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Euclidean special geometry has recently been investigated in the context of Euclidean supersymmetric
theories with vector multiplets. In the rigid case, the scalar manifold is described by affine special para-
Kähler geometry while the target geometries of Euclidean vector multiplets coupled to supergravity are
given by projective special para-Kähler manifolds. In this Letter, we derive the Killing spinor equations of
Euclidean N = 2 supergravity theories coupled to vector multiplets. These equations provide the starting
point for finding general supersymmetric instanton solutions.
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1. Introduction

Special geometry was first discovered in the study of the cou-
pling of N = 2 supergravity to vector multiplets [1]. In recent
years, this geometry has provided an important ingredient in the
understanding of non-perturbative structure in field theory, su-
pergravity, string compactifications (see for example: [2]), as well
as in the study and analysis of black hole physics [3]. More re-
cently, the Euclidean version of special geometry has been inves-
tigated in the context of Euclidean supersymmetric theories [4–6].
The Euclidean versions of the special geometries can be obtained
from their standard counterparts by replacing i by the object e
with the properties e2 = 1 and ē = −e. In the context of find-
ing instanton solutions, this replacement was first done in [7]
in the study of D-instantons in type IIB supergravity. Geometri-
cally, this change of i into e, is effectively the replacement of the
complex structure by a para-complex structure. Details on para-
complex geometry, para-holomorphic bundles, para-Kähler mani-
folds and affine special para-Kähler manifolds can be found in [4].
In the rigid case, the scalar manifold is described by affine special
para-Kähler geometry. Starting from the general five dimensional
vector multiplet action, the dimensional reduction over a time-
like circle was considered in [4]. The Euclidean action, together
with the supersymmetry transformations when expressed in terms
of para-holomorphic coordinates, are of the same form as their
Minkowskian counterparts.

In [6] the results of the rigid case were generalised by con-
sidering the dimensional reduction of the five dimensional super-
gravity theory of [8]. The dimensional reduction with respect to a
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time-like and space-like direction, gives respectively the Euclidean
and Lorentzian theories in four dimensions. The bosonic action for
both types of reductions was obtained in [6]. The target geometries
of Euclidean vector multiplets coupled to supergravity are given by
projective special para-Kähler manifolds [6]. In this work, we com-
plete the analysis of [6] and determine the associated Killing spinor
equations. These will be a step in the direction of the classification
of instanton solutions with non-trivial gauge and scalar fields. We
organise this work as follows. We review the bosonic reduction [6]
in Section 2. This will fix our notation, as well as the relation be-
tween the five and four dimensional bosonic fields needed to study
the reduction of the Killing spinor equations from five to four di-
mensions. Section 3 contains the reduction of the Killing spinor
equations. Section 4 describes how these equations can be rewrit-
ten using an appropriate chiral decomposition, and recast into an
ε-complex form, or into an adapted co-ordinate form. We conclude
in Section 5.

2. Bosonic reduction and special ε-Kähler geometry

In this section we review the bosonic reduction of the five
dimensional supergravity theory [6]. The Lagrangian of the five di-
mensional theory is given by [8]1

ê−1L̂5 = 1

2
R̂ − 1

2
Gij∂m̂hi∂m̂h j − 1

4
Gij

(
F i)

m̂n̂

(
F j)m̂n̂

+ ê−1

48
Cijkε

n̂1n̂2n̂3n̂4n̂5
(
F i)

n̂1n̂2

(
F j)

n̂3n̂4

(
Ak)

n̂5
. (2.1)

1 This is related to the original Lagrangian via the following identifications:

F i → 61/6

F i, hi → 6−1/3hi , aij → 4.6−1/3Gij .
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Here ê is the determinant of the fünfbein and R̂ the space–time
Ricci scalar, Cijk are real constants, symmetric in i, j,k. All the
physical quantities of the theory are determined in terms of a
homogeneous cubic polynomial V which defines very special ge-
ometry,

Gij = −1

2

∂

∂hi

∂

∂h j
(lnV)

