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INTR~OUCTI~N 1 

The great usefulness of a priori bounds for solutions of (second order 
elliptic) partial differential equations is well known [ 1, 7, 91. Maximum 
principles are particular a priori bounds. We are interested in maximum 
principles for second order elliptic equations in nondivergence form when 
the coefficients of the leading terms are discontinuous [4, 6, 111. 

In particular if 52 is a domain (bounded connected open set) of R” we 
consider the Dirichlet problem 

i a,(&&=f 
r,,= I 1 I 

4,,=0, 

(1.1) 

where the following conditions are fulfilled by the coefficients and the 
known term, 

with 2, n positive constants. We look for UE IVZ-n(Q) n C”(o) (- W*-“(Q) 
if Q is regular) and (1.1) is verified a.e. 

A current classical result of Alexandrov and Pucci [ 1, 7, 81 states that 
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THEOREM 1.1. Zff~L”(!2), then for any solution of (1.1) the following 
bound (maximum principle) holds, 

II4 LX(R) d Kllf II L”(Q)? 

where K is a positive constant depending only on A, A, Q, n. 

(1.3) 

In Theorem 1.1, f E L”(Q) where n is the dimension of the space is 
fundamental. Nevertheless in many cases obtaining bounds like (1.3) with 
some power p less than n can be useful. 

In this paper we construct a physical case in which the hypothesis p <n 
is interesting. Then we state a result like Theorem 1.1 for p < n [2,4] and 
prove a bound for this p (when 3, + O+ ). 

SECTION 2 

Let n = 2. We derive the equation for the displacements of a structure 
covering Sz and clamped on X?. The structure is a net of steel cables with 
rectangular mesh with edges parallel to the coordinate axes. The draught of 
the net can be realized with turnbuckles or with weights and is assigned. 
The cables parallel to the y axis are stretched by a draught a, E al(x) that 
we can suppose is defined in the first projection of Q, 52, and belongs to 
L”(Q, ), in general continuous a.e. or a step function. Analogously the 
cables parallel to the x axis are stretched by a draught a2 E u2( y) belonging 
to L”(Q,), where QZ is the second projection. 

The structure must support a load f,(x, y) given by the sum of the dead 
load and of an accidental load like wind pressure or weight of snow and a 
load fi(x, y) given by some assigned, distributed, or concentrated loads. 

We emphasize here that in the case of concentrated loads it is very 
natural to expect f2(x, y) like l/(d(P, P))” where P(X, jJ) is a fixed point in 
8, d(P, Ir) is the euclidean distance from P(x, y) to F, and u is a positive 
constant depending on the load. In this case, easily arising from the 
applications, f(x, y) = fi(x, y) + f2(x, y) does not belong to L”(Q) for any 
a2 1. 

We call U(X, y) the displacements along the z axis orthogonal to the 
plane of Q. The equation that we derive expresses the balance in the 
vertical translation of the element dx dy of a. 

We consider displacements belonging to C2(s2) n C”(D) and call C, the 
intersection of the graph of u restricted to dx dy with the plane y, z. If dx is 
small we can suppose that the angle a formed by the tangent in dx to C, 
and the y axis is constant. Then the contribution of h-,(x) to the balance is 

da,= -a,sinadx+a,sin(a+$dy)dx. 
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We use the “small displacements hypothesis” [S] and then we can replace 
CI with sin a or with fga, from which 

da,= --a,ldx+a,(a+da)dx=u,~~~d.~. 

Otherwise tg a = &jay, and then 

Analogously, on the edges parallel to the y axis the contribution of a*(y) to 
the balance is 

da, = a2 2 dx dy. 

To obtain the balance, the sum of f(x, y) d.u dy, (2.1), and (2.2) must be 
zero. We deduce 

and then 

Equation (2.3) is of type (1.1) butf(x, y) in many cases does not belong to 
L”(Q), as we have pointed out. Then we are interested in the case in which 
(1.3) holds with some power less than n in the right member. 

SECTION 3 

In this section we deduce some results concerning the estimate (in L * 
norm) of the displacements of a structure when the load is a function f not 
belonging to L”(Q), e.g., the inverse of a distance from an assigned point of 
ST. We return to problem (1.1) with hypotheses (1.2). In a first step we 
suppose 

a,(x) E cm(Q); i a,,(x) = 1. 
,=I 

Related to the operator Lu = C;, = 1 u,(x)(~~u/~x, 8x,), we consider its 
adjoint operator L*u = C;,=, (2’/~x, t?x,)(a,,o). 
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A function u belonging to L:,,(Q) is a nonnegative weak solution of 
L*v=O if u>O and s,oLu=O for all ~20, UEC~(Q). 

