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Abstract

We give a purely combinatorial algorithm for the computation of the decomposition matric
Ariki–Koike algebras when the parameters are powers of the same root of unity.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

Ariki–Koike algebras have been independently introduced by Ariki and Koike in
and by Broué and Malle in [5]. According to a conjecture of Broué and Malle, this kin
algebras should play a role in the decomposition of the induced cuspidal represen
of the finite groups of Lie type. LetR be a commutative ring, letd ∈ N>0, n ∈ N and
let v, u0, u1, . . . , ud−1 be d + 1 parameters inR. We consider the Ariki–Koike algebr
HR,n := HR,n(v;u0, . . . , ud−1) of type G(d,1, n) over R. This is the unital associativ
R-algebra defined by:
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• generators:T0, T1, . . . , Tn−1,
• braid relations symbolized by the following diagram:

�

T0
�

T1
�

T2
� � � �

Tn−1

and the following ones:

(T0 − u0)(T0 − u1) . . . (T0 − ud−1) = 0,

(Ti − v)(Ti + 1) = 0 (i � 1).

Assume thatR is a field of characteristic 0. LetΠd
n be the set ofd-partitions of

rank n, that is to say the set ofd-tuples of partitionsλ = (λ(0), . . . , λ(d−1)) such that
|λ(0)| + · · · + |λ(d−1)| = n. For eachλ ∈ Πd

n , Dipper, James and Mathas [6] have d

fined a rightHR,n-moduleS
λ

R which is called a Specht module.1 For each Specht mod

ule S
λ

R , they have attached a natural bilinear form and a radical rad(S
λ

R) such that the

nonzeroD
λ

R := S
λ

R/rad(Sλ

R) form a complete set of nonisomorphic irreducible modu

Let Φd
n := {µ ∈ Πd

n | Dµ

R �= 0}.
Let R0(HR,n) be the Grothendieck group of finitely generatedHR,n-modules. This is

generated by the set of simpleHR,n-modules. Thus, for eachλ ∈ Πd
n andµ ∈ Φd

n , there
exist numbersdλ,µ which are called the decomposition numbers such that

[
S

λ

R

] =
∑

µ∈Φd
n

dλ,µ

[
D

µ

R

]
.

The matrix(dλ,µ)λ∈Πd
n ,µ∈Φd

n
is called the decomposition matrix ofHR,n.

One of the main problems in the representation theory of Ariki–Koike algebras
determination of the decomposition matrix. WhenHR,n is semi-simple, the decompositio
matrix is just the identity. WhenHR,n is not semi-simple, by using results of Dipper a
Mathas, the determination of the decomposition matrix is deduced from the case wh
the parameters are powers of the same numberη (see [7]). Here, we assume thatη is a
primitive eth root of unity.

Whend = 1, Lascoux, Leclerc and Thibon [14] have presented a fast algorithm fo
computation of the canonical basis elements of a certain integrableUq(ŝle)-moduleM.
Moreover, they conjectured that the problem of computing the decomposition mat
HR,n can be translated to that of computing the canonical basis ofM. This conjecture ha
been proved and generalized for alld ∈ N>0 by Ariki in [1]. Unfortunately, the generaliza
tion does not give an analogue of the LLT algorithm ford > 1. In this case, Uglov [16] ha

1 Here, we use the definition of the classical Specht modules. Note that the results in [6] are in fac
in terms of dual Specht modules. The passage from classical Specht modules to their duals is provide

map(λ(0), λ(1), . . . , λ(d−1)) �→ (λ(d−1)′ , λ(d−2)′ , . . . , λ(0)′ ) whereλ(i)′ , for i = 0, . . . , d − 1, is denoting the
conjugate partition.
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given an algorithm but it computes the canonical basis for a larger space which co
M as a submodule.

In [11,12], extending the results developed in [10] ford = 1 andd = 2 by using an
ordering of Specht modules by Lusztiga-function, we showed that there exists a “canon
basic set”B of Specht modules in bijection with Irr(HR,n) and that this set is parameteriz
by some FLOTWd-partitions defined by Foda et al. in [8]. As a consequence, this r
gives a purely combinatorial triangular algorithm for the computation of the decompo
matrix for Ariki–Koike algebras which generalizes the LLT algorithm.

