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Abstract

Let Mn(Z) be the ring of n-by-n matrices with integral entries, and n � 2. This paper studies the set
Gn(Z) of pairs (A,B) ∈ Mn(Z)2 generating Mn(Z) as a ring. We use several presentations of Mn(Z) with
generators X = ∑n

i=1 Ei+1,i and Y = E11 to obtain the following consequences.

(1) Let k � 1. The following rings have presentations with 2 generators and finitely many relations:
(a)

⊕k
j=1 Mmj (Q) for any m1, . . . ,mk � 2.

(b)
⊕k

j=1 Mnj (Z), where n1, . . . , nk � 2, and the same ni is repeated no more than three times.
(2) Let D be a commutative domain of sufficiently large characteristic over which every finitely generated

projective module is free. We use 4 relations for X and Y to describe all representations of the ring
Mn(D) into Mm(D) for m � n.

(3) We obtain information about the asymptotic density of Gn(F) in Mn(F)2 over different fields, and
over the integers.
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1. Introduction

1.1. Terminology and notation

All rings in this paper, often denoted by R, are assumed associative with a two-sided identity
element, unless stated otherwise. We denote by U(R) the unit group of R. We do not assume that
a subring of a ring necessarily contains the identity element of the ring. All ideals in rings are
assumed two-sided. The rank of a ring R, denoted by dimZ R, is the rank of its additive group,
that is dimQ R ⊗Z Q.

An algebraic closure a finite field with q elements Fq is denoted by F̄q .
We denote by Mn(R) the ring of n-by-n matrices with entries in R. The subscripts in matrices

and in their entries will always be regarded modulo n. Let A,B ∈ Mn(R). We define R〈A,B〉 to
be the R-subalgebra of Mn(R) generated by A and B . We will study the collection of such pairs
(A,B), i.e. the set

Gn(R) = {
(A,B) ∈ Mn(R)2

∣∣ R〈A,B〉 = Mn(R)
}
.

We also need the free noncommutative associative ring R{x, y} whose elements we refer to
as noncommutative polynomials. The ring presentations studied in this paper are quotients of
Z{x, y}. We do not postulate that the identity is in R〈A,B〉, while we postulate that 1 ∈ R{x, y}.

Many of our considerations will be based on the following two matrices:

X = E21 + E32 + · · · + En,n−1 + E1n and Y = E11 for n � 2.

Let FS(x, y) be a free semigroup on x and y. It has the lexicographic order as well as the
word length l(w) counting the total number of x and y in w ∈ FS(x, y).
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The matrices Tm,n,R . Let R be a ring, and let xij , yij , where 1 � i, j � n, be algebraically in-
dependent transcendental variables over R. We see that #{w ∈ FS(x, y) | l(w) � m} = 2m+1 − 2.
Below, we define the matrix

Tm,n,R ∈ M(2m+1−2)×n2

(
R[xij , yij ]

)
.

Let w = w(x,y) ∈ FS(x, y). We substitute the matrices (xij ) and (yij ) for x and y, respectively.
The result is the n-by-n matrix (zij ) = wR((xij ), (yij )), which we write as a row vector as follows

(z11, z12, . . . , z1n, z21, z22, . . . , z2n, . . . , zn1, zn2, . . . , znn). (1)

We call the operation of transforming the matrix (zij ) into the vector (1) flattening of (zij ). We
define Tm,n,R to be the matrix whose rows are the flattened matrices wR((xij ), (yij )) such that
l(w) � m, the words w being ordered lexicographically.

If A,B ∈ Mn(R), then Tm,n,R(A,B) is the matrix obtained from Tm,n,R by substituting the
entries of A and B for (xij ) and (yij ), respectively.

Let S ⊆ Zm and Bk = {(x1, . . . , xm) ∈ Zm: max1�i�n |xi | � k}. The asymptotic density of S

in Zm is

lim
k→∞

#Bk ∩ S

#Bk

.

