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Abstract

Integrating factors and adjoint equations are determined for linear and non-linear differential equations
of an arbitrary order. The new concept of an adjoint equation is used for construction of a Lagrangian for an
arbitrary differential equation and for any system of differential equations where the number of equations is
equal to the number of dependent variables. The method is illustrated by considering several equations tradi-
tionally regarded as equations without Lagrangians. Noether’s theorem is applied to the Maxwell equations.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

It is a traditional custom to associate adjoint equations exclusively with linear equations. It is
also customary to discuss integrating factors for non-linear ordinary differential equations only
in the case of first-order equations. Recall that Noether’s theorem provides a connection between
conservation laws for variational problems with symmetries of the Euler–Lagrange equations. In
this introduction, we outline the corresponding definitions and results.

1.1. Integrating factor

The usual approach to integrating factors is as follows. A first-order ordinary differential
equation

a(x, y)y′ + b(x, y) = 0, (1.1)
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where y′ = dy/dx, is written in the differential form:

a(x, y) dy + b(x, y) dx = 0. (1.2)

Equation (1.2) is said to be exact if its left-hand side is the differential, i.e.,

a(x, y) dy + b(x, y) dx = dΦ(x, y) (1.3)

with some function Φ(x,y). If Eq. (1.2) is exact, its solution is defined implicitly by Φ(x,y) =
C = const.

In general, Eq. (1.2) is not exact but it becomes exact upon multiplying by a certain function
µ(x, y):

µ(a dy + b dx) = dΦ ≡ Φy dy + Φx dx, (1.4)

where

Φy = ∂Φ

∂y
, Φx = ∂Φ

∂x
·

The function µ(x, y) is called an integrating factor for Eq. (1.2). It follows from (1.4) that

Φy = µa, Φx = µb. (1.5)

The integrability condition for the system (1.5) is written Φxy = Φyx and yields the following
equation for determining the integrating factors:

∂(µa)

∂x
= ∂(µb)

∂y
· (1.6)

Theoretically, Eq. (1.6) provides an infinite number of integrating factors for Eq. (1.2). Prac-
tically, however, the integration of Eq. (1.6) is not usually simpler than the integration of the
differential equation (1.2) in question. Nevertheless, the concept of an integrating factor gives
us a useful tool since integrating factors for certain particular equations can be found by ad
hoc methods. If one knows two linearly independent integrating factors, µ1(x, y) and µ2(x, y),
for (1.2) then the general solution of (1.2) is obtained without additional quadratures from the
equation

µ1(x, y)

µ2(x, y)
= C. (1.7)

1.2. Adjoint linear differential operators

Let x = (x1, . . . , xn) be n independent variables and u = (u1, . . . , um) be m dependent vari-
ables with the partial derivatives u(1) = {uα

i }, u(2) = {uα
ij }, . . . of the first, second, etc. orders,

where uα
i = ∂uα/∂xi, uα

ij = ∂2uα/∂xi∂xj . Denoting

Di = ∂

∂xi
+ uα

i

∂

∂uα
+ uα

ij

∂

∂uα
j

+ · · · (1.8)

the total differentiation with respect to xi , we have

uα
i = Di

(
uα

)
, uα

ij = Di

(
uα

j

) = DiDj

(
uα

)
, . . . .

Recall the definition of the adjoint linear operator. Let us consider, e.g., the scalar (i.e., m = 1)
second-order linear partial differential equations

L[u] ≡ aij (x)uij + bi(x)ui + c(x)u = f (x), (1.9)
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where L is the following linear differential operator:

L = aij (x)DiDj + bi(x)Di + c(x). (1.10)

The summation convention is used throughout the paper. Here, for example, the summation is
assumed over i, j = 1, . . . , n. The coefficients aij (x) are symmetric, i.e., aij = aji .

The adjoint operator to L is a second-order linear differential operator L∗ such that

vL[u] − uL∗[v] = Di

(
pi

) ≡ divP(x) (1.11)

for all functions u and v, where P(x) = (p1(x), . . . , pn(x)) is any vector. The adjoint operator
L∗ is uniquely determined and has the form

L∗[v] = DiDj

(
aij v

) − Di

(
biv

) + cv. (1.12)

The operator L is said to be self-adjoint if L[u] = L∗[u] for any function u(x). Recall that the
operator (1.10) is self-adjoint if and only if

bi(x) = Dj

(
aij

)
, i = 1, . . . , n. (1.13)

The linear homogeneous equation

L∗[v] ≡ DiDj

(
aij v

) − Di

(
biv

) + cv = 0 (1.14)

is called the adjoint equation to the linear differential equation (1.9), L[u] = f (x).

