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On a Class of Random Schrijdinger Operators 
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Institutfiir Mathematik, Ruhr-Universitiit, D-4630 Bochum, 
Federal Republic of Germany 

Considered are random Schr&linger operators on L2(Wd) that are stationary and 
metrically transitive with respect to a lattice, e.g., H = H,, + V, with V,(x) = 
1 , E =dq, (u)f (x - x,), { qi} independent identically distributed. A method of carry- 
ing over results from the case of potentials metrically transitive with respect to Wd 
is presented. Among these results are the Tbouless formula and Kotani’s theory. 
(6 19RS Academic Press, Inc. 

1. INTRODUCTION 

Random Schrodinger operators H, = HO + V, serve as models for 
quantum mechanical disordered structures. In the last decade many research 
articles were devoted to such operators. Most of the authors consider 
Schrklinger operators with metrically transitive potentials or their discrete 
analogs. Here metrical transitivity means that there are measure preserving 
transformations ( T, }, E R J on the underlying probability space 52 such that 
V,,.,(x) = V,(x - JJ) and that any measurable subset A of D which is 
invariant under all T, has probability zero or one. The above-mentioned 
discrete analogs are finite difference operators on the sequence space 12( Zd). 
For those operators the potential (a function on Zd) is metrically transitive 
with respect to transformations {T,} indexed by Zd. 

Beside these two classes of random operators there are physically interest- 
ing operators acting on L2(Rd) that are metrically transitive not with 
respect to a continuous group of measure preserving transformations, but 
only with respect to a discrete one (see articles in [19,9,4,12,13]). Let us 
give an example: Let { qi }, E z d be a metrically transitive random field on Zd 
and let { xi}ip Zd be a lattice in Iw d. We consider particles of random 
charges qi(w) at the lattice positions xi. This is a simple model for a 
disordered alloy. If the particle at xi produces a potential qi(w)f(. - xi) 
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the total potential is given by 

‘uCx> = C qiCw)fCx - xi)e 

iEZ” 

(1) 

By assumption on the underlying probability space Sz there are measure 
preserving transformations ( q } i E z d satisfying qi(Tjo) = qlej(w). This im- 
plies [12, 141 

Thus V, is “metrically transitive” with respect to a discrete group of 
measure preserving transformations. More examples of such potentials can 
be found in [13]. We only mention an extension of (l), 

V,tx) = C qit”)fCx - xi + t,tw>)Y 

iCZJ 

where (qi}iEZd and (5i(W)}i,z d are stationary and metrically transitive. 
In this paper we present and apply a simple embedding technique-the 

“suspension construction”- that reduces questions on those potentials to 
corresponding questions on potentials which are metrically transitive in the 
usual sense. After finishing the first version of this paper we became aware 
of the fact that different versions of this technique had been known for a 
long time in various branches of mathematics (see, e.g., Mackey [20] or 
Smale [26]). Nevertheless we present the suspension construction in Section 
2 for the reader’s convenience. It consists in the construction of an “artifi- 
cial” probability space that carries a larger (namely, continuous) group of 
measure preserving transformations than the original probability space. On 
the new probability space we can embed a random field I/ satisfying (2) into 
a metrically transitive random. field I? The rest of this paper presents 
applications of this construction. 

In Section 3 we investigate the density of states and the Lyapunov 
exponent for potentials metrically transitive with respect to a lattice. Among 
other results we prove the Thouless formula that connects the density of 
states and the Lyapunov exponent for one dimensional operators. We 
simply apply-via suspension-well known results [2, 71 to our case. 