The aim of this paper is to present this algorithm. In the first part, we give the defin
and theorems used in the algorithm. Then, we give the different steps of the algorith

2. Ariki’s theorem and canonical basic set

Let e andd be two positive integers and letηe := exp(2iπ/e) andηd := exp(2iπ/d).
We consider the Ariki–Koike algebraHR,n overR := Q[ηd ](ηe) with the following choice
of parameters:

v = ηe, uj = η
vj
e for j = 0, . . . , d − 1,

where 0� v0 � · · · � vd−1 < e. In this section, we briefly summarize the results of Ar
which give an interpretation of the decomposition matrix in terms of the canonical ba
a certainUq(ŝle)-module. For more details, we refer to [2,15]. Next, we recall the res
shown in [11, Chapter 2] and [12].

(a) We first explain the Ariki’s theorem. To do this, we need some combinatoria
finitions. Let λ = (λ(0), . . . , λ(d−1)) be ad-partition of rankn. The diagram ofλ is the
following set:

[λ] = {
(a, b, c)

∣∣ 0� c � d − 1, 1� b � λ(c)
a

}
.

The elements of this diagram are called the nodes ofλ. Let γ = (a, b, c) be a node ofλ.
The residue ofγ associated to the set{e;v0, . . . , vd−1} is the element ofZ/eZ defined by

res(γ ) = (b − a + vc) (mode).

If γ is a node with residuei, we say thatγ is ani-node. Letλ andµ be twod-partitions of
rankn andn+1 such that[λ] ⊂ [µ]. There exists a nodeγ such that[µ] = [λ]∪{γ }. Then,
we denote[µ]/[λ] = γ and if res(γ ) = i, we say thatγ is an addablei-node forλ and a
removablei-node forµ. Now, we introduce an order on the set of nodes of ad-partition.
We say thatγ = (a, b, c) is aboveγ ′ = (a′, b′, c′) if

b − a + vc < b′ − a′ + vc′ or b − a + vc = b′ − a′ + vc′ andc > c′.

Let λ andµ be twod-partitions of rankn andn+ 1 such that there exists ani-nodeγ such
that[µ] = [λ] ∪ {γ }. We define the following numbers:
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Na
i (λ,µ) = �{addablei-nodes ofλ aboveγ } − �{removablei-nodes ofµ aboveγ },

Nb
i (λ,µ) = �{addablei-nodes ofλ belowγ } − �{removablei-nodes ofµ belowγ },
Ni(λ) = �{addablei-nodes ofλ} − �{removablei-nodes ofλ},
Nd(λ) = �{0-nodes ofλ}.

(b) Now, leth be the freeZ-module with basis{hi,d | 0� i < e} as in [12, Section 2.B]
let q be an indeterminate and letUq := Uq(ŝle) be the quantum group of typeA(1)

e−1. This is
a unital associative algebra overC(q) which is generated by elements{ei, fi | i ∈ {0, . . . ,

e − 1}} and{kh | h ∈ h} (see [2, Definition 3.16] for the relations). LetA = Z[q, q−1]. We
consider the Kostant–Lusztig form ofUq which is denoted byUA: this is aA-subalgebra

of Uq generated by the divided powerse
(r)
i , f

(r)
j for 0 � i, j < e, r ∈ N and bykhi

, kd,

k−1
hi

, k−1
d for 0 � i < e. Now, if S is a ring andu an invertible element inS, we can form

the specialized algebraUS,u := S ⊗A UA by specializing the indeterminateq to u ∈ S.
For n ∈ N, let Fn be theC-vector space spanned by the set{λ | λ ∈ Πn

d } and letF :=⊕
n∈N

Fn. TheC-vector spaceF is called the Fock space. Then, the following theor
shows that we have aUq -module structure onF .

Theorem 2.1(Jimbo, Misra, Miwa, Okado [13]).F is aUq -module with action

eiλ =
∑

res([λ]/[µ])=i

q−Na
i (µ,λ)µ, fiλ =

∑
res([µ]/[λ])=i

qNb
i (λ,µ)µ,

khi
λ = qNi(λ)λ, kdλ = q−Nd(λ)λ,

where0� i � n − 1.