The definitions of the adjoint operator and the adjoint equation are the same for systems of
second-order equations. They are obtained by assuming in Eq. (1.9) that u is an m-dimensional
vector-function and that the coefficients aij (x), bi(x) and c(x) of the operator (1.10) are m × m-
matrices.

If n = m = 1 we have the definition of the adjoint operator to linear ordinary differential
equations. Let us set u = y and consider the first-order equation

L[y] ≡ a0(x)y′ + a1(x)y = f (x). (1.15)

The adjoint operator L∗[z] to L[y] has the form

L∗[z] = −(a0z)
′ + a1z. (1.16)

The definition of the adjoint operator to higher-order equations is similar. For example, in the
case of the second-order equation

L[y] ≡ a0y
′′ + a1y

′ + a2y = f (x) (1.17)

with variable coefficients a0(x), a1(x), a2(x), the adjoint operator L∗[z] to L[y] is

L∗[z] = (a0z)
′′ − (a1z)

′ + a2z. (1.18)

Likewise, in the case of the third-order equation

L[y] ≡ a0y
′′′ + a1y

′′ + a2y
′ + a3y = f (x), (1.19)

the adjoint operator L∗[z] to L[y] is given by

L∗[z] = −(a0z)
′′′ + (a1z)

′′ − (a2z)
′ + a3z. (1.20)

The homogeneous equation L∗[z] = 0 is called the adjoint equation to L[y] = f (x).
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1.3. Noether’s theorem

Noether’s theorem [9] manifests a connection between symmetries and conservation laws
for variational problems and provides a simple procedure for construction of conservation laws
for Euler–Lagrange equations with known symmetries. The main steps of this procedure are as
follows.

For the sake of brevity, consider Lagrangians L(x,u,u(1)) involving, along with the inde-
pendent variables x = (x, . . . , xn) and the dependent variables u = (u, . . . , um), the first-order
derivatives u(1) = {uα

i } only. Then the Euler–Lagrange equations have the form

δL
δuα

≡ ∂L
∂uα

− Di

(
∂L
∂uα

i

)
= 0, α = 1, . . . ,m. (1.21)

They are obtained by variation of the integral
∫
L(x,u,u(1))dx taken over an arbitrary n-

dimensional domain in the space of the independent variables.
Noether’s theorem states that if the variational integral is invariant under a continuous trans-

formation group G with a generator

X = ξ i(x,u)
∂

∂xi
+ ηα(x,u)

∂

∂uα
, (1.22)

then the vector field C = (C1, . . . ,Cn) defined by

Ci = ξ iL+ (
ηα − ξjuα

j

) ∂L
∂uα

i

, i = 1, . . . , n, (1.23)

provides a conservation law for the Euler–Lagrange equations (1.21), i.e., obeys the equation
divC ≡ Di(C

i) = 0 for all solutions of (1.21).
The invariance of the variational integral implies that the Euler–Lagrange equations (1.21)

admit the group G. Therefore, in order to apply Noether’s theorem, one has first of all to find
the symmetries of Eqs. (1.21). Then one should single out the symmetries leaving invariant the
variational integral (1.21). This can be done by means of the following infinitesimal test for the
invariance of the variational integral (proved in [5], see also [6]):

X(L) +LDi

(
ξ i

) = 0, (1.24)

where the generator X is prolonged to the first derivatives u(1) by the formula

X = ξ i ∂

∂xi
+ ηα ∂

∂uα
+ [

Di

(
ηα

) − uα
j Di

(
ξj

)] ∂

∂uα
i

· (1.25)

If Eq. (1.24) is satisfied, then the vector (1.23) provides a conservation law.
The invariance condition (1.24) can be replaced by the divergence condition

X(L) +LDi

(
ξ i

) = Di

(
Bi

)
. (1.26)

Then Eq. (1.21) has a conservation law Di(C
i) = 0, where (1.23) is replaced by

Ci = ξ iL+ (
ηα − ξjuα

j

) ∂L
∂uα

i

− Bi. (1.27)

It is a common belief that the applicability of Noether’s theorem is severely restricted because
Lagrangians exists only for very special types of differential equations. The aim of the present
paper is to dispel this myth.
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2. Main constructions

Here, the notion of an integrating factor is extended to higher-order ordinary differential equa-
tions. Furthermore, an adjoint equation is defined for non-linear ordinary and partial differential
equations of an arbitrary order. Then, using the new concept of an adjoint equation, I obtain a
Lagrangian for any ordinary and partial differential equation. It follows that Noether type con-
servation theorems can be applied to any differential equation as well as to any system where the
number of differential equations is equal to the number of the dependent variables.

