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Globally convergent algorithms for the numerical factorization of polynomials
are presented. When the zeros of a polynomial are all simple and of different
modulus, these procedures are useful in the simultaneous determination of all
zeros. These methods are derived based on the algebraic properties of sums of
powers of complex numbers and Hankel matrices. The remainder and quotient
polynomials which arise from applying the Euclidean and a version of House-
holder’s algorithms are investigated in terms of their convergence properties which
turn out to be useful in the splitting of a polynomial into a product of two factors.
© 1996 Academic Press, Inc.

1. INTRODUCTION

The computation of zeros of a polynomial is a classical problem in
science and engineering. For example, classical linear system theory is
based on the properties of rational functions (ratio of polynomials).
The curves and surfaces used in computational geometry and computer
graphics involve polynomials, and many procedures for numerical integra-
tion and statistical curve fitting are based on polynomials.

The Fundamental Theorem of Algebra states that every polynomial of
positive degree has at least one zero over %, the field of complex numbers.
For convenience, the polynomial to be considered will be taken as monic.
Thus let p(z) =z™ + ¢,z™ ! + -+ +¢,, be a polynomial of degree m > 0
with coefficients in € and c,, # 0. If p(z) has a zero z, of multiplicity s,
then p(z,) =p'(z)) = =+ =p® z) =0 and p®(z,)) # 0. The
Euclidean algorithm furnishes information about the multiplicity of the
zeros. If z, is a zero of multiplicity s of p(z), it is a zero of multiplicity
s — 1 of p’(z). Therefore, without loss of generality, it can be assumed
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that all zeros of p(z) are simple for otherwise one can divide p(z) by d(x),
the greatest common divisor of p(z) and p'(z), to obtain a polynomial
having the same zeros of p(z) but with simple multiplicities.

There are numerous algorithms for factoring a polynomial. In [10],
Sebastiao € Silva proposed an algorithm for finding the dominant zeros of
polynomials where polynomials of degree at most m — 1 are obtained by
applying the Euclidean algorithm to w,(z) = z" and p(z) for each n > m.
In [11], Stewart used a power method approach to prove the convergence
of Silva’s method. To improve the convergence of this method,
Householder [6] generalized the algorithm of Sebastiao € Silva by using
w,(z) = g(z)" for some nonconstant polynomial g(z) of degree at most
m — 1. Householder’s algorithm is a method for computing polynomials
p) (z) which converge to T17Z, , ((z — z;), where {z;}/* . | are the roots of
p(z) ordered such that |g(z,)| > Ig(zj)l forl<i<rand r+1<j<m.
Recently these methods were revived in [1] where the parallel complexity
of the simultaneous approximations to all zeros of a polynomial based on
Householder’s generalization was investigated. In all the aforementioned
methods, a polynomial can be factored into two polynomials if there is a
sufficient gap between the magnitudes of zeros of p(z) or the set
{lg(z)B™ . Other well-known methods which apply the same principle are

those of Graeffe, Bernoulli, and the gd algorithm. The method of Graeffe
and the gd algorithm are not normally thought of as methods of factoriza-
tion, but each provides, in principle, factors of the given polynomial with
zeros being zeros of equal modulus of the given polynomial. For a survey
of some of these methods the reader is referred to [4, 5] and the references
therein.

In this paper, we will develop a class of new methods for factoring a
polynomial over #. The essence of these methods is a process whereby a
sequence of polynomials of degrees less than m which in the limit have
some zero(s) of p(z) is generated. These methods, like the methods of
Bernoulli, Householder, and Graeffe, are based on root powering. As in
Householder’s algorithm, the main features of these methods are simplic-
ity and global convergence. They are simple in that they use just the
well-known Euclidean algorithm for polynomials and are globally conver-
gent since they do not require initial conditions to start them. Further-
more, the derivation of the methods in this work gives deeper insight into
known methods such as Bernoulli’s method and the gd algorithm. In
particular, Householder’s algorithm is further analyzed and extended where
approximations of factors of p(z) are extracted by means of the coeffi-
cients of the remainder and the quotient polynomials obtained by applying
the Euclidean algorithm. Namely, assume that p™ (z) + q,(2)p(z) =
g(z)" for n=1,...,0, where p{" (z) and q,(z) are polynomials of
degrees at most m — 1 and n — m. The polynomials p,, _,(z) and their
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coefficients are then used to generate two sets of polynomials { p{(2)}7_,
and {p{™ (2)}°_, of degrees r and m —r for r =1,...,m — 1, where it
will be shown that {p™(2)};_, converges to IT/_(z — w;) with w; = g(z,)
while {p{” (2)};_, converges to I17,, (z — z;). Thus, when g(z) = z, two
factors the product of which is p(z) can simultaneously be determined. We
will also investigate the convergence properties of the quotient polynomi-
als, ¢,(2).

Throughout this development, the notation {p{"” (2)};_,, for j=
1,2,...,m will refer to a sequence of polynomials of degree at most
m — j. The notation V(z,,..., z,) will denote a Vandermonde matrix of
dimension k£ where

PR L ST S |
Zht gk 2
k-1 k-2
V(zy,....z,) = | 23 z3 eeozy 1
Zk b ez 1
and |V I(z,...,z,) is its determinant which is called the Vandermondian

of the z; and is equal to I, _ j(zi — zj) [2]. The notation | 4| will denote the
determinant of A4 if A is a square matrix and the absolute value of A4 if A
is a complex number. The superscript which appears in the quantity b
will only mean that the quantity is an element of a sequence in the integer
n, unless otherwise specified. The symbol 7 denotes all distinct combina-
tions of choosing r integers from the set of integers {1, 2,..., m}.

2. ASYMPTOTIC PROPERTIES OF LINEAR
COMBINATIONS OF POWERS OF
COMPLEX NUMBERS

For expediency and convenience of presentation, we present in this
section a number of preliminary and technical results which are used
repeatedly in our analysis. These include mainly results concerning the
asymptotic properties of linear combinations of powers of complex num-
bers. These properties will be used later to develop methods for computing
zeros and factorization of polynomials. The next lemma provides the main
algebraic properties of a finite linear combination of powers of complex
numbers.
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Lemma 1. Let zy,z,,...,2, be a set of distinct nonzero complex
numbers and let {d}", be a set of nonzero complex numbers. For each

positive integer n, define U, = ¥ d;z'. Let f(z) =eyz* +ez° ' +
- +e, where s is a positive integer. Then

Z n+k€s—k = Z dif(z)z} (2.1)
-1

holds forn = 1,2,... . Therefore, if for each 1 < r < m, the constants {c;}]_,
are defined by

,
[I(z—z)=z"+cz77 '+ +¢,,
i=1

then the relation

Z ik Cr—x T Uy, = Z 1_[(2 _Z)dlzl (2.2)

i=r+1 J=

holds for each positive integer n.