∣∣∣∣
V=1

= 9

2
hih j − 1

2
Cijkhk (2.2)

where

V = 1

6
Cijkhih jhk = hihi = 1, hi ≡ 1

6
Cijkh jhk. (2.3)

In particular we have the relation

Gijh
j = 3

2
hi . (2.4)

The reduction ansatz is given by [6]:

êa = e−φ/2ea, ê0 = eφ
(
dt − A0). (2.5)

Here ê are the fünfbeins, ea are the vielbeins, A0 and φ are, respec-
tively, a gauge field and a scalar field. All fields are independent
of the coordinate t , and ea

t = 0, A0
t = 0. The five dimensional flat

metric is denoted by ηm̂n̂ = (−ε,+,+,+, ε) while the four dimen-
sional one is denoted by ηab = (+,+,+, ε); Roman indices m,n
denote D = 5 frame indices, whereas a,b, . . . are D = 4 frame in-
dices. Here ε = −1 for reduction on a space-like direction and
ε = 1 for reduction on a time-like direction.

Note that the non-vanishing components of the D = 5 spin con-
nection ω̂, written in the frame basis, are given by

ω̂0,0â = −εe
φ
2 ∂aφ,

ω̂0,âb̂ = −ε

2
e2φ

(
F 0)

ab,

ω̂â,0b̂ = −ε

2
e2φ

(
F 0)

ab,

ω̂â,b̂ĉ = e
φ
2

(
ωa,bc + 1

2
ηac∂bφ − 1

2
ηab∂cφ

)
(2.6)

where indices on the LHS are D = 5 frame indices, taken with re-
spect to the basis ê, whereas the indices on the RHS are ea frame
indices, and F 0 = dA0. The spin connection associated with the
D = 4 basis ea has components ωa,bc .

The D = 5 gauge potentials Ai (F i = dAi ) are decomposed as

Ai = xi(dt − A0) + Ai, Ai
t = 0 (2.7)

where Ai are the D = 4 gauge potentials; the scalar fields xi and
gauge potentials Ai are also independent of t . So the components
of the D = 5 gauge field strengths F i in the frame basis are given
by

F i
0â = −e− φ

2 ∂axi,

F i
âb̂

= eφ
(

F i − xi F 0)
ab (2.8)

where F i = dAi , and on the LHS, the indices are frame indices de-
fined with respect to (2.5), and on the RHS ea frame indices are
used.

Then, after performing the redefinitions:

hi = e−φ yi, Gij = −2εgije
2φ, (2.9)

and rescaling the D = 4 gauge fields F 0 and F i by a factor of
√

2,
we obtain from (2.1)
e−1L = 1

2
R − gij

(
∂axi∂ax j − ε∂a yi∂a y j)

+ C yyy

[
ε

24
F 0 · F 0

+ ε
1

6

(
gxxF 0 · F 0 + gij F i · F j − 2(gx)i F i · F 0)]

+ 1

12

[
3(Cx)i j F i · F̃ j − 3(Cxx)i F i · F̃ 0

+ (Cxxx)F 0 · F̃ 0] (2.10)

where R is the Ricci scalar of the D = 4 manifold with metric
ds2

4 = δabeaeb . We have used the notation

Chhh = Cijkhih jhk, (Chh)i = Cijkhih j,

(C y)i j = Cijkhi (2.11)

and F · F = Fab F ab . The dual field strength is F̃ab = ε
2 εabcd F cd , and

we remark that the relationship between the D = 5 and D = 4
volume forms is2

̂dvol5 = −e−2φ ê0 ∧ dvol4 (2.12)

where dvol4 is the volume form of the D = 4 manifold with metric
ds2

4.
The explicit form of gij is

gij = ε
3

2

(
(C y)i j

C yyy
− 3

2

(C yy)i(C yy) j

(C yyy)2

)
. (2.13)