2.1. Preliminaries

We will use the calculus in the space A of differential functions introduced in [4] (see also [5,
Section 19.1] and [6, Section 8.2]). Let us denote by z the sequence

z = (x,u,u(1), u(2), . . .) (2.1)

with elements zν (ν � 1), where zi = xi (1 � i � n), zn+α = uα (1 � α � m) and the remaining
elements represent the derivatives of u. Finite subsequences of z are denoted by [z].

A differential function f is a locally analytic function f ([z]) (i.e., locally expandable in a
Taylor series with respect to all arguments) of a finite number of variables (2.1). The highest
order of derivatives appearing in a differential function f is called the order of f and is denoted
by ord(f ). Thus, ord(f ) = s means that f = f (x,u,u(1), . . . , u(s)). The set of all differential
functions of finite order is denoted by A. The set A is a vector space endowed with the usual
multiplication of functions. In other words, if f ([z]) ∈ A and g([z]) ∈ A and if a and b any
constants, then

af + bg ∈A, ord(af + bg) � max
{
ord(f ),ord(g)

}
,

fg ∈A, ord(fg) = max
{
ord(f ),ord(g)

}
.

Furthermore, the space A is closed under the total derivation: if f ∈ A, then

Di(f ) ∈A, ord
(
Di(f )

) = ord(f ) + 1.

The Euler–Lagrange operator in A is defined by the formal sum

δ

δuα
= ∂

∂uα
− Di

∂

∂uα
i

+ DiDj

∂

∂uα
ij

+ · · · , α = 1, . . . ,m, (2.2)

where, for every s, the summation is presupposed over the repeated indices i, j, . . . running from
1 to n. The operator δ/δuα is termed also the variational derivative.

The operator (2.2) with one independent variable x is written

δ

δuα
= ∂

∂uα
− Dx

∂

∂uα
x

+ D2
x

∂

∂uα
xx

− D3
x

∂

∂uα
xxx

+ · · · . (2.3)

In the case of one independent variable x and one dependent variable y, we will use the
common notation and write z = (x, y, y′, y′′, . . . , y(s), . . .). Then the total differentiation (1.8) is
written as follows:

Dx = ∂ + y′ ∂ + y′′ ∂

′ + · · · (2.4)

∂x ∂y ∂y
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and the Euler–Lagrange operator (2.3) becomes

δ

δy
= ∂

∂y
− Dx

∂

∂y′ + D2
x

∂

∂y′′ − D3
x

∂

∂y′′′ + · · · . (2.5)

The main constructions of this section are based on the concept of multipliers and the follow-
ing lemmas (for the proofs, see [6, Section 8.4]).

Lemma 2.1. Let f (x, y, y′, . . . , y(s)) ∈ A. If Dx(f ) = 0 identically in all variables x, y, y′, . . . ,
y(s), and y(s+1), then f = C = const. Likewise, if f (x,u,u(1), . . . , u(s)) is a differential function
with one independent variable x and several dependent variables u = (u1, . . . , um), the equation
Dx(f ) = 0 implies that f = C.

Lemma 2.2. A differential function f (x,u, . . . , u(s)) ∈ A with one independent variable x is a
total derivative:

f = Dx(g), g(x,u, . . . , u(s−1)) ∈A, (2.6)

if and only if the following equations hold identically in x,u,u(1), . . . :

δf

δuα
= 0, α = 1, . . . ,m. (2.7)

Lemma 2.3. A function f (x,u, . . . , u(s)) ∈ A with several independent variables x =
(x1, . . . , xn) and several dependent variables u = (u1, . . . , um) is a divergence of a vector field
H = (h1, . . . , hn), hi ∈A:

f = divH ≡ Di

(
hi

)
, (2.8)

if and only if the following equations hold identically in x,u,u(1), . . . :

δf

δuα
= 0, α = 1, . . . ,m. (2.9)

2.2. Integrating factor for higher-order equations

Definition 2.1. Consider sth-order ordinary differential equations of the form

a
(
x, y, y′, . . . , y(s−1)

)
y(s) + b

(
x, y, y′, . . . , y(s−1)

) = 0. (2.10)

A differential function µ(x, y, y′, . . . , y(s−1)) is called an integrating factor for Eq. (2.10) if
the multiplication by µ converts the left-hand side of Eq. (2.10) into a total derivative of some
function Φ(x,y, y′, . . . , y(s−1)) ∈ A:

µay(s) + µb = Dx(Φ). (2.11)

Knowledge of an integrating factor allows one to reduce the order of Eq. (2.10). Indeed,
Eqs. (2.10)–(2.11) are written Dx(Φ) = 0, and Lemma 2.1 yields the (s − 1)-order equation

Φ
(
x, y, y′, . . . , y(s−1)

) = C. (2.12)

Definition 2.1 can be readily extended to systems of ordinary differential equations of any
order.
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Theorem 2.1. The integrating factors for Eq. (2.10) are determined by the following equation:

δ

δy

(
µay(s) + µb

) = 0, (2.13)

where δ/δy is the variational derivative (2.5). Equation (2.13) involves the variables x, y, y′, . . . ,
y(2s−2) and should be satisfied identically in all these variables.