In Section 4 we carry over the Kotani theory [17] to our case, again a 
simple application of the suspension construction. Potentials of type (1) 
may be deterministic in Kotani’s sense, even if the { qi} are independent. An 
example of this phenomenon is discussed in Section 4. For those examples 
we cannot exclude absolutely continuous spectrum by Kotani theory. 
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2. DEFINITIONS AND THE BASIC CONSTRUCTION 

Throughout this paper (a, .F, P) will denote a probability space and 

{TliCZ d will denote a group of endomorphisms of 9, i.e., of measurable, 
measure preserving transformations. A set A E 3 is called invariant (under 
{q}) if q-‘A = A for all i E Zd. {q} is called ergodic if any invariant set 
has probability zero or one. If { q}i E z d is ergodic we call a random field 
{V,(x); x E Rd} metrically transitive with respect to Zd (or Zd-metrically 
transitive for short) if 

VTu(x) = V,(x - i). (3) 

If v&R rl is an ergodic group of endomorphisms of 52 we call V,(x) 
metrically transitive with respect to Wd if 

Suppose that we are given a group { q.;:Z E zd of endomorphisms on 9. Then -- 
we construct a new probability space (!2, .F, P) as the product of the spaces 
(&I, 9, P) and (W d/Zd, a(R “/Z”), p), where p is the normalized invariant 
measure on W d/Zd. We may identify W d/Zd with C, = {x E W d; 0 5 xi < 
1, i = l,..., d } in the obvious way. We may use this identification freely. 

Any vector x E R d has a unique decomposition x = x + i with x E Zd, 
~~C,,2Wd/Zd.NowwedefineforxEWd,wE~,~EC, 

7;,(W,K):= (T,+,W,(X + K)‘). (5) 

Embedding D into H by w  9 (w, 0) we have {q} embedded in ?;, in the 
sense T, = T,),,t,). 

As soon as topology is concerned the above definition of TX has the 
disadvantage of being discontinuous in x. To make it continuous we define 
fi = 0 x Wd and TX(w, y) = (w, y + x). We then identify (w, y) and 
(Irj-‘w, y + i); i.e., we consider H = b/Z d. Since TX respects the equiv- 
alence relation it can be looked upon as a transformation TX on a. 

What follows will work with both constructions equally well. 

PROPOSITION 1. (i) {TX},,, d is a group of measure preserving transfor- -- 
mations on (Jz, 9, P). 

(ii) If { Ti } i E zd is ergodic then { TX }x E Rd is ergodic. 

Proof (i) That 7; is measure preserving follows from the invariance of 
the Lebesgue measure (Haar measure on Rd/Zd) and the assumption that 
T, is measure preserving. 
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= ?+(y+cjq+g% (x +(r + 4’)‘) ( ____- 
= ( ?+(y+rj+y+r‘4 (X + Y + K)‘) 
= (Te‘dX+Y + ‘do) 
= c+y(% K). 

(ii) Let A be invariant under {TX}, E p. Define 

A, = {WI(W,K) hi}. 

Then 

T-2, = { Ol(+, K) E A} 

= { WI(W, K) E T,-ti} 

= A, 

since A is invariant. Thus for any K we have P(A,) equals zero or one. 
Moreover 

Thus 

P(4) = f’(blb+) E A)) 

= P({ 01(0,0) E T,-lA}) 

= P(A,). 

F(A) = J~,P(A.)~K = P(A,); 

hence F(A) equals zero or one. 

Given a random field V,(x) on Wd we define 

&(X> = V,(X - K). 

0 

(6) 

PRO_POSITION 2. I f  VW is metrically transitive with respect to { q}i E Zd 
then V, is metrical& transitive with respect to {TX}, ERd. 

Proof. 

V~J~,~)(X) = GE~,cy+4Jx) 

= I/T,,,& -(Y + 4’) 

= v,(X -(y + K)’ -y + K) 

= v,(X -y - K) 

= ~w,.)b -Y>- 
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Let H, be a random operator on L2(lRd), satisfying for i E Zd 

with U’+(x) = $(x - y). We will call such operators Zd-ergodic (see [14] 
for general properties of ergodic operators and examples). Then by 

we define a random operator on the probability space a. This operator 
satisfies 

i.e., HG is lRd-ergodic. 
Let us give an easy example of our strategy for using the above construc- 

tion. It is well known [23, 18, 141 that the spectrum of ergodic operators is a 
nonrandom set and that the same is true for the various parts of the 
spectrum (a.c. spectrum, etc.). For a given w  the operators RCw+) are 
unitary equivalent to BCw,Oj for arbitrary K E Rd/Zd. Hence if we prove 
something on the spectrum of Hz we have the same information on H,. 