Note that this action is distinct from the action used by Ariki and Mathas, for exam
in [4]. Let M be theUq -submodule ofF generated by the emptyd-partition. This is an
integrable highest weight module. Thus, we can use the canonical basis theory to
a basis forMA, the UA-module generated by the emptyd-partition. In particular, the
canonical basis elements are known to be indexed by the vertices of some “crystal
In [8], Foda et al. have shown that the vertices of the crystal graph ofM are labeled by the
following d-partitions:

Definition 2.2 (Foda, Leclerc, Okado, Thibon, Welsh [8]). We callλ = (λ(0), . . . , λ(d−1))

a FLOTWd-partition associated to the set{e;v0, . . . , vd−1} if and only if:

(1) for all 0� j � d − 2 andi = 1,2, . . . , we have:

λ
(j)
i � λ

(j+1)
i+vj+1−vj

, λ
(d−1)
i � λ

(0)
i+e+v0−vd−1

;

(2) for all k > 0, among the residues appearing at the right ends of the lengthk rows ofλ,
at least one element of{0,1, . . . , e − 1} does not occur.
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We denote byΛ1,n
{e;v0,...,vd−1} the set of FLOTWd-partitions of rankn associated to

{e;v0, . . . , vd−1}. If there is no ambiguity concerning{e;v0, . . . , vd−1}, we denote it
by Λ1,n.

Now the canonical basis ofM is defined by using the following theorem.

Theorem 2.3(Kashiwara–Lusztig, see [2, Chapter 9]).Define the bar involution to be th
Z-linear ring automorphism ofUA determined fori = 0, . . . , e − 1 andh ∈ h by

q := q−1, kh := k−h, ei := ei, fi := fi.

We extend it toMA by settingu.∅ := u.∅ for all u ∈ UA. Then, for eachµ ∈ Λ1,n, there
exists a unique elementG(µ) in MA such that:

G(µ) = G(µ), G(µ) − µ ∈
⊕

λ

qZ[q]λ.

The set{G(µ) | µ ∈ Λ1,n} is a basis ofMA which is uniquely determined by the abo
conditions. It is called the canonical basis ofM.

Now the following result of Ariki which were conjectured by Lascoux, Leclerc
Thibon in [14] for l = 1 gives an interpretation of the decomposition matrix ofHR,n in
terms of the canonical basis ofM.

Theorem 2.4(Ariki [1]). Letµ ∈ Λ1,n, there exist polynomialsbλ,µ such that

G(µ) =
∑

λ∈Πn
d

bλ,µ(q)λ; bµ,µ(q) = 1, bλ,µ(q) ∈ qZ[q] if λ �= µ.

Then, there exists a unique bijectionj :Λ1,n → Φd
n such thatbλ,µ(1) = dλ,j (µ) for all

λ ∈ Πd
n where(dλ,ν)λ∈Πd

n , ν∈Φd
n

is the decomposition matrix ofHR,n.

Thus, the elements of the canonical basis evaluated atq = 1 correspond to the column
of the decomposition matrix ofHR,n that is to say the indecomposable projectiveHR,n-
modules.

(c) The aim of the work presented in [12] was to study the indecomposable proj
HR,n-modules. The main result gives an interpretation of the decomposition mat
HR,n in terms of Lusztiga-function. In particular, extending results of Geck and Rouq
(see [10]), we proved that there exists a so called “canonical basic set” of Specht m
which is in bijection with the set of simpleHR,n-modules.

The first step is to define an “a-value” on eachd-partition. To do this, we conside
a semi-simple Ariki–Koike algebra of typeG(d,1, n) with a special choice of parame
ters and we define ana-value on the simple modules (which are parametrized by
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d-partitions) using the characterization of the Schur elements which have been ob
by Geck, Iancu and Malle in [9]. This leads to the following definition.