1.2. Motivation and description of the main results

The properties of the ring Mn(Z) are based entirely on the presentation by the elementary
matrices Eij subject to the relations EijEkl = δjkEil . This set of n2 generators may be fur-
ther reduced. Moreover, the matrices X and Y generate Mn(Z). These matrices will be used to
construct several presentations of Mn(Z) with 2 generators and finitely many relations. We in-
vestigate the interdependence between the relations in these presentations. We also use them to
construct 2-generator presentations with finitely many relations of certain direct sums of matrix
rings. Burnside’s Theorem from [1] implies that the set Gn(C) is infinite. This paper, in contrast,
studies the set Gn(Z). In particular, we describe G2(Z) in the following

Theorem 2.10. Let A,B ∈ M2(Z). Put I = I2 and S = Z〈A,B〉. Then

(1) I ∈ S if and only if gcd(detA,detB,det(A + B)) = 1.
(2) S = M2(Z) if and only if I , A, B , AB generate M2(Z) as a Z-module.

If I , A, B generate M2(Z) as a ring, then their Z-linear combinations produce I , A1, B1 also
generating M2(Z) such that

A1 =
(

c 1
1 0

)
and B1 =

(
a 0
b 0

)
where gcd(a, b) = 1. Moreover, the matrices I , A1, B1 generate M2(Z) if and only if

a2 − abc − b2 = ±1.
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The set of solutions of these equations is infinite, and when abc �= 0, this set is effectively de-
scribed in terms of the unit group of the field Q(

√
c2 + 4).

We show that Mn(F)2 − Gn(F) is “small” for many fields. Namely, if F is a normed field
having a sequence of nonzero elements whose norms tend to zero, then the set Gn(F) is dense
in Mn(F)2. We also prove that

lim
q→∞

#Gn(Fq)

#Mn(Fq)2
= 1.

In contrast, the set Mn(Z)2 − Gn(Z) is not algebraic, and G2(Z) has zero asymptotic density in
M2(Z)2.

The problem of minimality of presentations in ring theory admits a number of interpretations.
For example, one may search for a presentation with the smallest number of both generators
and relations. Unfortunately, no technique is available to solve this problem in general. More
modestly, one may ask whether the removal of any of the relations in a given presentation changes
the ring. We study this question and in many cases obtain information about the structure of the
resulting over-rings.

We use the following noncommutative polynomials:

r1,n = r1,n(x) = xn − 1, r2,n = r2,n(x, y) =
n−1∑
i=0

xn−iyxi − 1,

s0 = s0(y) = y2 − y, sj = sj (x, y) = yxjy for j � 1.

Here are the presentations studied in our paper:

M2(Z) ∼= 〈
x, y

∣∣ x2 = y + xyx = 1, yxy = 0
〉
, (2)

M3(Z) ∼= 〈
x, y

∣∣ x3 = y + x2yx + xyx2 = 1, yxy = 0
〉
, (3)

M4(Z) ∼= 〈x, y
∣∣ r1,4 = r2,4 = s0 = s1 = 0〉, (4)

M5(Z) ∼= 〈x, y
∣∣ r1,5 = r2,5 = s0 = s1 = 0〉, (5)

Mn(Z) ∼= 〈
x, y

∣∣ r1,n = r2,n = sj = 0, 1 � j � n − 1
〉
, (6)

Mn(Z) ∼= 〈
x, y

∣∣ r1,n = r2,n = s0 = sk = 0, 1 � k � �n/2�〉. (7)

While we cannot completely answer the question of minimality in the presentations above,
some information is available in Theorems 3.3, 3.4, and 3.5 below. Theorems 3.3 and 3.4 inves-
tigate the effect of the removal of certain relations from (6).

Theorem 3.4.

(1) The ring R = 〈x, y | r1,n = sm = 0, 0 � m � n − 1〉 is isomorphic to a direct sum of the
rings Mn(Z) and Z[x]/(xn − 1).