For both values of ε , it was demonstrated in [6] that (2.10) can
be described by the Lagrangian of the four dimensional N = 2 su-
pergravity theory coupled to vector multiplets [9–11]

e−1L = 1

2
R − gij∂μzi∂μ z̄ j + 1

4
ImNI J F I · F J

+ 1

4
ReNI J F I · F̃ J , (2.14)

with the cubic prepotential

F = 1

6
Cijk

Xi X j Xk

X0
. (2.15)

It should be mentioned that the dimensional reduction of (2.1)
on a space-like circle was considered before in [8]. The coupling
of N = 2 vector multiplets to N = 2 supergravity is encoded in
a holomorphic homogeneous prepotential F (X) of degree two.
To demonstrate the equivalence of the reduced theory with the
one given by (2.14), (2.15), the so-called ε-complex coordinates
(X I = Re X I + iε Im X I ) were introduced and F is taken to be ε-
holomorphic, i.e. it depends on ε-complex scalar fields. Here iε
satisfies iε = e, for ε = 1 and iε = i, for ε = −1. In the symplectic
formulation of the theory, one introduces the symplectic vectors

V =
(

X I

F I

)
(2.16)

satisfying the symplectic constraint

iε
(

X̄ I F I − X I F̄ I
) = −NI J X I X̄ J = 1 (2.17)

where

NI J = −iε(F I J − F̄ I J ), (2.18)

2 This is the opposite sign convention to that used in [6].
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F I = ∂ F
∂ X I and F I J = ∂2 F

∂ X I ∂ X J . The constraint (2.17) can be solved by
setting

X I = eK (z,z̄)/2 X I (z) (2.19)

where K (z, z̄) is the Kähler potential. Then we have

e−K (z,z̄) = −NI J X I (z) X̄ J (z̄). (2.20)

The resulting geometry of the physical scalar fields zi of the vector
multiplets is then given by a special Kähler manifold with Kähler
metric

gi j̄ = ∂2 K (z, z̄)

∂zi∂ z̄ j
. (2.21)

A convenient choice of inhomogeneous coordinates zi is the special
coordinates defined by

X0(z) = 1, Xi(z) = zi .

The gauge field coupling matrix is

N̄I J = F I J (X) + iεε
(N X̄)I (N X̄) J

X̄ N X̄
. (2.22)

For theories with cubic prepotentials in (2.15), we obtain

gij = ε

(
3

2

(C y)i j

C yyy
− 9

4

(C yy)i(C yy) j

(C yyy)2

)
(2.23)

and

N00 = 1

3
Cxxx + εiεC yyy

(
2

3
gxx + 1

6

)
,

N0i = −1

2
(Cxx)i − 2

3
εiεC yyy(gx)i,

Ni j = (Cx)i j + 2

3
εiε gijC yyy. (2.24)

Therefore the kinetic term of the scalar fields agrees with the re-
duced theory where

zi = xi − iε yi . (2.25)

Using (2.24) the gauge part of the action (2.14) gives

1

6
εC yyy

(
1

4
F 0 · F 0 + gxxF 0 · F 0 − 2(gx)i F i · F 0 + gij F i · F j

)

+ 1

12

(
CxxxF 0 · F̃ 0 − 3(Cxx)i F i · F̃ 0 + 3(Cx)i j F i · F̃ j) (2.26)

which agrees with the reduced Lagrangian.

3. Reduced Killing spinor equations

In this section we start with the supersymmetry variation of
the gravitini and gaugino in the five dimensional supergravity the-
ory and reduce them to four dimensions. The associated Killing
spinor equations are(

D̂m̂ + i

8
hi

(
Γm̂

n̂1n̂2 − 4δ
n̂1
m̂

Γ n̂2
)
F i

n̂1n̂2

)
ε̂ = 0 (3.1)

and

((
F i − hih jF j)

n̂1n̂2
Γ n̂1n̂2 + 2i∇̂m̂hiΓ m̂)

ε̂ = 0. (3.2)