Proof. Equation (2.13) is obtained from Lemma 2.2. The highest derivative that may appear
after the variational differentiation (2.5) has the order 2s − 1. It occurs in the terms

(−1)sDs
x(µa) and (−1)s−1Ds−1

x

[
y(s) ∂(µa)

∂y(s−1)

]
.

We have, dropping the terms that certainly do not involve y(2s−1):

(−1)sDs
x(µa) = −(−1)s−1Ds−1

x

[
y(s) ∂(µa)

∂y(s−1)

]
+ · · · .

Thus, the terms containing y(2s−1) annihilate each other, and hence Eq. (2.13) involves only the
variables x, y, y′, . . . , y(2s−2). This completes the proof. �

For the first-order equation (1.1), a(x, y)y′ + b(x, y) = 0, Eq. (2.13) is written:

δ

δy
(µay′ + µb) = y′(µa)y + (µb)y − Dx(µa) = 0.

Since Dx(µa) = (µa)x + y′(µa)y , we arrive at Eq. (1.6), (µb)y − (µa)x = 0.
Consider the second-order equation

a(x, y, y′)y′′ + b(x, y, y′) = 0. (2.14)

The integrating factors µ depend on x, y, y′, and Eq. (2.13) for determining µ(x, y, y′) is written:

δ

δy
(µay′′ + µb) = y′′(µa)y + (µb)y − Dx

[
y′′(µa)y′ + (µb)y′

] + D2
x(µa) = 0.

We have

Dx(µa) = y′′(µa)y′ + y′(µa)y + (µa)x,

D2
x(µa) = y′′′(µa)y′ + y′′2(µa)y′y′ + 2y′y′′(µa)yy′ + 2y′′(µa)xy′

+ y′′(µa)y + y′2(µa)yy + 2y′(µa)xy + (µa)xx,

Dx

(
y′′(µa)y′

) = y′′′(µa)y′ + y′′2(µa)y′y′ + y′y′′(µa)yy′ + y′′(µa)xy′ ,

Dx

(
(µb)y′

) = y′′(µb)y′y′ + y′(µb)yy′ + (µb)xy′ ,

and hence

δ

δy
(µay′′ + µb) = y′′[y′(µa)yy′ + (µa)xy′ + 2(µa)y − (µb)y′y′

]

+ y′2(µa)yy + 2y′(µa)xy + (µa)xx − y′(µb)yy′ − (µb)xy′ + (µb)y.

Since this expression should vanish identically in x, y, y′ and y′′, we arrive at the following
statement.
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Theorem 2.2. The integrating factors µ(x, y, y′) for the second-order equation (2.14) are de-
termined by the following system of two equations:

y′(µa)yy′ + (µa)xy′ + 2(µa)y − (µb)y′y′ = 0, (2.15)

y′2(µa)yy + 2y′(µa)xy + (µa)xx − y′(µb)yy′ − (µb)xy′ + (µb)y = 0. (2.16)

Theorem 2.2 shows that the second-order equations, unlike the first-order ones, may have
no integrating factors. Indeed, the integrating factor µ(x, y) for any first-order equation is de-
termined by the single first-order linear partial differential equation (1.6) which always has
infinite number of solutions. In the case of second-order equations (2.14), one unknown function
µ(x, y, y′) should satisfy two second-order linear partial differential equations (2.15)–(2.16). An
integrating factor exists only if the over-determined system (2.15)–(2.16) is compatible.

Remark 2.1. If a second-order equation (2.14) has two integrating factors, its general solution
can be found without additional integration.

Example 2.1. Let us calculate integrating factors for the following equation:

y′′ + y′2

y
+ 3

y′

x
= 0. (2.17)

Equation (2.17) has the form (2.14) with

a = 1, b = y′2

y
+ 3

y′

x
·

For the sake of simplicity, we will look for the integrating factors of the particular form µ =
µ(x, y). Then Eq. (2.15) reduces to 2µy − (µb)y′y′ = 0. Since (µb)y′y′ = 2µ/y, we obtain the
equation

∂µ

∂y
− µ

y
= 0,

whence µ = φ(x)y. Thus, we have

µ = φ(x)y, µyy = 0, µxy = φ′, µxx = φ′′y, µb = φy′2 + 3
φ

x
yy′,

(µb)y = 3
φ

x
y′, (µb)yy′ = 3

φ

x
, (µb)xy′ = 2φ′y′ + 3

(
φ′

x
− φ

x2

)
y.