The following lemma is crucial for our considerations. Let u be a 
nonnegative weak solution of L*u = 0. 

LEMMA 3.1. For any A E 10, l/n] there exists 6 > 0, 6 = d(A), such that 

J&dYvYq U(Y) dY (3.1) 
B(1 -6,r 

with c = c(n), for any ball B, such that B,, +zsjr c 52. Here B,, B,, +26jr, 
B,, _ 6Jr are concentric bulls with radii r, (1 + 26)r, (I- 6)r. Moreover there 
exists a positive constant K such that 118 < K, for any 1 E 10, l/n]. 

Proof: From now on we denote with c a generic positive constant 
depending only on n and suppose that B, is centered at the origin. Fix 
0~6~1. There existsgECF(Bo+,6,, ) such that 

Lg>O in Bcl+B)r- Bt1-6)r 

Lg>k, in Br-B,l-d,r (3.2) 

lkl d k, in Q 

for some positive constants k,, k2 depending on g. As g depends on 6 we 
obtain K, = AC,(~), k, = k,(6). If we choose 6 = s(1) it is easy to verify that 
we can pick 6 such that 

k2(4 2 
-J-p, -pc for J.E 0,’ 1 1 n ’ (3.3) 

For example, we can choose 6 = (dm - 1)/(2(,/m + 1)) and 
g(x) = [( 1 + 6)‘r2 - 1x1 2]2. From (3.2), as u is a nonnegative weak solution 
we deduce 

1 
6- k f 1 4I+“)r-B(1-6)r 

4~) 4 
, 

from which, using (3.3), 

and the lemma is proved. 
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From Lemma 3.1, using the same arguments as those of [Z, 43 and the 
well known Gehring theorem [3, 10, 121, it is easy to deduce the estimate 

II4 Lx(R) G k IIW LqR) (3.4) 

if u is a solution of problem (1.1) with Lu in place off, for some q < n, 
where k = k(A, l2, q). 

The following theorem is a maximum principle for solutions of second 
order nondivergence form elliptic equations with discontinuous coefficients. 

Let us consider the operator Lu=C:,=, u,,(.Y)(~~u/~.Y, ii-~,) in Q with 

a,,(-x)EL’(Q), a,,(n)=a,,(n), i a,,(n)= 1, Al51’6 f a,@) r,t., (3.5) 
,=I 1,,= I 

a.e. in 52, for any 5 E R”. We prove the following 

THEOREM 3.1. There exist q < n and k = k(l, Q, q) such that, under 
hypotheses (3.5) only, (3.4) holds for any u E W2,fl(Q) n C’(D). 

Proof: Let (a:(~))~ be a sequence of C” functions tending to a,(x) in 
L”q.i(“--q), for any 1 < i, j < n. We note also that we can choose ai in such a 
way that for any of them (3.5) holds, with the same i. We fix UE W2,n(Q) 
n C’(Q), ulPn = 0, set L,u = C;,= 1 u$(~~u/~.x, a.~,),), and note that, by (3.41, 

II4 L”(R) G k IL4 Lqc>I 

with k = k(l, Sz, q), independent on d. 
We have, using Holder’s inequality, 

(3.6) 

From (3.7) we deduce that L,u tends to Lu in Ly(sZ). Then, from (3.6) and 
(3.7), letting d go to infinity we obtain the theorem. 

Remark 3.1. We note that Theorem 3.1 holds for any UE W’.T(R)n 
Co(Q), MI,, = 0 with q < p d n. 

Remark 3.2. Using Lemma 3.1, in [4] the existence of a function cc(A) 
is proved such that (3.4) holds for cr(l)<q<n, and n-a(A)> 
kA”“- “.‘lnP ” for some positive constant k independent on A E 10, l/n]. 

From Theorem 3.1 and Remarks 3.1 and 3.2 we deduce the following 
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remark concerning the estimates “a priori” for the displacements of a 
structure subjected to concentrated loads. 

Remark 3.3. Consider the possibility of bounds like (3.4) when the 
coefficients are discontinuous and f(P), the known term, allows 
singularities like l/[d(P, P)]O, aa 1, PES?. 

Using Theorem 3.1 we note that we can obtain L” bounds for the 
displacements in terms of Lq norms, for some q < n - (T, of the loads. We 
obtain these bounds for some o > 1 and for displacements belonging to 
W2-T(f2) n Co(W) for some q < p <n - 0. 

By Remark 3.2 we note that the bounds worsen if the draught tends to 
zero and we can estimate how q tends to n - a. 
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