Proof. Equation (2.1) follows from the observation that

N m
Z n+k€s—k = Z Cs—k Z dizin+k

Il
I Mg

i i d;zl'f(z;).

Clearly, when f(z) = I'T/_,(z — z,), Eq. (2.1) simplifies to Eq. (2.2). Q.E.D.

In the following, we will repeatedly deal with two types of matrices
which are denoted by H™ and B, and are defined as follow.

DEeFINITION 1 [1].  Given a sequence {U,)’_, of complex numbers, then
a Hankel matrix of order s is defined as

l]n l]n+1 l]nJrrfl
Hr(n) =| U Ui Uer | (2.3)
l]n+r—l (Jn+r IJI’H'ZV—Z

The reader is referred to [4, 5] for more information concerning these
matrices and their determinants.



HANKEL MATRICES 463

DEFINITION 2. Let {z,}/2 | be a set of distinct nonzero complex numbers
and let C = [c;;] be a nonsingular m X m complex matrix. Set U™ =
X cyzf, for i=1,...,m. A matrix B/ will be called a C-matrix of
order r if it has the form

Ul(n) Uz(") Ur(n)
Bﬁn) — Ul(n+1) U2(”+1) eee l]r(”Jrl) . (24)
+r—1 +r—1 +r—1
Ul(n r=1) Uz(n r=1) Ur(n r=1)

In the next lemma an expression for the determinant of B™ is given.
LEMMA 2. Let {z}",, {U";_,, i=1,...,m, and B™ be as in
Definition 2. Then

|B™| = Y C 2'zl 2 Wz, 2,05 2), (25)

iiy.. 120 %0,
(i) <iy< -+ <i))

where

€1, Cii, Cyi,
Ciliz... , €2, Cai, 26, |»
Crzl criz Crt,

and where summation is taken with respect to all combinations m™ consisting
of (iy,...,i,) of the set {1,2,...,m}. Moreover, if |z,| = |z,| = -+ =|z,| >
lz,| fori=r+1,...,m, and C, ,+ 0, where 1 <r < m, then |B")| is
nonzero for all sufficiently large n. Additionally, |B™| = 0 for r > m.

Proof. Since U = ¥, ¢;;z, the matrix B{" can be expressed as

n n n C C C
Z] ZZ Zm 11 21 rl
n+1 n+1 n+1 C C C
BW=| z Z Zy, I A 2
n+r—1 n+r—1 n+r—1
z z z
2 m Cim Com Crm
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Applying the Binet—Cauchy theorem [5], the determinant |B| can be
written in the form

Ci, €1, T €y
|BM™ = ) €y €2y, T Gy
ORI P S EEEreE
! " " Cril Criz Cri,
n n n
Zi, Zi, Z;,
Zln+1 ZinJrl Z[n+1
1 2 r
Zanrrfl Z;Prrfl Z;1+r71
1 2 r
€1, Cu, C1i,
= Y zj ezl oy Cay Cai,
Grooiyemm b IEREEEE
! " " cril Cri2 cri,
1 1 1
«| Z z;, z;
r—1 r—1 r—1
z; z, z

= ) Ci, izl 2l Wiz, z,.0,2). (2.6)

(iy,...,i)em”

In the case where |z,| > |z,] > -+ > |z,| > |z;/fori =r + 1,..., m, and if
C, ,#0theterm C,, ,z"...z'|V|(z,...,z) is dominant and there-
fore |B™| # 0 for all sufficiently large n.

To show that B is singular for r > m, we first show that B{"), is
singular. If in Eq. (2.1) of Lemma 1 we set f(z) = [T (z —z) =z" +
c,z" '+ - +c¢,,, then the equation

m—1
Z []i(n+k)cm7k + l]i(n+m) — 0
k=0

holds for each positive integer n and for 1 < i < m. Thus the matrix B{")
is singular since (c,,,c,,_;,...,c;, DT is a zero eigenvector of this matrix.
By considering polynomials of degrees r>m of the form f(z) =
277 "p(z) =z" 4+ ¢,z + - +¢,z7”™, it can easily be seen that B
is singular since the r-dimensional vector (0,...,0,¢,,C,_ > ...,c;, DT
is a zero eigenvector of B™. In fact, it can easily be seen that the following
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r — m vectors,

T T
(0,...,0,¢sCueise-5c5 1) ,(0,...,0,¢,, Ciys -5 €1,1,0) 7,

cos(Cops Con 15 Cps 1,0,...,O)T € & span the null space of B™.
Q.E.D.

CoroLLARY 3 [1]. Let {z)3",, {d}",, and {UJ;_, be as defined in
Lemma 1. Then for each 1 <r < m,

2
[H™l = Y d,...dzl ...z} VI (z,....2,), (2.7)
G,y i)
where (i}, i,,...,1,) runs for all r combinations of the set {1,2,..., m}.
Moreover, if |z,| =1z, = =+ =1z, > |z,| for i=r+1,...,m, where

1 <r <m, then |H™| is nonzero for all sufficiently large n. Additionally,
|[H™| =0 forr > m.

Proof.  This result follows directly from Lemma 2 by setting c;; =
dizj~". Q.E.D.

Having stated these results, several comments are in order. In view of
(2.5), we have |BW|=IClz}...z:IVzy,...,z,). Similarly, |[H{|=
dy...d,z!...z2"IVIz,...,z,). Consequently, |B"*D|/|B =
|[H"*D /| H™M| = z,2, ...z, for each n > 1. A particularly important con-
sequence of the last lemma is that when |z,| > |z,| > -+ > |z, > |z,, | =
lz| for i=r+2,...,m, it is easily established from (2.5) that
[|B"* Y /|B™M| — 2,2, ...2,] <Klz,,,/z,|" for some K > 0. This implies
that lim,, _,,, [B"*Y/|B™| = z,z, ... z,. Analogous relations hold for H",
in which case ||[H"*D/|H™| — 2,2z, ...z,| < Kl|z,,,/z,|" for some K > 0
and thus lim,_ . |H""Y|/|H™|=zz,...z,. The last equation consti-
tutes the basis of the gd algorithm [4]. Thus, if all {z,}]”, are of different
modulus, one can apply the last equation to compute all zeros of p(z) =
I (z = z,). In this case the sequences {B\"},_, and {H};_, for
j=1,...,m are to be computed. Then

1 1
g JBNBINL L IHOHH
T ase [BUIIBIOL ase [HMH Y]

In many of the results of the following sections we make use of the
following result.
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LEMMA 4. Let A be an r X r nonsingular matrix and let b and c be
r-dimensional vectors. Let Z = (1, z, ...,z "), wherez € . Then A~ 'b =
—c if and only if
AT 7

pT  z"
| Al

=z"+c7Z

for each complex number z.