Substitution in Eq. (2.16) leads to the following Euler’s equation:

x2φ′′ − 3xφ′ + 3φ = 0.

Integrating it by the standard change of the independent variable, t = lnx, we obtain two inde-
pendent solutions, φ = x and φ = x3. Thus, Eq. (2.17) has two integrating factors:

µ1 = xy, µ2 = x3y, (2.18)

and can be solved without an additional integration (see Remark 2.1).
Indeed, multiplying Eq. (2.17) by the first integrating factor, we have

xy

(
y′′ + y′2

+ 3
y′ )

= xyy′′ + xy′2 + 3yy′ = 0.

y x
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Substituting xyy′′ = Dx(xyy′) − yy′ − xy′2, we reduce it to

Dx(xyy′) + 2yy′ = Dx

(
xyy′ + y2) = 0,

whence

xyy′ + y2 = C1. (2.19)

The similar calculations by using the second integrating factor (2.18) yields

x3yy′ = C2. (2.20)

Eliminating y′ from Eqs. (2.19)–(2.20), we obtain the following general solution to Eq. (2.17):

y = ±
√

C1 − C2

x2
. (2.21)

2.3. Adjoint equations

Definition 2.2. Consider a system of sth-order partial differential equations

Fα(x,u, . . . , u(s)) = 0, α = 1, . . . ,m, (2.22)

where Fα(x,u, . . . , u(s)) ∈ A are differential functions with n independent variables x =
(x1, . . . , xn) and m dependent variables u = (u1, . . . , um), u = u(x). The system of adjoint equa-
tions to Eqs. (2.22) is defined by

F ∗
α (x,u, v, . . . , u(s), v(s)) ≡ δ(vβFβ)

δuα
= 0, α = 1, . . . ,m, (2.23)

where v = (v1, . . . , vm) are new dependent variables, v = v(x).

Remark 2.2. In the case of linear equations, adjoint equations given by Definition 2.2 are iden-
tical with the classical adjoint equations discussed in Section 1.2. Therefore, the adjoint equation
to a linear equation (or a system) F(x,u, . . . , u(s)) = 0 for u(x) is a linear equation (a system)
F ∗(x, v, . . . , v(s)) = 0 for v(x), and the relation to be adjoint is symmetric, i.e., F ∗∗ = F . More
specifically, if the adjoint equation to F ∗(x, v, . . . , v(s)) = 0 is F ∗∗(x,w, . . . ,w(s)) = 0, then
setting w = u in the latter equation we obtain the original equation.

Definition 2.3. A system of equations (2.22) is said to be self-adjoint if the system obtained
from the adjoint equations (2.23) by the substitution v = u:

F ∗
α (x,u,u, . . . , u(s), u(s)) = 0, α = 1, . . . ,m,

is identical with the original system (2.22).1

Example 2.2. Let us take n = 1,m = 1, set u = y, v = z, and consider the first-order linear
ordinary differential equation (1.15):

F(x, y, y′) ≡ a0y
′ + a1y − f (x) = 0.

1 In general, it does not mean that F ∗
α (x,u,u, . . . , u(s), u(s)) = Fα(x,u, . . . , u(s)), see, e.g., Example 2.6.
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Equation (2.23) defining the adjoint equation is written:

δ(zF )

δy
=

(
∂

∂y
− Dx

∂

∂y′

)(
z
[
a0y

′ + a1y − f (x)
]) = 0.

Since

∂

∂y

(
z
[
a0y

′ + a1y − f (x)
]) = a1z,

∂

∂y′
(
z
[
a0y

′ + a1y − f (x)
]) = a0z,

Eq. (2.23) yields the adjoint equation a1z − Dx(a0z) = 0, or

a1z − (a0z)
′ = 0

the left-hand side of which is identical with the adjoint operator (1.16).

Example 2.3. For the second-order equation (1.17),

a0y
′′ + a1y

′ + a2y = f (x),

Definition 2.2 yields the adjoint equation(
∂

∂y
− Dx

∂

∂y′ + D2
x

∂

∂y′′

)(
z
[
a0y

′′ + a1y
′ + a2y − f (x)

]) = 0.

Proceeding as in the previous example, one obtains the adjoint equation (1.18):

(a0z)
′′ − (a1z)

′ + a2z = 0.

Example 2.4. Consider the second-order linear partial differential equation (1.9):

L[u] ≡ aij (x)uij + bi(x)ui + cu = f (x).