Definition 2.5.Let λ := (λ(0), λ(1), . . . , λ(d−1)) ∈ Λ1,n where fori = 0, . . . , d − 1 we have
λ(i) := (λ

(i)
1 , . . . , λ

(i)

h(i) ). We assume that the rank ofλ is n. For i = 0, . . . , d − 1 andp =
1, . . . , n, we define the following rational numbers:

m(i) := vi − ie

d
+ e, B ′(i)

p := λ(i)
p − p + n + m(i),

where we use the convention thatλ
(i)
p := 0 if p > h(i). For i = 0, . . . , d − 1, let B ′(i) =

(B
′(i)
1 , . . . ,B

′(i)
n ). Then, we define

a1(λ) :=
∑

0�i�j<d

(a,b)∈B ′(i)×B ′(j)

a>b if i=j

min{a, b} −
∑

0�i,j<d

a∈B ′(i)
1�k�a

min
{
k,m(j)

}
.

Now, thea-value associated toSλ

R is the rational numbera(λ) := a1(λ) + f (n) where
f (n) is a rational number which only depends on the parameters{e;v0, . . . , vd−1} and on
n (the expression off is given in [12]).

Next, we associate to eachλ ∈ Λ1,n a sequence of residues which will have “nic
properties with respect to thea-value:

Proposition 2.6[12, Definition 4.4].Letλ ∈ Λ1,n and let

lmax := max
{
λ

(0)
1 , . . . , λ

(d−1)
1

}
.

Then, there exists a removable nodeξ1 with residuek on a partλ(i1)
j1

with length lmax,
such that there does not exist ak − 1-node at the right end of a part with lengthlmax (the
existence of such a node is proved in[12, Lemma4.2]).

Let γ1, γ2, . . . , γr be the(k − 1)-nodes at the right ends of partsλ(l1)
p1 � λ

(l2)
p2 � · · · �

λ
(lr )
pr

. Let ξ1, ξ2, . . . , ξs be the removablek-nodes ofλ on partsλ
(i1)
j1

� λ
(i2)
j2

� · · · � λ
(is )
js

such that

λ
(is )
js

> λ(l1)
p1

.

We remove the nodesξ1, ξ2, . . . , ξs from λ. Let λ′ be the resultingd-partition. Then,
λ′ ∈ Λ1,n−s and we define recursively thea-sequence of residues ofλ by

a-sequence(λ) = a-sequence(λ′), k, . . . , k︸ ︷︷ ︸
s

.
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Example. Let e = 4, d = 3, v0 = 0, v1 = 2 andv2 = 3. We consider the 3-partitionλ =
(1,3.1,2.1.1) with the following diagram:


 0 ,

2 3 0

1
,

3 0

2
1


 .

λ is a FLOTW 3-partition.
We search thea-sequence ofλ: we have to findk ∈ {0,1,2,3}, s ∈ N and a 2-partition

λ′ such that

a-sequence(λ) = a-sequence(λ′), k, . . . , k︸ ︷︷ ︸
s

.

The part with maximal length is the part with length 3 and the residue of the asso
removable node is 0. We remark that there are two others removable 0-nodes on pa
length 1 and 2. Since there is no node with residue 0− 1 ≡ 3 (mode) at the right ends o
the parts ofλ, we must remove these three 0-nodes. Thus, we have to takek = 0, s = 3 and
λ′ = (∅,2.1,1.1.1), hence

a-sequence(λ) = a-sequence(∅,2.1,1.1.1),0,0,0.

Observe that the 3-partition(∅,2.1,1.1.1) is a FLOTW 3-partition.
Now, the residue of the removable node on the part with maximal length is 3. Thu

obtain:

a-sequence(λ) = a-sequence(∅,1.1,1.1.1),3,0,0,0.

Repeating the same procedure, we finally obtain:

a-sequence(λ) = 3,2,2,1,1,3,0,0,0.

Proposition 2.7[12, Proposition 4.14].Letn ∈ N, λ ∈ Λ1,n and let

a-sequence(λ) = i1, . . . , i1︸ ︷︷ ︸
a1

, i2, . . . , i2︸ ︷︷ ︸
a2

, . . . , is , . . . , is︸ ︷︷ ︸
as

be its a-sequence of residues where we assume that for allj = 1, . . . , s − 1, we have
ij �= ij+1. Then, we have:

A(λ) := f
(as)
is

f
(as−1)

is−1
. . . f

(a1)
i1

∅ = λ +
∑

a(µ)>a(λ)

cλ,µ(q)µ, wherecλ,µ(q) ∈ Z
[
q, q−1].