Proof. Since A is nonsingular,
ATz
bT Zr
Hence if A7 'b = —c, then

= |Al(zr = bT(AT) ' Z).

AT 7
bT  z’ T
— =ZzZ"+c'Z.
| Al
Conversely, if
ATz
T r
16 2 _ '+ 77,
| Al
then ¢’Z = —bT(AT)"'Z for each z € & from which it follows that
A 'b = —c. Q.E.D.

The next result shows how to generate approximations of polynomials
having zeros of maximum modulus among the set {z;}/” .

THEOREM 5. Let {z}" | be a set of nonzero distinct complex numbers
such that |z,l > |z,| > -+ > |z,| >z, = |z,| fori=r+2,...,m, where
1 <r <m. Let {U"};_, be as defined above and assume that C,, , # 0 and
let TT:_(z—z)=z"+c,z7" "+ - +c,, then

Ul(n) Uz(") Ur(n) 1
U(n+1) U2(n+1) l]r(n+1) z
'(']1('n'+.r;1.)' . U'Z(r;;r:l)' . . ‘l‘]r‘(n‘Jr‘r;i). . ;.:r'—'l'
+ + +
() ; Ul(n r) Uz(n r) Ur(n r) Z"
1 m
no o | B
=z +cz77 M+ -+, (2.8)

with O(lz,, ,/z,|") order of convergence.
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-1 l]n-#r
+1 +r—1 1
uUm Ul(n ) Ul(n r—1)

U2n+r
(11) lim UZ(n) Uz(n+1) U2(n+r71) i
N0 |o o o e o o o o o o o o o o o o o o 0 o o e o
+1 +r—1 -
Ur(n) Ur(n ) ... Ur(n r—1 U,””
¢
- —|: (2.9)
€

with O(lz,, ,/z,|") order of convergence.

Proof. From Lemma 2, | B = 0 for all sufficiently large n. Let

Ul(n) Uz(n) Ur(n) 1
Ul(n+1) U2(n+1) Ur(n+1) z
U](.n.-%—.r;l.). . .l].z(’:l‘;r._.]). . . .i]r.(n.+.r.—i). ..Zr._.l.
Ul(n+r) U2(n+r) U(n+r) Zr
(m) - !
p"(2) B0 :

then p"(z) is a monic polynomial of degree r since |B™| =+ 0. It can
easily be checked that

Ul(") Uz(n) Ur(n) 1
U(n+l) U2(n+l) U(n+1) z
'L‘]]in.Jr.r;l‘)‘ . '[]'z(r;Jr'r;.]). e '(']rin'+.r;i). ..Z;;].
+ + +
Ul(n r) UZ(" r) Ur(n r) Z"
zr 2} 2" 17| ¢ Ca ¢ 0
= |zttt Zptd it g S 2 C’ZO
'Z'ln.+'r .. ég’-}—.r ....... Z'rnn.-l—;* B .Z.r. Clm sz czm O
0 0 0 1

Applying the Binet—Cauchy theorem [5] yields that

1
p(z) = B Y ...z
r iy,

Li)em”
€y Cu, oy |11 e 11
z Z: Z; V4
X | o Cy ||%0 i i
................. , M M ,
crtl C/zz Crt, Zi1 Ziz Zi, z
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1
~1B™ r Gzl 2 WVI(z, . 2,)
r Gpyeens i)emrm

XI[T(z=2)Vlz, ...z, 2).
j=1

Since Cy, ,z7z}...z!'VI(z,...z,) is the dominant term, this implies
that | p{"(2) — T1/_\(z — z)I < Klz,,,/z,|" for some K > 0.
This proves the first conclusion of the theorem. The second conclusion

follows directly from Lemma 4. Q.E.D.
CorOLLARY 6 [1]. Let {z}",, {d}",, and {U);_, be as defined in
Lemma 1 and assume that |z,| > |z,| = - > |z,| > |z,,, = |z, fori =r +
2,...,mywherel <r<m. Let TI/_(z —z) =z"+ ¢,z ' + - +c,, then

U U, Uy 1

Uisi Uiz Upir z

(]nJrrfl l]nJrr (]n+2r72 erl
(i) 1 Usr Ui Uiorer 2
' s |H ]

=z +c iz + e+, (2.10)

with O(|z,, ,/z,|") order of convergence.

-1 Uisr

l]n []n+1 Un+r71 U i

(11) lim Un+1 Un+2 Un+r nJr.Hl

T T T T

(]nJrr 1 l]nJrr l]n+2772 (]n+2r71

¢
= —|: (2.11)

€1

with O(|z,, ,/z,|") order of convergence.

Note that Egs. (2.8) and (2.10) are mainly of theoretical interest since it
is not obvious how to compute them efficiently. However, their equivalent
forms (2.9) and (2.11) can be efficiently implemented since they only

required the inversion of structured matrices as shown in the following
remarks.
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Remark 1. Suppose that B™ is nonsingular and let

Ul(n)

Ul(n +1)
U

XM = ug

X -

um r
r
and

Ul(n +r)

U2(n+r)
x§ = )

U(n+r)
A
so that B™ = [x{"X{"] and B"*D

T
a{"”

)
{Br( )} o A(Zn)

b

then

A(Zn) —

{Br(nﬂ)}*l - [Xz(n) xgn)]*l -

It can be shown that lim

n— o

Ul(n+r7 1)

= [ X{x{"]. Assume that

A(zn)xgn)a(ln)T
T
x(3n) a(ln)
ai™

xgn)Ta(ln)

T . .
xVa\" =c, =zz,...2z, # 0, ie., the in-

verse above is well defined for sufficiently large n. Thus an updating
equation for the inverse of {B"} can be applied to develop a recursive

solution of (2.9) and (2.11).

Remark 2.
-1
Ul(n) Ul(n+1) Ul(n+r— 1)
Uz(n) U2(n+1) U2(n+r7 1)
+1 +r—1
Ur(n) Ur(n ) Ur(n r=1

It should be observed that if B™ is invertible, then

Ul(n+i)
U2(n+i)

=€

U(n+i)
'
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fori =1,...,r — 1, where e, is the ith column of an r X r identity matrix.
Thus Egs. (2.8) and (2.9) can be rewritten as

lim {B™) 'B"*Y =C

n—ow

r

and (2.10) and (2.11) as lim
order of convergence, where

wo A HOYTHOD = €, with Oz, /2,1

0 0 0 0 —c
C=|1 00 = 0 —¢,| (2.12)
0 0 0 1 Z¢

A particularly important special case is that when r = m, we have
{B(M}~1B("*D = C and that {HW} '"H{"*D = C, hold for each positive
integer n. These observations can be summarized in the following
theorem.