The definition (2.23) of the adjoint equation is written(
∂

∂u
− Di

∂

∂ui

+ DiDj

∂

∂uij

)(
v
[
aij (x)uij + bi(x)ui + cu − f (x)

]) = 0

and yields the adjoint equation (1.14):

L∗[u] ≡ DiDj

(
aij v

) − Di

(
biv

) + cv = 0.

Example 2.5. Consider the heat equation

ut − c(x)uxx = 0,

where c(x) is a variable or constant coefficient. Equation (2.23) is written (see (2.2)):

δ

δu

(
v
[
c(x)uxx − ut

]) =
(

−Dt

∂

∂ut

+ D2
x

∂

∂uxx

)(
v
[
c(x)uxx − ut

]) = 0

and yields the adjoint equation D2
x(c(x)v) + Dt(v) = 0, or

vt + (cv)xx = 0.

Let us calculate by Definition 2.2 the adjoint equations to several well-known non-linear equa-
tions from mathematical physics.
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Example 2.6. Consider the Korteweg–de Vries equation

ut = uxxx + uux. (2.24)

We take F(t, x,u, . . . , u(3)) = ut − uxxx − uux and write the left-hand side of Eq. (2.23) in the
form

δ

δu

(
v[ut − uxxx − uux]

) = −vt + vxxx − vux + Dx(uv) = −vt + vxxx + uvx.

Hence, F ∗(t, x, u, v, . . . , u(3), v(3)) = −(vt − vxxx − uvx), and the adjoint equation to the
Korteweg–de Vries equation (2.24) is

vt = vxxx + uvx. (2.25)

We have

F ∗(t, x, u,u, . . . , u(3), u(3)) = −(ut − uxxx − uux) ≡ −F(t, x,u, . . . , u(3)).

Thus, Eq. (2.24) is self-adjoint (see Definition 2.3).
Let us find the adjoint equation to Eq. (2.25). We have

δ

δv

(
w[vt − vxxx − uux]

) = −wt + wxxx + Dx(uw) = −wt + wxxx + uwx + wux.

Hence, the adjoint to Eq. (2.25) is wt = wxxx + uwx + wux . Setting here w = u, we obtain the
equation

ut = uxxx + 2uux

different from the original Korteweg–de Vries equation (2.24) (cf. Remark 2.2).

Example 2.7. Consider the Burgers equation

ut = uux + uxx. (2.26)

The left-hand side of Eq. (2.23) is written:

δ

δu

(
v[ut − uux − uxx]

) = −vt − vux + Dx(uv) − vxx = −vt + uvx − vxx.

Hence, adjoint equation to the Burgers equation (2.26) is (see also [7])

vt = uvx − vxx. (2.27)

Example 2.8. Consider the non-linear heat equation:

ut = [
k(u)ux

]
x
. (2.28)

The left-hand side of Eq. (2.23) is written:

δ

δu

(
v
[
ut − k(u)uxx − k′(u)u2

x

])
= −vt − k′(u)vuxx − k′′(u)vu2

x − D2
x

(
k(u)v

) + 2Dx

(
k′(u)vux

)
. (2.29)

We have Dx(k(u)v) = kvx + k′vux and therefore

−D2
x

(
k(u)v

) + 2Dx

(
k′(u)vux

) = −Dx(kvx) + Dx

(
k′vux

)
.
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Inserting this in Eq. (2.29) and making simple calculations we arrive at the following adjoint
equation to the non-linear heat equation (2.28) (see also [7]):

vt + k(u)vxx = 0. (2.30)

Let us find the adjoint equation to (2.30). We have

δ

δv

(
w

[
vt + k(u)vxx

]) = −wt + D2
x

[
k(u)w

]
.

Hence, the adjoint equation to (2.30) is wt = [k(u)w]xx and does not coincide with Eq. (2.28)
upon setting w = u.

2.4. Lagrangians

Theorem 2.3. Any system of sth-order differential equations (2.22),

Fα(x,u, . . . , u(s)) = 0, α = 1, . . . ,m, (2.22)

considered together with its adjoint equation (2.23),

F ∗
α (x,u, v, . . . , u(s), v(s)) ≡ δ(vβFβ)

δuα
= 0, α = 1, . . . ,m, (2.23)

has a Lagrangian. Namely, the simultaneous system (2.22)–(2.23) with 2m dependent variables
u = (u1, . . . , um) and v = (v1, . . . , vm) is the system of Euler–Lagrange equations (1.21) with
the Lagrangian L defined by2

L= vβFβ. (2.31)

Proof. Indeed, we have

δL
δvα

= Fα(x,u, . . . , u(s)) (2.32)

and

δL
δuα

= F ∗
α (x,u, v, . . . , u(s), v(s)). � (2.33)