Here D̂m̂ = ∂m̂ + 1
4 ω̂m̂,n̂1n̂2

Γ n̂1n̂2 is the five dimensional covari-
ant derivative. Note that Γ0 squares to −ε , and Γ 0 = −εΓ0. We
first reduce (3.1) and (3.2) to D = 4; throughout what follows the
rescaling of the D = 4 gauge field strengths by

√
2 is taken into

account.
First consider the m̂ = 0 component of (3.1); this reduces from

D = 5 to D = 4 to give(
i

2
e

φ
2 hiΓ

a(∂axi + i∂a yiΓ0
)

+ i

4
√

2
e2φΓ ab(hiΓ0

(
F i − xi F 0)

ab + iεeφ F 0
ab

))
ε̂ = 0. (3.3)

Consider also the reduction of the D = 5 gaugino equation (3.2);
which gives(

− 1√
2

e
3φ
2 Γ0

(
δi

j − hih j
)(

F j − x j F 0)
abΓ

ab

+ Γ a(∂axi − hih j∂ax j + iΓ0∂a yi − ieφhi∂aφΓ0
))

ε̂ = 0. (3.4)

After some calculation, details of which are given in Appen-
dix A, the two conditions (3.3) and (3.4) can be combined into
the following expression:

i

2
eK/2(ImN )I J Γ

ab F J
ab

[
Im

(
gi j̄D j̄ X̄ I) + iεΓ0 Re

(
gi j̄D j̄ X̄ I)]ε̂

+ Γ a∂a
[
Re zi − iΓ0 Im zi]ε̂ = 0 (3.5)

where

D j̄ X̄ I = ∂ j̄ X̄ I + ∂ j̄ K X̄ I . (3.6)

In particular, one finds that (3.3) is obtained from (3.5) by con-
tracting with hi , whereas one obtains (3.4) by considering the di-
rections of (3.5) which are orthogonal to hi .

Next consider the m̂ = â component of (3.1); this reduces to
D = 4 to give the following expression:

Daε̂ +
(

1

2
√

2
e

3φ
2 Γ0Γ

b(F 0)
ab − 1

4
Γa

b∂bφ − i

4
εΓ0Γa

be−φhi∂bxi

+ i

2
εΓ0e−φhi∂axi + i

4
√

2
hiΓa

bce
φ
2
(

F i − xi F 0)
bc

− i√
2

hie
φ
2
(

F i − xi F 0)
abΓ

b
)
ε̂ = 0. (3.7)

In order to rewrite this expression, we introduce the U (1) (para)-
Kähler potential3

Aa = − iε
2

(
∂i K∂azi − ∂ī K∂azī). (3.8)

This can be recast as

Aa = −3

2
e−φhi∂axi . (3.9)

Then, using the identities listed in Appendix A, (3.7) can be
rewritten as

Daε̂ +
(

1

4
∂aφ − i

2
AaεΓ0

+ i

4
e

K
2 Γ bc F I

bc

(
Im X J + iεΓ0 Re X J )(ImN )I J Γa

)
ε̂

+ 1

2
εΓaΓ0e− 3φ

2

(
i

4
√

2
e2φΓ bc(hiΓ0

(
F i − xi F 0)

bc + iεeφ F 0
bc

)

+ i

2
e

φ
2 hiΓ

b(∂bxi + i∂b yiΓ0
))

ε̂ = 0. (3.10)

3 To be distinguished from the gauge potentials A0, Ai .
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Observe that the second and third lines of this expression can be
removed by using (3.3) and so on setting

ε̂ = e− φ
4 ε (3.11)

it follows that (3.1) and (3.2) can be rewritten as

Daε − i

2
ε AaΓ0ε

+ i

4
e

K
2 Γ bc F I

bc

(
Im X J + iεΓ0 Re X J )(ImN )I J Γaε = 0 (3.12)

and

i

2
eK/2(ImN )I J Γ

ab F J
ab

[
Im

(
gi j̄D j̄ X̄ I) + iεΓ0 Re

(
gi j̄D j̄ X̄ I)]ε

+ Γ a∂a
[
Re zi − iΓ0 Im zi]ε = 0. (3.13)

