.s. of Eq. (16) can be rewritten by using the BCJ rela-
tion [12]

s2
pq A[p,2, {1,1},2,q]
= spq

( − spq A[p,1,2,1,2,q] + 2 sq1 A[p,2,1,2,q,1] )
,

(17)

which is manifestly finite. The combination on the r.h.s. of the 
above equation appears in the zero string slope limit of the four-
particle open-closed string disk amplitude involving two gravitons 
and two gauge bosons, cf. Eq. (3.40) of Ref. [13]:

s2
pq A[p,2, {1,1},2,q] = A[k1, λ1;k2, λ2; p,μ;q, ν] . (18)

In this way, we find that the limit of Eq. (16) amounts to factor-
izing this Einstein–Yang–Mills amplitude in the s channel, on the 
graviton pole. In Ref. [7], we will show that the same conclusion 
holds for higher N: the triple pole limits of Yang–Mills amplitudes 
in Eqs. (8) and (9) correspond to the degeneration limit of disk am-
plitudes involving N − 1 gravitons (closed strings) and two gauge 
bosons, i.e. open strings attached to the disk boundary. In this 
limit, the boundary shrinks to a point and the amplitude factor-
izes into N-graviton amplitude on the sphere times the amplitude 
for one of the gravitons to decay into a pair of gauge bosons. 
Now returning to the case of N = 3, we see from Eq. (17) that 
a non-vanishing amplitude requires two gravitons to carry oppo-
site helicities, thus we set λ1 = +2, λ2 = −2. The amplitude (18)
can be computed by substituting the well-known six-point NMHV 
Yang–Mills amplitudes [9] into the r.h.s. of Eq. (17), giving

A[k1, λ1 = +2;k2, λ2 = −2; p,μ = +1;q, ν = −1]
= [1p][1q]

〈1p〉〈1q〉
〈2q〉4

spq
. (19)

6 The amplitudes involving string dilatons can be obtained in a similar way, as 
collinear limits of Yang–Mills amplitudes involving two additional gauge bosons, 
but carrying identical helicities, i.e. μ = ν = ±1.
Next, we substitute it to Eqs. (18) and (16), and take the limit by 
using

x = [1p]
[1q] = [2p]

[2q] , k3 = p + q = −k1 − k2 , (20)

which yields the correct result:

AE [k1, λ1 = +2;k2, λ2 = −2;k3, λ3 = +2] = [13]6

[12]2[23]2
. (21)

To summarize, we proposed a new representation of gravita-
tional amplitudes at the tree level. It would be interesting to learn 
whether it can be extended beyond the tree level, to improve our 
understanding of loop corrections in quantum gravity.
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