(2) Let ∅ �= H � N = {1,2, . . . , n− 1} and H ′ = N −H . Suppose that H satisfies the following
conditions modulo n:
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(a) {a + b | a, b ∈ −H ∪ H } ⊆ H ′.
(b) If h, k, l,−h + k + l ∈ H , then h = k or h = l.
Then the ring S(H) = 〈x, y | r1,n = r2,n = sj = 0, j ∈ H ′〉 has finite rank.

Theorem 3.5. The ring Z{x, y} has a quotient R = Rn such that

(1) R is an over-ring of Mn(Z).
(2) Under the natural epimorphism Z{x, y} � R, the images of the ideals generated by

r1n, s1, . . . , sn form a direct sum.

In the proof of this theorem we introduce an analog of the Magnus Embedding (see lemma on
p. 764 of Magnus [12]).

We prove the following theorem about linear representations of matrix rings.

Theorem 3.7. Let D be a commutative domain of characteristic either zero or at least m+1, over
which every finitely generated projective module is free. Let S be a subring of Mm(D) generated
by some nonzero X1 and Y1 such that

Xn+1
1 = X1, Y1X

n
1 = Y1, Y 2

1 = Y1,

n−1∑
i=0

Xn−i
1 Y1X

i
1 = Xn

1 .

Then the trace k of Y1 is a positive integer, and there exist B ∈ GLm(D) such that, putting
r = m − kn, we have

B−1X1B =
(

Ik ⊗ X 0k×r

0r×k 0r×r

)
and B−1Y1B =

(
Ik ⊗ Y 0k×r

0r×k 0r×r

)
.

The rigidity of the embeddings in the above theorem also follows from more general results
in Azumaya algebras (see Faith [4, pp. 481–482]).

We investigate the matrices satisfying the relations of (7). Let x1, . . . , xn be numbers. These
numbers determine the circulant matrix circ(x1, . . . , xn) = ∑n

i=1 xn−i+1X
i . Integral n-by-n cir-

culant matrices are exactly the elements of the group ring Z〈X〉.

Theorem 3.10. The set Y = {Y1 ∈ Mn(Z) | Y 2
1 = Y1, r2,n(X,Y1) = 0} has the property that the

pair (X,Y1) satisfies all relations of (7) and all Y1 have trace 1. If n = 2,3,4,6 then Y1 = Eii

for some i. Otherwise, Y is infinite, and if Y1 �= Eii then it has both positive and negative entries.
Any Y1 is of the form (cidj ) for some integers ci, dj such that the matrices circ(c1, . . . , cn) and

circ(d1, . . . , dn) are mutually inverse. Any Y1 is conjugate to Y by an integral circulant matrix
with determinant ±1.

This result depends on a classic theorem of G. Higman [8] about the structure of the unit
group of an integral group ring of a finite Abelian group.

In the final part of this paper, we obtain some 2-generator presentations with finitely many
relations for arbitrary finite direct sums

⊕k
j=1 Mmj

(Q) where mj � 2, and for the direct sums⊕k
j=1 Mnj

(Z) where n1, . . . , nk � 2, and the same ni is repeated no more than three times.
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2. On the structure of Gn(ZZZ)

The starting point of this paper is the following theorem of W. Burnside (Burnside [1]). We
state it in the modern form, similar to Lam [10, p. 103].

Theorem 2.1 (Burnside’s Theorem). Let F be a field, V a finite-dimensional F -linear space, and
S an F -subalgebra of the algebra EndF V of linear operators. Suppose that V is a simple left
S-module such that EndS V consists exactly of scalar multiples of the identity operator on V .
Then S = EndF V .

The condition EndS V = F idV may not always be omitted if F is not algebraically closed—
counter-examples exist for any such a field. If F is algebraically closed, however, this condition
is superfluous by Schur’s Lemma (see Curtis and Reiner [3, 27.3]). Burnside has proved his result
in a different form from first principles by linear algebra: see Burnside [1, p. 433, theorem].