Let us turn to examples. Consider linear equations, e.g. the homogeneous linear second-order
partial differential equation (1.9):

L[u] ≡ aij (x)uij + bi(x)ui + c(x)u = 0. (2.34)

The Lagrangian (2.31) is written:

L= vL[u] = v
(
aij (x)uij + bi(x)ui + c(x)u

)
. (2.35)

We have

δL
δv

= ∂L
∂v

= L[u] (2.36)

2 See also the concept of a weak Lagrangian introduced in [3].
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and

δL
δuα

= DiDj

(
∂L
∂uij

)
− Di

(
∂L
∂ui

)
+ ∂L

∂u

= DiDj

(
aij v

) − Di

(
biv

) + cv = L∗[v]. (2.37)

Theorem 2.4. Let the linear operator L[u] be self-adjoint, L∗[u] = L[u]. Then Eq. (2.34) is
obtained from the Lagrangian

L= 1

2

[
c(x)u2 − aij (x)uiuj

]
. (2.38)

Proof. We rewrite the Lagrangian (2.35) in the form

L= v
(
aijuij + biui + cu

) = Dj

(
vaijui

) − vuiDj

(
aij

) + vbiui − aijuivj + cuv.

The first term at the right-hand side can be dropped by Lemma 2.3, while the second and the
third terms annihilate each other by the condition (1.13). Finally, we set v = u, divide by two and
arrive at the Lagrangian (2.38). �
Example 2.9. For the Helmholtz equation ∆u + k2u = 0, (2.38) gives the well-known La-
grangian L = (k2u2 − |∇u|2)/2.

If one deals with linear equations that are not self-adjoint or with non-linear equations, one
obtains a Lagrangian formulation by considering the equation in question together with its adjoint
equation.

Example 2.10. The linear heat equation is not self-adjoint. Therefore, we consider it together
with its adjoint equation and obtain the system of two equations:

ut − c(x)uxx = 0, vt + (cv)xx = 0 (2.39)

which is derived from the Lagrangian

L= vut − c(x)vuxx. (2.40)

Example 2.11. According to Example 2.6, the Lagrangian

L= v[ut − uxxx − uux] (2.41)

leads to the Korteweg–de Vries equation (2.24) and its conjugate (2.25) combined in the follow-
ing system:

ut = uxxx + uux, vt = vxxx + uvx. (2.42)

Example 2.12. Likewise, we obtain from Example 2.8 the Lagrangian

L= v
[
ut − k(u)uxx − k′(u)u2

x

]
(2.43)

that leads to the non-linear heat equation (2.28) and its conjugate (2.30) combined in the follow-
ing system:

ut = [
k(u)ux

]
x
, vt + k(u)vxx = 0. (2.44)
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Example 2.13. One of fundamental equations in quantum mechanics is the Dirac equation

γ k ∂ψ

∂xk
+ mψ = 0, m = const. (2.45)

The dependent variable ψ is a 4-dimensional column vector with complex valued compo-
nents ψ1,ψ2,ψ3,ψ4. The independent variables compose the four-dimensional vector x =
(x1, x2, x3, x4), where x1, x2, x3 are the real valued spatial variables and x4 is the complex
variable defined by x4 = ict with t being time and c the light velocity. Furthermore, γ k are the
following 4 × 4 complex matrices called the Dirac matrices:

γ 1 =



0 0 0 −i

0 0 −i 0
0 i 0 0
i 0 0 0


 , γ 2 =




0 0 0 −1
0 0 −1 0
0 1 0 0

−1 0 0 0


 ,

γ 3 =



0 0 −i 0
0 0 0 i

i 0 0 0
0 −i 0 0


 , γ 4 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 .

Equation (2.45) does not have a Lagrangian. Therefore, it is considered together with the
conjugate equation

∂ψ̃

∂xk
γ k − mψ̃ = 0. (2.46)

Here ψ̃ = ψT γ 4 is the row vector, where ψ denotes the complex-conjugate to ψ and T the
transposition. The system (2.45)–(2.46) has the Lagrangian

L= 1

2

[
ψ̃

(
γ k ∂ψ

∂xk
+ mψ

)
−

(
∂ψ̃

∂xk
γ k − mψ̃

)
ψ

]
.

Indeed, we have

δL
δψ

= −
(

∂ψ̃

∂xk
γ k − mψ̃

)
,

δL
δψ̃

= γ k ∂ψ

∂xk
+ mψ.