THEOREM 7. Let B™ and H™ be a C-matrix and a Hankel matrix for
the set {z}" |, respectively, and let C, be as defined in (2.12). Then the
following results hold:

G B™M=cC"BY and H™ = C"H.
() Forr=m,|B"™Y —zB™| =0 iffz7""p(z) = 0 foreachn > 1.
(ii) Forr = m,|H"*D — zH™| = 0 iffz"~"p(z) = 0 foreachn > 1.
(iv)  Assume that |z,| > |z,| = -+ 2 |z,|> |z, = |z,| for i=r+
2,...,m,where 1 <r <mandlet p(z) =TI._(z — z,). Then forr < m,

|Hr(n+1) _ ZHr(”)| )
e 0 iffp(z)=0

and

+1
|BO+ D — B

|B’(n)| = 0 lﬂ‘pr(z) = 0

provided that C, . # 0.
() Forl=>0,{B{"} " 'B("*D = C! and {HM} 'H("*D = C! .

Remark 3. The two sequences of matrices {B}°_, and {H"Y:_, are
of finite rank since |H™| = 0 and |B"™| = 0 for r > m. Theorem 7 shows
that C-matrices and Hankel matrices of finite rank behave very much like
powers of companion matrices. The significance of this result is that it
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provides a direct method of generating C-matrices by simply considering
submatrices of powers of C,,, the companion matrix of p(z).

3. APPLICATIONS TO POLYNOMIALS

When a polynomial has two factors having zeros of different magnitude
ranges, then Theorem 5 and Corollary 6 can be applied to extract one of
these factors. The main goal of this section is to state some methods of
generating sequences for which these results can be applied. There are
many ways to generate such sequences like the Newton identities and
power series expansions. However, we will place special emphasis on the
Euclidean and Householder’s algorithms which are described next.

3.1. A Modified Householder’s Algorithm

Consider the following variation of Householder’s algorithm. Let p(z)
and g(z) be polynomials over # such that p(z) =TIT" (z —z) and
degree g(z) < m. Next, generate a sequence of polynomials p{™ (z) =
bt zm~ 4 bW, zm7 2 4 oo + bV as follows.

ALGORITHM 3.1. (i) For each positive integer n = 2%, compute
pim (z) as
m—1

pfr}ll Z) =g(Z),
peP(z) = (P, z))zmodp(z) forl =1,...,1,, (3.1)

and form p{" (2), p"*(2),..., p"*m~D(z) by applying

py(2) = g(2)pt1(z)mod p(z2)
or
puti(2) = g(2) P2 i(2) + 4,(2) p(2). (3:2)
(i) Apply the Euclidean algorithm to generate a new set of polyno-
mials p{"” (z) of degrees m — r for r = 2,...,m — 1 as follows.
(n+1i) (n)
, pn-’(2)  p2i(2)
(n+i) _ tm—j _ 4fm—y
pm,-,l(Z) - n+i n (33)
! aytp aly
for j=1,...,m—1and i =j,j+1,...,m, where 4 is the leading

coefficient of p{” (2).
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In connection with this algorithm, Bini and Gemignani [1] used a
different method of generating polynomials of degree m — r which con-
verges to IT",, (z — z,). For a given n, they apply the Euclidean algo-
rithm to the polynomials p{® (z) and p _(z) for r=1,2,...,m — 2,
where p{(z) = p(z). In Algorithm 3.1, we used polynomials generated for
different n’s, namely n,n + 1,...,n +m — 1, to obtain the sequence
{pntD(z)m ! for i = 0,1,...,m — 1. Note that these two approaches are
generally different although asymptotically they have the same rate of
convergence as shown in Section 4.

In this section we explore this algorithm in greater depth and show how
it applies when there is more than one dominant zero. Specifically, the
coefficients of these polynomials will be used to extract some factors
of p(z2).

In the following, we assume that w; = g(z,) # 0 and the {z,}’s ordered so
that |w,, ,/w;| < 1. When all zeros are different in magnitude, it will be
shown in the next section that a{” .+ 0, j=1,...,m — 1 for all suffi-
ciently large n and thus factors of all degrees can be determined. However,
when some zeros have equal modulus, these methods should be modified,
applying the Euclidean algorithm and shift (if necessary), to determine all
roots of a polynomial or just to factor it to polynomials of lower degrees.

The case g(z) =z is particularly important since it allows one to
generate two factors of p(z) whose product is p(z). A recursive formula
for computing the remainder and quotient polynomlals {p" (2)):_,, and
{q,(2)¥_,,, that arise from dividing w(z) = z" by p(z) for n > m can be
shown to satisty

pUt(z) = b pSmi(z) + b,z + - +b(Vz
and

QnJrl(Z) = an(Z) + b(n) 1qm(Z) (34)
where ¢q,(z) = 1 and p{™ (z2) satisfies z™ = q,,(z)p(z) + p{™ (z), and
pali(z) = — X a,_
j=1

Thus a recursive formula for b{" j» for n > m, has the following form:

by, = ~a, ;,, forj=1,2,....m
bt = —a,, b+ b forj=1,2,....m—1 (3.5)

+1) _
bg)n ) - —aob,(n”ll.
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Having determined the sequence bmkll, for k=m,m+1,...,n —1,
the quotient polynomials {g,(2)};_,, are determined by

q,(z) =z" + b z" "1 4+ b Dz 4 e 4 pn D, (3.6)

It can easily be verified that for each positive integer n > m, the polyno-
mials ¢,(z), p(z), and p (z) satisfy the identity ¢,(z)p(z) + p{ (2) =
z"

In the next theorem it will be shown that each element of the sequence
{p{™ }m | is a linear combination of powers of complex numbers. But
before establishing that, we need the following lemma which states some
properties of the entries of the inverse of a Vandermonde matrix.

LeEmMMA 8. Let z, z,,...,z,, be a set of distinct nonzero complex num-
bers. Let
b g2 z, 1
Zpmt o g2 z, 1
V=|zp ! zp? z; 1
PR T S |
and
‘i Cn2 Cim
- — -1
C=|cy Cp Com | =V (3.7)
Cm1 Cm2 Cmm
Then

i) c;;#0andc,; #0, foreach 1 <j <m.

(ii) For each 1 < r < m, the leading principal submatrix

n €12 Cir
C.=|Cca €n = €y (3.8)
Crl Cr2 Crr

is nonsingular.