In this paper, Burnside’s Theorem is applied to 2-generator subalgebras of EndF V . Therefore,
below we restate the theorem for this case.

Theorem 2.2. F 〈A,B〉 = EndF V if and only if the following conditions are satisfied:

(1) The only subspaces of V , invariant under both A and B , are 0 and V .
(2) Only scalar multiples of idV commute with both A and B .

We need the following lemma that sometimes makes it unnecessary to verify Condition 2 of
Theorem 2.2.

Lemma 2.3. Let L/F be a field extension, then Gn(L) ∩ Mn(F)2 = Gn(F).

Proof. (1) The inclusion Gn(L) ∩ Mn(F)2 ⊆ Gn(F) holds because linear independence over L

implies linear independence over F .
(2) Conversely, let (A,B) ∈ Gn(F). Then there exist n2 words w1, . . . ,wn2 in A, B that

form an F -basis of Mn(F). It follows that w1, . . . ,wn2 form an L-basis of Mn(L). Indeed,
Eij form an L-basis of Mn(L), and the two bases are related by an invertible matrix with entries
in F ⊆ L. �

David Saltman [14] has kindly communicated to us the following local-global principle. To
state it, we need the map p̂ :Mn(Z) → Mn(Fp) that reduces modulo p every entry of a matrix.

Theorem 2.4. Gn(Z) = ⋂
p prime p̂−1(Gn(Fp)).

Proof. We regard M = Mn(Z) as an additive Abelian group of rank n2. Consider the subgroup
G = Z〈A,B〉. If G is generated by t elements, then their p̂-images generate p̂G, so that t �
dimFp

p̂G = n2. Therefore t = n2, so that the index k = |M : G| is finite.
It remains to see that k = 1. Suppose that k � 2. We may choose a subgroup H of M such that

G ⊆ H and h = |M : H | is prime. Then hM ⊆ H . Therefore |Fn2

h : ĥH | = |M/hM : H/hM| =
|M : H | = h, so that Fn2 = ĥG ⊆ ĥH � Fn2

, a contradiction. �
h h
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Combining Schur’s Lemma, Lemma 2.3, Theorems 2.2 and 2.4 provides a simple method
of constructing infinitely many elements (A,B) in Gn(Z) without finding the corresponding
fij ∈ Z{x, y} such that Eij = fij (A,B).

Theorem 2.5. (A,B) ∈ Gn(Z) if and only if F̄p〈p̂A, p̂B〉x = F̄n
p for any 0 �= x ∈ F̄n

p and any
prime p.

Example 2.6. (X,Est ) ∈ Gn(Z) for any s and t .

Proof. We apply Theorem 2.5. Let x = (α1, . . . , αn) = ∑n
i=1 αiei ∈ F̄n

p be a nonzero column

vector. By several applications of X to x, we may assume that αt �= 0. Then y = α−1
t Y x = es

and {Xiy | 1 � i � n} = {e1, . . . , en}. �
Example 2.7. Let A = (aij ), B = (bij ) ∈ Mn(Z) be such that

(1) al−1,l = 1 for 2 � l � n and aij = 0 if i � j ;
(2) {e1} ∪ {Ble1 | 2 � l � n} form a Z-basis of Zn.

Then (A,B) ∈ Gn(Z).

Proof. Let x ∈ F̄n
p be nonzero, and k be the largest subscript corresponding to a nonzero com-

ponent of x.

Case 1. If k = 1, then e1 ∈ F̄p〈A,B〉x, so that {e1} ∪ {Ble1 | 2 � l � n} form a F̄p-basis of F̄n
p .