4. Chiral decomposition

In this section we express the transformations (3.12) and (3.13)
in terms of chiral spinors. In order to define the various projec-
tions, it is convenient to note that4

Γn̂1n̂2n̂3n̂4n̂5
= i( ̂dvol5)n̂1n̂2n̂3n̂4n̂5

(4.1)

which implies that

Γ0Γab = i

2
εab

cdΓcd. (4.2)

In the Minkowski case (ε = −1), we decompose the spinor ε in
terms of chiral spinors as ε = ε− + ε+ , where we set

Γ± = 1

2
(1 ± Γ0),

Γ±ε± = ε±,

Γ±ε∓ = 0 (4.3)

and we also define

F ±
ab = 1

2
(Fab ± i F̃ab). (4.4)

Also, (4.2) implies that

Γ · F = Γ · (F −Γ+ + F +Γ−
)
. (4.5)

We find that (3.12) and (3.13) can be rewritten as

Daε± ± i

2
Aaε±

± 1

4
e

K
2 Γ bc F ∓I

bc

(
Re X J ± i Im X J ) ImNI J Γaε∓ = 0 (4.6)

and

±1

2
e

K
2 ImNI J Γ

ab F ∓ J
ab

(
Re

(
gi j̄D j̄ X̄ I) ± i Im

(
gi j̄D j̄ X̄ I))ε±

+ Γ a∂a
(
Re zi ± i Im zi)ε∓ = 0. (4.7)

This is in agreement with the Killing spinor equations given
by [11] (on making the identification ε1 = ε+ , ε2 = ε−):

Daε
α + i

2
Aaε

α + 1

4
(ImN )I J X J (z)eK/2Γ · F −IεαβΓaεβ = 0,

−1

2
e

K
2 (ImN )I J gi j̄D j̄ X̄ I (z̄)γ · F − J εαβεβ + Γ a∂aziεα = 0. (4.8)

4 We remark that the sign in (4.1) is fixed by requiring that the integrability con-
ditions of the Killing spinor equations (3.1) and (3.2) should be consistent with the
gauge field equations obtained from (2.1).
Next consider the Euclidean case (ε = 1). There are two alter-
native chiral decompositions possible. For the first, we define

Γ± = 1

2
(1 ± iΓ0),

Γ±ε± = ε±,

Γ±ε∓ = 0 (4.9)

with

F ±
ab = 1

2
(Fab ± F̃ab), (4.10)

and (4.2) implies that

Γ · F = Γ · (F −Γ+ + F +Γ−
)
. (4.11)

We find that (3.12) and (3.13) can be rewritten as

Daε± ∓ 1

2
Aaε±

± i

4
e

K
2 Γ bc F ∓I

bc

(
Re X J ± Im X J ) ImNI J Γaε∓ = 0 (4.12)

and

± i

2
e

K
2 ImNI J Γ

ab F ∓ J
ab

(
Re

(
gi j̄D j̄ X̄ I) ± Im

(
gi j̄D j̄ X̄ I))ε±

+ Γ a∂a
(
Re zi ± Im zi)ε∓ = 0. (4.13)

This is the form of the Killing spinor equations expressed in terms
of the so-called adapted coordinates [6].

For the second chiral decomposition in the Euclidean case, we
define [4]

Γ± = 1

2
(1 ± ieΓ0),

Γ±ε± = ε±,

Γ±ε∓ = 0 (4.14)

and let

F ±
ab = 1

2
(Fab ± e F̃ab). (4.15)

With these conventions, (4.11) holds, and we find that (3.12)
and (3.13) can be rewritten as

Daε± ∓ e

2
Aaε±

± ie

4
e

K
2 Γ bc F ∓I

bc

(
Re X J ± e Im X J ) ImNI J Γaε∓ = 0 (4.16)

and

± ie

2
e

K
2 ImNI J Γ

ab F ∓ J
ab

(
Re

(
gi j̄D j̄ X̄ I) ± e Im

(
gi j̄D j̄ X̄ I))ε±

+ Γ a∂a
(
Re zi ± e Im zi)ε∓ = 0. (4.17)