(ili) For each 1 <r < m, the submatrix

Crr Crrt1 Crm
Critr Crotrsl Criim
Comr Crnr+1 Conm

is nonsingular.
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Therefore, for each 1 <j < m, the number of zero entries in the jth row
does not exceed min{j — 1,m — j}.

Proof. (i) Clearly, for 1 <j < m, we have

VI(z15 s Zj15 Zjstse e Zm)

_(_1)it!
“1j (=D Wiz s 2)

Thus ¢,; # 0 since it is the ratio of nonzero Vandermondians. Similarly,

WI(z1see s Zj1s Zjsts o5 Zm) I
= z;.
m |V|(Zl,...,2m) i#j !

Hence ¢,,; # 0, since z; #0fori=1,...,m.

Cc

(ii) The proof is by contradiction. Assume that C, is singular. Then
there exists a nonzero vector £ € €” such that £¢”C, = 0. Let C and V' be
partitioned so that

C Cr C12 d vV
C21 C22

Vl 1 Vl 2
V21 V22

with V/;; being an r X r matrix. Since CV = I, it follows that
CVy, +Cp,V, =0. (3.9)

Premultiplying both sides of Eq. (3.9) by &7 yields ¢7C,,V,, = 0. The
nonsingularity of V,,, being the Vandermonde matrix V(z,,,,..., z,,),
gives that ¢7C,, = 0. Therefore, ¢’[C, C,,] = 0. This implies that the
first rows of C are not linearly independent, which contradicts the nonsin-
gularity of C.

The proof of (iii) is similar to that of (ii). To prove the last conclusion,
assume for some j that j — 1 < m —j and the number of zeros entries
in the jth row of C exeeds j — 1. Let P be a permutation matrix such
that the first j — 1 entries of CP are zero. Since (CP)" ! =P 'V is a
Vandermonde matrix, it follows that the (j — Dth leading submatrix is
singular. This contradicts (ii). Similar argument holds if m —j <j — 1.

Q.ED.
Remark 4. 1t should be noted that part (i) of the last theorem does not
apply for j # 1, m. For example, if m =3, z, =4, z, =2, and z; = =2,

then ¢, = 0.

The following result shows that for each 1 <j <m, b, is a linear
combination of the n-power of the {g(z,)}" |, where {z,}]", are the zeros
of p(z2).
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LEMMA 9. Let p(z) =T1" (z —z) and let p{» (z) = b zm ! +
b 22" 7% + - +b(" be as generated in Algorithm 3.1. Let C = [c;] =
Wzy,...,2,) 7" then by, = X c;;ig(z)" fori=1,...,m.

Proof. The identity g(2)" — q,(2p(2) = pii) (z) = T/ b 2"

yields that g(z,)" = p{) (z;) for j = 1,..., m. This leads to the system of
equations

ern71 Zi’nfz Zl 1 b,(nnll_ g(zi)n
e I o B e
Z:,;n_l Zgn—z vee Z4 1 b,(nnl:; = g(z3)n ’
Z:;):_l errrLL—Z Z, 1 bf)n) g(Zm)n
from which it follows that b, = £, ¢, g(z;)". QED.

3.2. Factorization of Polynomials

In this section, we take up the general problem of numerical factoriza-
tion of polynomials. This goal can be established by applying the results of
the previous sections to sequences generated by Algorithm 3.1. Specifi-
cally, if p(z) is a polynomial that has at least two zeros of different
modulus, then the results of Section 3 can be applied to extract a
polynomial factor having zeros which are zeros of p(z) of largest modulus.
In particular, Theorem 5 and Corollary 6 applied to the sequence
{b{m y:_ | yield the following.

m—jln=

THEOREM 10. Let p(z) = 17 (z — z,;) be a polynomial of degree m and
let the b)) ’s be as defined by Algorithm 3.1. Let {z}", be the zeros of
p(2) such that the w;’s are nonzero, distinct and |w,| > |w,| = -+ > |w,| >
W, | =Iw,l fori=r+2,...,m, forsome 1 <r <m. Let | be the number
of nonzero entries of the jth row of C, defined in Lemma 8. Then

(1) the matrix

+1) +m—1
B, e, prm=
(n+1) (n+2) (n+m)
A(”’;?I = bmfj bmfj bmfj
+m—1 + +2m—1
br(nnijm ) b,(,,",jm) b,(,f,j m—1)

is of rank 1. In particular, A j is full rank for j = 1, m.
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(i) For 1 <j <m, assume that the jth row of C defined in (3.7)
contains | nonzero entries, say Cjisevvs Clips and assume that there exists
1 <s <! such that |Wi]| > Iwi2| > e > Iw,-SI > Iwiml > |Wi].| for j=s+
2,...,0, where 1 <s <. Let T1;_(z — w,»j) =z + ¢z '+ - +c,, then

L BUED e gD
PO b pe 2
b'(nn:rjsfl) b,(,:':rjs) br(nn:ersfl) Zsfl
b’(nn_-%—js) br(r:ljjs+1) br(nnjjzs_l) ZS s

lim =II(z—w)

i 4] =1 ’
(3.10)
or equivalently
-1 b(”*?)
b pntD pnts—1 m=j Cy
m m m (n+s+1)

) (n+1 n+2) (n+s) by~ Cy_1q
lim bm—j bm—j o bm—j . == .
N0 |e o o o o o o o o o o o o o o o o o o o o o o o o »

(n+s—1) (n+s) (n+2s—1) . .
bm—]‘ bm—j bm—j b(n+-25_1) Cl
m—j
(3.11)
with O(lw; _ /w,;|") order of convergence. Particularly, if j = 1,m, then

[ = m and the indices i; can be arranged so that i; = j forj = 1,...,m.

Proof. Applying Lemma 1, it can easily be seen that rank A ; s the

number of nonzero elements of the jth row of C. For j = 1, m, we have
¢; #0 and c,; # 0. From Lemma 2, it follows that |A()| =

I el VIwy,...,w,Iwi .. wyr # 0. Thus the matrix A5, j =1,m, is
nonsingular. The proofs of parts (i) and (ii) follow directly from Theo-
rem 5. Q.E.D.

We remark that if for some j, A, is of rank / < m, then a factor of
degree / can be readily computed exactly without the resort to the limiting
process stated in the last theorem. In this case

_ (n+1)
b pnn . paei-n 17N b ¢
m-J m=j m=] plr+i+D
a c
br(nnjjl) b’(nn:er) by(,f'jjl) m=j _ -1 ’
e : :
bm*j bmaf b, —j by(ﬂnijlfl) c
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where [T, o (z = w) =z'+¢,z!"1 + -+ +¢, and S is the set of positive
integers 1 < k < m such that c; # 0.