3. THE DENSITY OF STATES AND THE LYAPUNOV EXPONENT 

An important quantity in the study of random Schrodinger operators H, 
is the so-called density of states (or better, integrated density of states) 
N(X). It is defined by a thermodynamical limit in the following way: 
Restrict H, to a bounded box A and define N,(A) as the number of 
eigenvalues (counting multiplicity) of H, restricted to A with some boundary 
condition at aA. Then N(X) is defined as the limit of (l/)h,l)N,“, where 
A,, is the hypercube of side length n centered at the origin; i.e., 

The existence of the limit and its independence of o (a.s.) and the boundary 
conditions chosen are shown for quite general random Schrbdinger oper- 
ators [24, 21, 151. 

In what follows we will assume that the stochastic potential V, is 
Zd-metrically transitive (i.e., (2) holds) and satisfies 
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C, being the unit cell of the lattice and p = 1 for d = 1, p > 1 for d = 2, 
and p 2 d/2 for d 2 3. Under these conditions N(X) defined choosing 
Dirichlet boundary conditions exists and is independent of w  [15]. We can 
recover this result with the above embedding technique. For our proof of 
the Thouless formula the proof below will be needed. 

THEOREM 1. Suppose that V, is a Zd-metrically transitive potential satisfy- 
ing (11). Then 

(i) the density of states N(X) defined with Dirichlet boundary conditions 
exists and is independent of o (a.~.). Furthermore it is equal to the density of 
states F(X) of the W d-ergodic operator PG. 

(ii> If EC Jc,e -rvw(x)dx) < 00 for some t > 0 then N(X) is independent 
of the chosen boundary condition. 

Proof: (i) Define F,(w) = NF(o, X) for fixed X E W, where the super- 
script D indicates the Dirichlet boundary conditions. F*(W) is the corre- 
sponding process for EG = H,, + vz. & is a continuous superadditive -- 
process in the sense of Akcoglu and Krengel [l] if E( IV,(O)] p, < bo ( p = 1 -- 
for d = 1, p > 1 for d = 2, p = d/2 for d 1 3) (see [15]). But E(jVa(0)IP) 
= E( lc,lV,(x)lpdx) < a by assumption. Hence lim,,,(l/]AN])F~, ex- 
ists, by the superadditive ergodic theorem of Akcoglu and Krengel [l] (for 
details see [15]). Hence we can conclude that for P-almost all o the set 
K, := {K; lim,,m(l/lAN])~~N(~, K) exists} has full measure. 

Fix such an w  and choose K E C,, arbitrary and K~ E K,. Then - 
PANel(o, K~) $ FAN(ti, K) s FAN+,(a, K,,) by monotonicity of Nt in A. 
Therefore lim(l/(A,])~~N( o, K) exists and we have shown P(K, = C,) = 1. 
This implies that N,(A) = PC,,,,(h) exists for almost all w  and h’,(A) = 
z (,.,,(A) for almost all w  and all K E Co. 

The proof of (ii) follows the same lines,We use that Fz is independent 
of the boundary conditions if E(e-“‘z(O)) c 00. But E(e-“‘=“‘) = 

EC /c,e -‘“Jx)) (see [15]). 0 

For one dimensional operators the Lyapunov exponent is another im- 
portant quantity (see, e.g., [23, 6, 7, 171). Let +( o, x) denote the fundamen- 
tal matrix of (- d2/dx2 + V 

( 1 

)J, = XI/I. $J(w, x) is defined in the following 

way: U(X) 
( 1 U’(X) = #A(@, x) 1::) for any solution u of (-d */dx* + V,(x) - 

X)u = 0 (for initial value problems for noncontinuous V, see Neumark [22, 
Chap. VI). 