3. Application to the Maxwell equations

This section is dedicated to illustration of the method by applying Noether’s theorem to the
Maxwell equations. Consider the Maxwell equations in vacuum:

1

c

∂E

∂t
= curlH , divE = 0,

1

c

∂H

∂t
= − curlE, divH = 0. (3.1)

The system (3.1) contains six dependent variables, namely, the components of the electric field
E = (E1,E2,E3) and the magnetic field H = (H 1,H 2,H 3), and eight equations, i.e. it is over-
determined. On the other hand, the number of equations in the Euler–Lagrange equations (1.21)
is equal to the number of dependent variables. Consequently, the system (3.1) cannot have a
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Lagrangian. What is considered in the literature as a variational problem in electrodynamics
(see, e.g. [1,8]) provides a Lagrangian for the wave equation

∆A − 1

c2

∂2A

∂t2
= 0

for the vector potential A of the electromagnetic field, but not for the Maxwell equations (3.1).
Let us find a Lagrangian for the electromagnetic field by using Theorem 2.3. First we note

that the equations divE = 0, divH = 0 hold at any time provided that they are satisfied at the
initial time t = 0. Hence, they are merely initial conditions (see, e.g. [2] or [6]). Therefore, we
will consider the following determined system of differential equations (we set t ′ = ct and take
t ′ as new t):

curlE + ∂H

∂t
= 0, curlH − ∂E

∂t
= 0. (3.2)

We introduce six new dependent variables, namely the components of the vectors V =
(V 1,V 2,V 3) and W = (W 1,W 2,W 3), and introduce the Lagrangian

L= V ·
(

curlE + ∂H

∂t

)
+ W ·

(
curlH − ∂E

∂t

)
(3.3)

in accordance with the definition (2.31).
One can readily verify that the Lagrangian (3.3) yields the system (3.2) together with its

adjoint, namely:

δL
δV

≡ curlE + ∂H

∂t
= 0,

δL
δW

≡ curlH − ∂E

∂t
= 0, (3.4)

δL
δE

≡ curlV + ∂W

∂t
= 0,

δL
δH

≡ curlW − ∂V

∂t
= 0. (3.5)

If we set V = E, W = H , Eqs. (3.5) coincide with (3.4). Hence, the operator in (3.2) is self-
adjoint. Therefore we set V = E, W = H in (3.3), divide by two and obtain the Lagrangian for
the Maxwell equations (3.2) (cf. Theorem 2.4):

L= 1

2

[
E ·

(
curlE + ∂H

∂t

)
+ H ·

(
curlH − ∂E

∂t

)]
. (3.6)

In coordinates, the Lagrangian (3.6) is written:

L= E1(E3
y − E2

z + H 1
t

) + E2(E1
z − E3

x + H 2
t

) + E3(E2
x − E1

y + H 3
t

)
+ H 1(H 3

y − H 2
z − E1

t

) + H 2(H 1
z − H 3

x − E2
t

) + H 3(H 2
x − H 1

y − E3
t

)
. (3.7)

The symmetries of the Maxwell equations are well known, and one can apply Noether’s the-
orem by using the Lagrangian (3.6). We will employ, as an example, the invariance of Eqs. (3.2)
with respect to the group of transformations

H ′ = H cos θ + E sin θ, E′ = E cos θ − H sin θ (3.8)

with the generator

X = E
∂

∂H
− H

∂

∂E
≡

3∑(
Ei ∂

∂H i
− Hi ∂

∂Ei

)
. (3.9)
i=1
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The prolongation (1.25) of this generator is written

X = E
∂

∂H
− H

∂

∂E
+ Et

∂

∂H t

− H t

∂

∂Et

+ Ex

∂

∂H x

− H x

∂

∂Ex

+ · · · . (3.10)

Acting by the operator (3.10) on the Lagrangian (3.6), we have

X(L) = 1

2

[−H · (curlE + H t ) + E · (curlH − Et )

+ E · (− curlH + Et ) + H · (curlE + H t )
] = 0.

Hence, the condition (1.24) is satisfied and one can obtain a conservation law by the formula
(1.23). We will write the conservation law in the form

Dt(τ) + divχ = 0, (3.11)

where χ = (χ1, χ2, χ3), divχ = Dx(χ
1) + Dy(χ

2) + Dz(χ
3). Equation (1.23) yields

τ = E · ∂L
∂H t

− H · ∂L
∂Et

= 1

2

[
E · E − H · (−H )

] = 1

2

[
E2 + H 2].

Hence, τ is the energy density. Likewise, calculating the spatial coordinates of the conserved
vector (1.23), one can verify that χ is the Poynting vector, χ = E × H . Thus, we have obtained
the conservation of energy (see, e.g. [8]):

Dt

(
E2 + H 2

2

)
+ div(E × H ) = 0. (3.12)
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