In Theorem 10, a polynomial factor of p(z) of order r is extracted using
the sequence b{" |,..., b2 %3 "1 In the next theorem a similar result can
be obtained by considering the set {b{” ;, b5+, ..., b Y for j = 1,..., 7.
To achieve this goal, we consider the matrix

+1 +r—1
By BT e b
B = [, b e b
+1 +r—1

b, by g

Note that B™ is a transpose of a C-matrix (see Definition 2), and thus by
applying Lemma 4, the determinant of |B{"”| can be expressed as

|B™| = ) Ci, Wl Wl VI(wi,w,,ew, ).

Qe i Vip
(y,...,i)em”

The application of Theorem 5 to the factorization of polynomials is
included in the following result.

THEOREM 11.  Let p(z) = I1/" ((z — z;) such that the w;s are nonzero,

j=1
distinct, and |wi| > |w,l > - = wI>|w,_, >Iwl for i=r+2,...,m,
where 1 <r <m. Let {b) };,_, be as generated in Algorithm 3.1. Let

[I_(z—=w)=z"+c,z7" '+ - +c,. Then |B™|+ 0 for all sufficiently
large n, and

B, B BD b

b, D e BGTD b

B, B B b

1 z erl Zr r
lim = zZ—w; 3.12
o TG -w) @

or equivalently

_ (n+r)
pm  peth . parr-n] 7! by c,
m—1 m— m— b(n+2r) .
lim br(nnZZ b,(nn:rzl) b’(nn:rzrfl) m‘* _ _ rjl (313)
N—0 |o o o o o o o o o o o o o s s o o s e e e e . .
+1 +r—1 . .
b;(nnlr b,(an r ) o b'(n't rr : (n+r) Cc
bmfr 1

with O(lw,, ,/w,|") order of convergence.
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Proof. To show that |B™| # 0, we have by virtue of Lemma 2 that
under the stated assumptions the term C,  wi...w/[V|(w,...w,) in the
expansion of |B)| is dominant, since C, , # 0 (Lemma 8). Thus the
result (i) follows directly from Theorem 5. Q.E.D.

Although Eq. (3.12) seems to be only of theoretical interest, its equiva-
lent form (3.13) can be implemented efficiently as in the Remark 1.

In Theorems 10 and 11 and if g(z) =z, we are able to approximate
factors of p(z) of maximal modulus. Next we consider a different method
of extracting a factor of p(z). To establish that, the following lemma is
needed.

LEMMA 12.  Let {p,(2)¥ _, be a sequence of monic polynomials of degrees
mandlet z,, ..., z,, be distinct complex numbers. If for each 1 <j < m, the
sequence {p,(z,)},_, converges to zero, then lim, _,.p,(z) =TT/ (z — z,).

Proof. Let p(z2) =z™+ ¢ z" 2+ - +¢{” and let [1",(z —z;) =
z™ + ¢ 2"+ o +c¢p. We will show that lim,_, ¢ =¢; for
i=1,...,m—1.Set g,(2) = p,(2) = [1";' (z — z)), then g,(z)) = p,(z))

converges to zero for j = 1,..., m. Therefore
m—1 m—2 (n) _
Z] 21 zy 1|ty —cn Pu(21)
m—1 m—2 (n)y _
Z) 23 z, 1||epls—cnos Pu(23)
-1 -2
zm zm ez 1 M — ¢, Pu(Z)

Since all the z; are distinct, the last system is uniquely solvable with
choi = Cpoi = L1y ¢;p(zp), where [c;]=W(z,...,2,)"". Hence
n

lim, ., c/=cfori=1,...,m — 1. Q.E.D.

Assuming that |w,| > |w,| > -+ > |w,| > |w,|fori=r+ 1,..., m, where
1 <r < m, one can consider the polynomials p{” (2),..., p{"*7~(z) to
eliminate z™~',...,z" ""!. Thus we obtain a polynomial p{™ (z) of
degree m — r which is shown to converge to a polynomial having m — r

zeros such that {w;} ,, are of smallest modulus. The computation of such
a polynomial is described in Algorithm 3.1. In the following theorem an
approximation of factors of p(z) of minimum modulus together with a

convergence analysis is presented.
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THEOREM 13. Let p(z) =T17" (z — z,) and let p{") . be as generated in
Algorithm 3.1. Let {z}/ | be the zeros of p(z) such that the w;’s are nonzero,

=1
distinct, and |w,| > |w2| > >wl>w l=wl fori=r+2,...,m,
where 1 <r < m. Then
@) p(n)
bty by, e b b
mo| b Y i B iy .
)y z"
j=r : : : : :
+r—1 +r-1 +r—1 +r—1
BTD BRI e )
- 1B
(ii) hm pim (z) = 1_[ (z—2z) (3.14)
i=r+1
with O(lw,, . /w.|") order of convergence.
by by, e b q.(2)
1 1 1
br(r:ljl) br(r:ljZ) br(nn+r421 qn+1fm(z)
-1 -1 -1
. br(nnjlr ) bf(nanr ) b,(,:ljrr+1) qn+r717m(z)
(iii)  lim o)
n—o | B
B (3.15)
- _ Nl
ITi_y(z = z)
with O(lw,, ,/w,|") order of convergence.
Proof. Consider the system of equations
pUrti=Dgm=1 4 pnti=zm=2 4 .. 4 p+i=D)
+i-1
=8(2)""" —dyii1-m(2)pP(2) (3.16)

for i = 1,2,...,r. In view of Theorem 5, | B = 0 for sufficiently large n.
Therefore the matrix B™ is full rank. Without loss of generality assume
that the first r — 1 rows are linearly independent. Solving the first r — 1
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equations of (3.16) for z =1, ..., z" "1 yields
q y
m—1 -1
Zm_z by by, s b
+1 +1 +1
. = br(nn—l) br(f—z) b;(nn—r-%)—l
: -2 -2 -2
R I e e e I e
an—r
LR O
z
x{— br(nn:rrl) b’(nn:rrlzl b((]nJrl) :
+r—2 +r—2 +r—2 :
br(nnfrr ) br(nnfrrfl) bg)n 2 ZO
n
8(z)" —q,(2)p(2)
n+1
8(2)" —q,1(2)p(2
R LG I |
n+r—2
8(z) = 4y r-2(2)p(2)
Substituting this solution into the rth equation yields
+r—1 +r—1 +r—1
[0 b e b
1
by bty o b
+1 +1 +1
X | byl by byt
e iy
Zm r
br(r:lzr br(nnzrfl bgn) m—r—1
z
x{— br(nn:rrl) br(nn:rrlzl bB}’l‘Fl) :
+r—2 +r—2 +r—2 :
A S

g(2)" — q,(2)p(2)