The Lyapunov exponent y?(w) is defined by 

y;(w) = iii6 Llnllh(w, x)ll. 
x-+ +m 1x1 

02) 
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For W-metrically transitive V, it is easy to see that y:(o) = Y;(O) for fixed 
A and P-almost all o and moreover the lim actually is a limit (lim). As 
mentioned by Craig and Simon [7] this follows from the subadditive ergodic 
theorem under the condition that E( IV,(O)]) < cc (for details see the 
Appendix). In a way similar to that for N(h) we carry over this result to the 
Z-metrically transitive case: 

THEOREM 2. If VW is Z-metrically transitive and satisfies E( /~lV,(x)(dx) 
< CQ, then 

(13) 

exists for fixed X and P-almost every w E 0 and is independent of w (fixed X 
and w-a.s.) Moreover yx(w) is the Lyapunov exponent of nCU,+) for almost 
all w and all K E [0, 11. 

Some remaining details of the proof are indicated in the Appendix. 
Define y(X) := E(y,(o)) (= yx(w) for tixed X a.s.). Then we have: 

COROLLARY. If V, sarisjies the conditions of Theorem 2, then y(h) is 
subharmonic and 

Yk(4 $ YW 04) 

for almost all w and all A. 

ProojI By Craig and Simon [7] and Hermann [lo] we know these results 
for the Lyapunov exponent of gG, which is the same as the one for H,. 
Craig and Simon state the subharmonicity of y(X) under the assumption 
that V, is continuous. This condition, however, is not used in the proof. 
They only need that the matrix Q,,( o, x) is analytic in h. This can be seen 
by an inspection of the proofs of Theorems 1 and 2 in Neumark 122, Sect, 
151. El 

On the basis of arguments by Thouless [27], Avron and Simon [2] and 
Craig and Simon [7] (see also Kotani [17]) proved an important relation 
between the Lyapunov exponent and the density of states, the so-called 
Thouless formula. To formulate this let us denote by y,,(h) and N,(X) the 
Lyapunov exponent of the free Hamiltonian H, and its density of states, 
respectively, i.e., yO(X) = (max(0, - E))‘12, N,(h) = (l/r)(max(O, E))l12. 
Then for R-metrically transitive bounded continuous V, the Thouless 
formula reads 

y(X) - ye(X) = /+mln]h - XJ(N(dh) - N,(dh)) 
--oo 

(15) 

for all h and almost all w. 
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If V, is Z-metrically transitive bounded and continuous the correspond- 
ing y and N at the same time are the (averaged) Lyapunov exponent and 
the density of states of the R-metrically transitive potential v,. Hence (15) 
holds in the Z-metrically transitive case, too. 

From (15) it follows (see Craig and Simon [6, 71, Kotani [17]) that N is 
log-Holder continuous; i.e., for any R, there is a C > 0, such that 

IN(X) - N(p)1 $ C(lnlX - p(-i)-’ 

for all IX - ~1 < i and 1x1 < R. 

(16) 

4. KOTANI THEORY 

Ishii [ll] and Pastur [23] proved that the positivity of the Lyapunov 
exponent implies absence of absolutely continuous spectrum (see also Deift 
and Simon [8] for a different proof). Kotani [17] proved the converse, i.e., 
that vanishing of y implies absolutely continuous spectrum (see also Simon 
[25] for finite difference operators). We give a precise statement in the case 
of Z-metrically transitive potentials: 

THEOREM 3. Let V, be a Z-metrically transitive continuous and bounded 
potential. Denote by E,” the absolutely continuous component of the spectral 
projection of H, and by E, Sing its singular component. 

(i) If y(X) > 0 for X E A then E,a’(A) = 0 a.s. 

(ii) If y(X) = 0 for X E A, A a set of positive Lebesgue measure, then 
E;(A) # 0 a.~. 

(iii) If y(X) = 0 on (a, b) then E$‘Q((a, b)) = 0 a.s. 

(iv) If y(X) = 0 on a set of positive Lebesgue measure then V, is 
deterministic. 

We recall the notion of a deterministic process: Denote by s1 the u-algebra 
on G! generated by the random variables {V,(x); x E I}. Then V, is called 
deterministic, if flT==,9& oo, -j) = 9c4-m, m) up to measure zero sets. 