Case 2. If k � 2, then Ak−1x has the property that its first component is nonzero and all others
are zero, so that we return to Case 1. �

These examples clearly imply that the set Gn(Z) is infinite. This also follows from the fact
that the set {(U−1XU,U−1YU) | U ∈ GLn(Z)} is infinite. Indeed, the centralizers of X and Y

have the following properties: CMn(Z)(X) = Z〈X〉 , and CMn(Z)(Y ) consists of the matrices (aij )

such that aj1 = a1j = 0 for all 2 � j � n. Therefore, the intersection of the two centralizers with
GLn(Z) is {±In}.

Let R be a commutative ring. Following Longstaff [11], we introduce the minimum span-
ning length mslR for every (A,B) ∈ Gn(R). Namely, if (A,B) ∈ Gn(R), then mslR(A,B)

is the smallest integer s with the property that there exist w1, . . . ,wn2 ∈ FS(x, y) with
max1�j�n2 l(wj ) � s, such that Mn(R) = w1(A,B)R +· · ·+wn2(A,B)R. In the case of fields,
Proposition 1 of Longstaff [11] is easily generalized to

Lemma 2.8. Let F be a field. Then

max
(A,B)∈Gn(F )

mslF (A,B) � n2 − 1. (8)

Proof. Let Wk be the F -linear span of all matrices that may be written as A,B-words of
length � k. We see that Wk ⊆ Wk+1. Let m be the smallest value of the subscript stabilizing
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this chain. Then dimF W1 = 2, and dimF Wl+1 − dimF Wl � 1 for any l � m − 1. Therefore
m � n2 − 1. �

We extend this result to Z below.

Theorem 2.9. Let A,B ∈ Mn(Z). Then (A,B) ∈ Gn(Z) if and only if the rows of the matrix
Tn2−1,n2,Z(A,B) span Mn(Z).

Proof. It suffices to prove that the condition is necessary. Let (A,B) ∈ Gn(Z). Then (A,B) ∈
Gn(Fp) for every prime p. Therefore by Lemma 2.8, there exists a nonzero n2-by-n2 minor of
Tn2−1,n2,Fp

(p̂A, p̂B). Let w1, . . . ,wn2 ∈ FS(x, y) be the words giving rise to this minor, and let

Hp = ∑n2

k=1 wk(A,B)Z. Then the group H = ∑
p prime Hp has the property that p̂H = Mn(Fp)

for every prime p. At the same time, H is a subgroup of the group generated by all row-vectors
of Tn2−1,n2,Z(A,B). It remains to apply Theorem 2.4 and Lemma 2.8. �

The inequality (8) is not sharp, even for n = 2, because Proposition 2 on p. 250 of
Longstaff [11] implies max

(A,B)∈G2(C)
mslC(A,B) = 2. This is true over any field: to modify the

proof, in the last paragraph of Lemma 1 of Longstaff [11], we propose to replace taking adjoints
with taking transposes. The paper Longstaff [11] contains an intriguing and well substantiated
conjecture that max(A,B)∈Gn(C) mslC(A,B) � 2n − 2.

2.1. Description of G2(Z)

We relate below the elements of G2(Z) to the solutions of the Diophantine equation (9).

Theorem 2.10. Let A,B ∈ M2(Z). Put I = I2 and S = Z〈A,B〉. Then

(1) I ∈ S if and only if gcd(detA,detB,det(A + B)) = 1.
(2) S = M2(Z) if and only if I , A, B , AB generate M2(Z) as a Z-module.

If I , A, B generate M2(Z) as a ring, then their Z-linear combinations produce I , A1, B1 also
generating M2(Z) such that

A1 =
(

c 1
1 0

)
and B1 =

(
a 0
b 0

)
where gcd(a, b) = 1. Moreover, the matrices I , A1, B1 generate M2(Z) if and only if

a2 − abc − b2 = ±1. (9)

The set of solutions of these equations is infinite, and when abc �= 0, this set is effectively de-
scribed in terms of the unit group of the field Q(

√
c2 + 4).