. g(z)"" — C{n+1(2)p(2)

r—2
802" = 4y a(2)p(2) |
+br(r:1_+rr—1)zm—r+b’(nn_+rr_—11)zm—r—1 4o +b§)n+r—l)

=8(2)"" = a1 p(2), (3.18)
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which can be written in the form

- bSy b,
_ _ +1 +1
=X [byrD e pUroD]| bREY b

J=r

BT b

b,
b(n+‘1) m
> m.—l Zm—j + Z br(nn_-%—jr—l)zm—j
; j=r
+r—1
b’(nnijr )
by, b,
1 1 (n+1) (n+1)
o L2 e T I aral | PO S P

BT by

8(2)" — q,(z)p(2)
g(2)"" =g, (2)p(2)

n+tr—2

8(2) — Gpir-2(2)p(2)

481

-1
br(nnlr+ 1

b(n+])

m—r+1

+r=2
br(an rr+ 1 )

br(nnl r+1

(n+1)
bmfrJrl

b(n +r—2)

m-—r+1

=g(2)"" " = q,., (2)p(2).

(3.19)

Note that if A is nonsingular, then ": Z‘= |Ad — cA~'b}. Thus multi-

plying both sides of (3.19) by |B™™),| yields that

by, b by j
+1 +1 +1
mo by by btD -
Y| . : . R P
p=r| ; ; ;
b’(nn:rlrfl) br(rfjrc:ll) b’(nn:rjrfl)
n
bty o by 8(2) —a,(2)p(2)
+1 +1 n+1
br(nn—l) br(nn—r-i)—l g(Z) - QH-F](Z)p(Z)

b(n+r71) b(n+r71)

m—1

-1
m—r+1 g(Z)nJrr
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n
br(nnzl br(nnerrl g(z)
+1 +1 n+1
o e bty g(2)
pntr=1 pntr=1 n+r—1
m—1 m—r+1 g(Z)
br(nnzl br(r:llrJrl qn(z)
+1 +1
—p(2) b e b, Gn+1(2) (3.20)
+r-1 +r-1
br(nnflr ) br(nnfrrJrl) qn+r71(z)
Next, for each positive integer n > m, define
by bt b br(nnlj
m
+1 +1 +1 +1 .
0 A R A P AL P
isr b RRERERE R I R
B B e B bl

(n) —
pmfr(z) - |Br(n)|

Then p{" (z) is a monic polynomial of degree m — r. The identity (3.20)
implies that for each r + 1 <j < m,

by | by, b, wy'
+1 +1 +1 +1
b bi*y) bl W/n
. br(nn:rlrf 1) b’(nn:rzrf 1) b'(nnjrrJ:ll) wjn+r71
pm—r(zj) = |Br(n)|

Therefore it follows from the proof of Theorem 5 that for all sufficiently
large n, p,(z;)) = O} /w!') for j=r+1,...,m. Thus by Lemma 12,
lim, . p,(z) =T1",,(z —z;). The conclusion (ii) follows by dividing
both sides of (3.20) by p(z)B™ and noting that

G 1
n— e p(z)Br(”) IT;_(z —z) '

Q.E.D.

It should be noted that the a'" ;'s in Algorithm 3.1 for a polynomial of

degree m — j are equal to the B of the last theorem which under the
stated assumptions are nonzero for all sufficiently large n.
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The following corollary is important when all the w;’s have different
modulus.

COROLLARY 14. Let p(z) =T1" (z — z;) be a polynomial of simple
zeros. Let p’ (2), q,(2), and b}’ be as generated in Algorithm 3.1.
Assume that p(z) has a zero, z,, so that |w,| > |w,| > ijl forj=3,...,m.
Assume also that w; # 0 for j = 1,...,m and that the w/s are pairwise

distinct. Then

(i) For all sufficiently large n, b\ | # 0 and b{" + 0.

() lim, (P /b ) =1lim, (b D /b)) =w, with O(w,/
w|") order of convergence.

(i) lim,, .. (pi (2)/bM ) =T1",(z —z,) and lim, . (pi (2)/
by) =TI ,(1 — z/z,).

Gv) lim, (g (2)/b" ) =1/(z, — 2).

Proof. (i) follows directly from Theorem 11. To show (ii), let [c /] =

W(zy,...,2z,)"". Then b\, =X c;;w' and by =X", c Since

mj l
¢;; # 0and ¢,,; # 0 (Lemma 8), it follows that for r = 1, m,

n
m
(n+1) m n+1 Zjlcrjwl( )
. m—r . j=1CrW; .
lim = li = lim — =W,
(n) Zm n
n— o b i n— o :1C W n— o wW.
m—r j i’ ym j
j=1Cr
1
since ijl/w1 <l1lforj=2,...,m.

(iii) For sufficiently large n, b | # 0 and b} # 0. Thus the polyno-
mial p,(z) = p" (2)/b" | is well deflned It is easily established that
p.z) = w]»”/b,(,,”l1 for j=2,...,m. Since |w,|>|w] for j=2,...,m
and ¢, # 0, it follows that lim,Hm p(z)=0for j=2,...,m. The con-
clusion follows from Lemma 12. A similar argument shows that
lim, . p\ (2)/by = T1",(1 — z/z,).

(iv) Clearly, lim, . pt™ (2)/p(z)b{" , = 1/(z — z,). The identity
g(2)" /p(2)b” | = q,(2) /b + p\ (2)/p(2)b{" | holds for all z # z,,
i=1,...,m. There exists a posmve number S and 0 < p;, p, <1 such
that for each complex number z inside the annulus p,|w,| < w| < p, [w],
the inequality | p{™ ((2)/p(2)b™ | + q,(2) /b || = |w" /p(2)b" || < Spt!
holds for large n. The conclusion follows directly from the observation that
P (2)/p(2)b | + q,(2)/b" | converges to zero uniformly in the above
annulus. Q.E.D.
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The next result deals with the case where p(z) has two roots such that
two of the w,’s have equal modulus (e.g., complex conjugate zeros of real
polynomials).

COROLLARY 15.  Let p(2), pS? (2), q,(2), and {z}}".| be as in Corollary

14 with m > 2 so that the w,’s are nonzero and pairwise distinct. Assume that
il = lwal > lwsl = bl for 1= 4,...,m and let (z = w,)(z — w,) = 2> +
¢,z + ¢,. Define p,(z) = ¢ ,zm "2 4+ ¢ 2" 4+ oo 4+, where
() (1)
c(n) - bm—l bm—j
m—j +1 +D
b b

Then

() ¢, # 0 for all sufficiently large n.
() lim,_.(p,(2)/cp,_,) =TI7L;(z — z)).