Proof: We have already seen that y is the Lyapunov exponent of gG. 
Furthermore it is easy to see that i?F (this is the a.c. component of the 
spectral projection of H,) satisfies: Et:,.,(A) is unitary equivalent to 
Epz,O,(A) = E?(A) and the same holds for E:Et,. Therefore (i) to (iii) 
follow from Pastur [23] and Kotani [17]. If y(h) = 0 on a set of positive 
Lebesgue measure we know by Kotani theory that-vz is deterministic. Now 
we observe that the u-algebra .?%, generated by {I/(x)1x E I} is contained 
in e+pJ 1) , . Therefore VU is deterministic. 0 
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Let us now consider the example 

V,(x) = Cd4f(x - i>. (17) 

If the { qi} are independent identically distributed and f has compact 
support (and is not identically zero), then V,(x) is nondeterministic. Thus 
under these assumptions H, has purely singular spectrum. Bentosela, 
Carmona, Duclos, Simon, Souillard, and Weder [4] proved that H, has pure 
point spectrum if suppf c [0, 11, f s 0, and the distribution of the q, has a 
continuous density with compact support. 

If f does not have compact support V,(x) may be deterministic even if 
the { qi} are independent. To see this choose a sequence { A,}jcz of 
mutually disjoint open subsets of (0,l). Take a continuous function f with 
9 # suppf n [i, i + l] C A, + i. If { qi},oz is an arbitrary metrically tran- 
sitive sequence of random variables and if V, is defined by (17) we can 
recover V,(x) for all x E R from the knowledge of V,(x) for x E [N, N + 
11 with N E Z arbitrary. Therefore V, is deterministic and we cannot 
exclude absolutely continuous spectrum by Kotani theory. 

Let us call A = {E; y(E) = O}. As remarked by Deift and Simon [8] it 
follows by Kotani theory [17] that A is the essential support of the a.c. part 
of the spectral measure of H, (see [8] or [3] for definitions). As we saw 
above the Lebesgue measure ]A( of A may be nonzero if supp f is not 
compact. Nevertheless ]A] is very small near the bottom of the spectrum: 

THEOREM 4. Let f be a continuous nonnegative function satisfying 
c rEZSUPxE[i,i+l]{lf(X)I} < 00. Furthermore, let { q, }i E z be independent 
random variables with common distribution p satisfying inf(suppp) = 0. Then 

lim - e’/*ln]A n(O, E)J 2 0. 
E-O+ 

Remark. We expect that this theorem holds without f 2 0 and 
inf(suppp) = 0. 

Proof: Deift and Simon [8] proved that N(E)* 2 ]A n (0, E)] for the 
R-metrically transitive case. This can be carried over to Z-metrically transi- 
tive potentials by the above method. In [16] it was shown that lim,,,+ 
- &‘/*ln N(E) 2 0. From this the statement follows. 0 

APPENDIX 

In this appendix we give some details concerning the Lyapunov exponent. 
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PROPOSITION. If VW is R-metrically trunsitiue and if E(JVw(0)J) -C cq 
then for fixed A 

08) 

exists P-almost surely. 

Prooj: By the constancy of the Wronskian we have det $,(a, x) = 1, 
hence I~I#I~(w, x)ll 2 1. Therefore the process F,(w) = ln]l+x(ti, x)ll is posi- 
tive (2 0) and subadditive. Moreover after introducing the Priifer transform 
we get (see, e.g., Carmona [5], formula (2.8)) 

Formula (19) shows that E(sup 0 j x ,,F,(o)) < cc; thus we can apply the 
ergodic theorem of Akcoglu and Krengel [l] to establish the lim in (18) for x 
running through the rationals (e.g.). Now let x, be an arbitrary sequence 
diverging monotonically to + 00. Then Ff ,,](w) 5 FJw) 6 FL X,l(w), 
where [xn] is the largest integer smaller than x,, [x,,] the smallest integer 
larger than x,. Therefore (l/x,)l’;,(w) converges for all o for which 
(l/n)F,(w) converges. Hence lim,,,(l/x)F,(o) exists almost surely. 
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