5. Discussion

In this Letter we have derived the Killing spinor equations for
Euclidean supergravity theories coupled to Abelian vector multi-
plets (3.12) and (3.13). We have obtained the four dimensional
Killing spinor equations from the reduction of those in the five
dimensional theory. We explicitly show how this is achieved by
writing the reduced equations in an ε-Kähler covariant formal-
ism. These equations were also rewritten, for the Euclidean case, in
terms of chiral spinors using both the adapted and para-complex
co-ordinates. ε-special Kähler geometry in Euclidean theories is
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expected to play an important role in the analysis of instantons,
solitons and cosmological solutions in supergravity and M-theory.
The Killing spinor equations given in (3.12) and (3.13) provide the
starting point to find general instanton solutions of the effective
Euclidean N = 2 supergravity action coupled to N = 2 matter mul-
tiplets. As for the case of black holes, one also expects that the
rich geometric structure of the theory will lead to a simplified ap-
proach for finding new instanton solutions.

Spinorial geometry techniques [12] have proven to be a very
useful tool in finding all instanton solutions preserving various
fractions of supersymmetry. Those techniques were also used re-
cently in finding solutions of Einstein–Maxwell theory with [13]
or without [14] a cosmological constant, as well as the super-
symmetric solutions of the Euclidean N = 4 super Yang–Mills the-
ory [15]; where interesting relations to integrable models [13] and
the Hitchin equations [15] were found. We will report on the in-
stanton solutions with vector multiplets in a separate publication.
Another direction which needs to be investigated is the construc-
tion of gauged Euclidean supergravity models.
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Appendix A. ε-Kähler special geometry identities

In this appendix, we summarize a number of useful identities.
First, consider rewriting the reduction of (3.3) and (3.4) in a special
ε-Kähler covariant fashion as (3.5).

This is done by making use of the following identities:

ImNI0
[
Im

(
gi j̄D j̄ X̄ I) + iεΓ0 Re

(
gi j̄D j̄ X̄ I)]

= (
2εe4φ + 2ie3φΓ0h jx

j)hi − 4ie3φΓ0
(
xi − h jx

jhi) (A.1)

and

ImNI

[
Im

(
gi j̄D j̄ X̄ I) + iεΓ0 Re

(
gi j̄D j̄ X̄ I)]

= −2ie3φΓ0hih
 + 4ie3φΓ0
(
δi

 − hih


)
(A.2)

where we have also used the identities

D j̄ X̄0 = −3

2
εiεe−φh j,

D j̄ X̄ i = δi
j − 3

2
h jhi − 3

2
εiεe−φh jx

i (A.3)

and

gijh j = −2

9
εe−φhiC yyy (A.4)

and

C yyy = 6e3φ, e−K = 4

3
C yyy = 8e3φ. (A.5)

Another useful identity used to obtain (3.5) is
Γ a∂a
(
Re zi − iΓ0 Im zi)

= Γ a(∂a
(
xi + iΓ0 yi) − hih j∂ax j − iΓ0hi∂aφeφ

)
+ Γ ahi(h j∂ax j + iΓ0∂aφeφ

)
(A.6)

where the expression on the first line of the RHS is projected or-
thogonal to the direction of hi , and the second line contains the
term parallel to hi .

A number of useful identities used to obtain (3.10) are

i

4
e

K
2
[
Im X J + iεΓ0 Re X J ] ImNI J

= i

8
√

2
e− 3φ

2
(−iεΓ0 ImNI0 − (

iεΓ0x j + y j) ImNI j
)

(A.7)

and

−iεΓ0 ImN00 − (
iεΓ0x j + y j) ImN0 j

= 6e3φ

(
− i

6
Γ0 − 1

2
e−φhix

i
)

(A.8)

and

−iεΓ0 ImNi0 − (
iεΓ0x j + y j) ImNi j = 3e2φhi (A.9)

together with

(gy)i = −3

4
εe−φhi . (A.10)
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