It is obvious that the set{A(λ | λ ∈ Λ1,n, n ∈ N} is a basis ofMA. Using the charac
terization of the canonical basis, we obtain the following theorem.
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Theorem 2.8[12, Proposition 4.16].Letn ∈ N andλ ∈ Λ1,n; then we have:

G(λ) = λ +
∑

a(µ)>a(λ)

bλ,µ(q)µ.

In the following section, we provide an algorithm which allows us to compute t
canonical basis elements.

3. The algorithm

We fix n ∈ N, d ∈ N>0, e ∈ N>0 and integers 0� v0 � v1 � · · · � vd−1 < e. The aim of
the algorithm is to compute the decomposition matrix ofHR,n following the proof of [12,
Proposition 4.16].

Step 1.For eachλ ∈ Λ1,n, we construct thea-sequence of residues following Propositi
2.6:

a-sequence(λ) = i1, . . . , i1︸ ︷︷ ︸
a1

, i2, . . . , i2︸ ︷︷ ︸
a2

, . . . , is , . . . , is︸ ︷︷ ︸
as

.

Then, we compute the elementsA(λ) of Proposition 2.7 using the action of Theorem 2

A(λ) := f
(as)
is

f
(as−1)

is−1
. . . f

(a1)
i1

∅.

We obtain a basis{A(λ) | λ ∈ Λ1} of MA which have a “triangular decomposition.” Sin
fi = fi for all i = 0, . . . , e − 1, we haveA(λ) = A(λ).

Step 2.For eachµ ∈ Πd
n , we compute itsa-value2 a(λ) following Definition 2.5. Letν be

one of the maximal FLOTWd-partition with respect to thea-function. Then, we have

G(ν) = A(ν).

Step 3.Let λ ∈ Λ1,n. The elementsG(µ) with a(µ) > a(λ) are known by induction. By
Theorem 2.8, there exist polynomialsαµ,λ(q) such that

G(λ) = A(λ) −
∑

a(µ)>a(λ)

αλ,µ(q)G(µ). (1)

We want to computeαλ,µ(q) for all µ ∈ Λ1,n. By Proposition 2.7, we have:

A(λ) = λ +
∑

a(µ)>a(λ)

cλ,µ(q)µ.

2 Note that it is in fact sufficient to compute the valuesa (µ) since we havea(λ) < a(µ) ⇔ a (λ) < a (µ).
1 1 1
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D thesis,
Now, sinceG(ν) = G(ν) and A(ν) = A(ν) for all ν ∈ Λ1,n, we must haveαλ,µ(q) =
αλ,µ(q−1) for all µ in Λ1,n.

Let ν ∈ Λ1,n be one of the minimald-partition with respect to thea-function such tha
cλ,ν(q) /∈ qZ[q]. If ν does not exist then, by unicity, we haveG(λ) = A(λ). Otherwise, by
existence of the canonical basis, we haveν ∈ Λ1,n. Assume now that we have

cλ,ν(q) = aiq
i + ai−1q

i−1 + · · · + a0 + · · · + a−iq
−i ,

where(ai)j∈[−i,i] is a sequence of elements inZ andi is a positive integer. Then, we defin

αλ,ν(q) = a−iq
i + a−i+1q

i−1 + · · · + a0 + · · · + a−iq
−i .

We haveαλ,ν(q
−1) = αλ,ν(q). Then, in(1), we replaceA(λ) byA(λ)−αλ,ν(q)G(ν) which

is bar invariant and we repeat this step untilG(λ) = A(λ).
We finally obtain elements which verify Theorem 2.3, that is to say the canonical

elements.

Step 4.We specialize the indeterminateq into 1 in the canonical basis elements to obt
the columns of the decomposition matrix ofHR,n which correspond to the indecomposa
projectiveHR,n-modules.

We finally note that we have implemented this algorithm inGAP, the file can be
downloaded at the following http-address: http://www.math.rwth-aachen.de/~CHE
contrib.html.
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