4,(2)  4,11(2)

+1
R LT !
il im = .
n— ey (z=2z)(z—2z)
+2 +1 +3
. . (br(n”—l)br(rf’—l) - b;(nn—l)b;(nnzl)
(iv) ¢; = lim 5 Y
= (b 2n | — (b)Y
and
3 1 22
Db — (b D)
¢, = lim

2
n—w br(nan)br(nnll _ (b(n+1))

m—1

with O(Ilw;/w,|") order of convergence.

Proof. Since ¢{"” , = |B§), (i) follows directly from Theorem 13. (ii) is
a direct application of Theorem 13. To prove (iii), define

_ +1 +1
P.(2) _pr(:zl Z)br(nn—1) —P,Sf’fl)(Z)bfn”ll
=,z e gz 4 e (Y,
where

(n) (n)
c(”) S bm—] bm—j

m—j b'(nnj 1) b’(nnjjl) :
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Dividing the identity

pu(z) = {qn(z)br(nnjll) - qn+1(z)br(r:lll}p(z) _g(z)n(b;(nnjll) _g(z)br(r?ll)

by p(z)cl _, yields

2:(2)  qpii(2)

Pa(2) by byt g(2)" (b= — g(2)by))
p(z)ci) s - p(2)cy
which holds for all z # z,,i = 1,...,m, and large n. There exists a positive

number S and 0 < p;, p, < 1 such that

g(z)n(b;(nnjf) _g(z)br(r:lll)
p(z)ei),

< Sp{

for all z in the annulus p,|w;| < Iw| < p,Iw,|. Hence

pn(z) _ Qn(z)br(:jll) _QnJrl(Z)br(r:Ql <S n
p(2)cl, i =sp

This implies that

P.(2) _ qn(z)br(r:ljll)_anrl(Z)br(r:’ll
P(Z)Cffzz cf,:’),2

converges to zero uniformly in the above annulus.
From Theorem 13, lim,_ . (p,(2)/p(2)c(,) = 1/(z — z Nz — z,).
Therefore

lim qn(z)br(nn:rll) _qn+1(z)br(nnzl _ 1
n—o® C%ZZZ (z=2z)(z—z,)

for all z in the annulus p,|w;| < [w| < p;Iw,l.

Note that
ii Qn(z)b;(r?jll) - qn+1(z)br(rfl1
e o
m—2

—j —j+1

b b
= LA 1

= 1m = .
B (z=2)(—2)

The proof of (iv) follows directly from Theorem 13(ii). Q.E.D.

oo
X i

j=1
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Remark 5 (On Multiple Zeros). By applying an argument similar to
that of [11], it can be shown that the results of this work hold true even
when some zeros of p(z) are not simple. The proof is more complicated,
but it can be done by a continuity argument. In this case, the polynomial
p(z) is approximated by a polynomial f(z, €) of same degree having simple
zeros and such that lim,_, , f(z, €) = p(z) uniformly in any bounded
region containing the zeros of p(z). Then the results of this section are to
be applied to the polynomial f which by letting € — 0 reduces to results
concerning the polynomial p(z). It should be noted that the convergence
is not any longer geometric as shown in the following example.

Let p(z) = (z — 1)°. It can be shown that b{" = n(n — 1). We will
apply Theorems 5, 11, and 13 to recover linear and quadratic factors of
p(z). Since the sequence bV /b = n(n + 1)/n(n — 1) converges to
one, the factor z — 1 is obtained. Note that |[b{"*" /b)) — 1| = |n(n +
D/n(n —1) —1|=2/(n + 1). Applying Corollary 15 to recover the
quadratic factor z> — 2z + 1 yields ¢, = lim, , (n + 2)/n =1 and ¢, =
lim, ., —2(n +2)/(n+ 1) = —2. Note that [(n +2)/n —c,| =In +
/n—1=2/n and | -2(n +2)/(n+1) — ¢l =1 —-2n +2)/(n +1) +
2| = 2/(n + 1)|. This implies that the order of convergence is O(1/n) in
both cases.

To illustrate the various methods proposed in previous sections we
present the following simple example.

ExXAMPLE. For comparison purposes we consider a polynomial with
known factors. Let p(z) =(z2 -9z —- 1) =2z>—2z>—-9z+ 9. Algo-
rithm 3.1 is next applied with g(z) = z to generate the first 10 terms of
each of the sequences {b("}, {b{"}, and {b§"}, i.e.,

{(b§)" = {—9, -9, =90, —90, —819, —819, —7380, — 7380}
{bg")}]0 ={9,0,81,0,729,0, 6561, 0}

n=3

{b$")" = {1,10,10,91,91,820,820, 7381}

Applying Theorem 10 to the sequence {b{V}!° ; yields

by by D] g 91 8201 ' 820 9.0
et pud || ppd _[820 820} [7381}_[0.0012195]'
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Thus ¢, = —9 and ¢, = —0.0012195. Similarly, when Theorem 10 is
applied to the sequence {bS}° ; we get

-1
bV bETU DY [ 819 —819 17 '[ 7380
bt pintd b+ —-819 —7380 —7380
_ [9.01099
0.0 |

ie, ¢, = —9.01099 and ¢, =0.0. It should be observed that when
Theorem 10 is applied to the sequence b{” we obtain the exact factor
z% — 9 for each n since

b pintD -1 b +2) B [9}
b(1n+1) b§n+2) b(1n+3) 0
Applying Theorem 13 yields

-1
bEYbETD L DY Tg0 82017 '[77381] _ [9.0012195
B{» D p{"+2 0 6561 0 0.0 '

To extract a linear factor, Theorem 13 is to be applied so that

‘ 820 7381‘Z<+‘ 820 7381 ‘

6561 0 —7380 —7380 L 0.9998645
820 7381
6561 0

which is an approximation to the factor z — 1.

Remark 6. It should be clear that there is a real possibility of overflow
which can be handled by scaling the zeros of p(z) by a suitable factor
a > 0 and then applying the results of this section to the polynomial
pCaz). The other concern is that arising systems such as 3.11 and 3.13
become ill-conditioned for large n. Thus there is a need for a robust linear
system solver. A treatment of efficient solutions of the Hankel system of
equations can be found in [8].

Remark 7. When the roots of the polynomial p(z) are all simple, it is
always possible to find a complex number z, such that the polynomial
p(z — z,) has simple zeros with different modulus. Therefore, one can
apply Corollary 14 to the polynomial p(z — z,) using complex arithmetic
to determine all zeros of p(z). If p(z) is a real polynomial and real
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arithmetic has to be used, then one can determine a real number z, such
that p(z — z,) has zeros of distinct modulus except for complex conjugate
zeros. In this case, Corollary 15 can be applied to determine all zeros of
p(2).
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