Proof. The Cayley–Hamilton Theorem successively applied to the matrices A, B , A + B yields
det(A)I,det(B)I,det(A + B)I ∈ S . Since in addition,
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BA = (A + B)2 − A2 − B2 − AB

= tr(A + B)(A + B) − det(A + B)I − tr(A)A + det(A)I − tr(B)B + det(B)I − AB,

we conclude that

S = gZI + ZA + ZB + ZAB, where g = gcd
(
detA,detB,det(A + B)

)
. (10)

If g � 2, then reducing (10) modulo g, we obtain a contradiction for reasons of cardinality.
Therefore g = 1, and S = M2(Z) if and only if Conditions 1 and 2 above are satisfied.

Now suppose that I , A, B generate the ring M2(Z). Let

A = (xij ), B = (yij ).

Since I , A, B generate M2(Z) modulo any integer m, we conclude that gcd(x12, y12) = 1. Let
a, b be integers such that ax12 + by12 = 1. Then

A′ = aA + bB =
(

x′
11 1

x′
21 x′

22

)
, B ′ = B − y12A

′ =
(

y′
11 0

y′
21 y′

22

)

and therefore I , A′, B ′ generate M2(Z). We use the identity matrix I to obtain

A′′ = A′ − x′
22I =

(
x′′

11 1

x′
21 0

)
, B ′′ = B ′ − y′

22I = −
(

y′′
11 0

y′
21 0

)
.

Again, I , A′′, B ′′ generate M2(Z). We rewrite A′′ and B ′′ as A and B , respectively; that is, we
may assume

A =
(

x11 1
x21 0

)
, B =

(
y11 0
y21 0

)
.

Let c, d be integers such that cx21 + dy21 = 1. We may replace A by

A′ = cA + dB =
(

x′
11 c

1 0

)
.

Therefore c = ±1. We will only treat the case c = 1. Thus we may assume

A =
(

x11 1
1 0

)
, B =

(
y11 0
y21 0

)
, gcd(y11, y21) = 1.

We want to determine when the Z-span of I , A, B , AB is M2(Z). If E11 is a linear combina-
tion of I , A, B , AB then E12 + E21 ∈ 〈I,A,B〉, and therefore 〈I,A,B〉 = M2(Z).

Let a, b, c, d be integers such that aI + bA + cB + dAB = E11. As

aI + bA + cB + dAB =
(

a + bx11 + cy11 + d(x11y11 + y21) b

b + cy + dy a

)
,

21 11
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the above equation has a solution if and only if

a = b = 0, dy11 = −cy21, cy11 + d(x11y11 + y21) = 1.

If y11 = 0, then dy21 = 1; therefore y21 = d = ±1 and c = 0. Similarly if y21 = 0, then y11 =
c = ±1 and d = 0.

We assume y11, y21 �= 0. Therefore c, d �= 0, and since gcd(y11, y21) = 1, from dy11 = −cy21
we conclude that there exists an integer c′ such that

c = c′y11, d = −c′y21.

The equation cy11 + d(x11y11 + y21) = 1 yields c′(y2
11 − x11y21y11 − y2

21) = 1 therefore y2
11 −

x11y21y11 − y2
21 = ±1. It remains to write a = y11, b = y21, c = x11, and we obtain (9). Since it

is easy to analyze the solutions when one of a, b, c is zero, we will investigate the other solutions
only. Equation (9) is quadratic in a; therefore, a necessary condition for (9) to have integral
solutions is that the equation

d2 = (bc)2 + 4
(
b2 ± 1

)
(11)

should have integral solutions too. If this is so, then

a = bc ± d

2
. (12)

From (11) we observe that d ≡ d2 ≡ (bc)2 ≡ bc (mod 2). In other words, (11) implies (12). Now
(11) may be rewritten as

d2 − (
c2 + 4

)
b2 = ±4. (13)

Let s be the square-free part of the number c2 +4. Then according to Fröhlich and Taylor [5, 1.3],
the units of Q(

√
c2 + 4) uniquely, under the map (d, b) �→ (1/2)(d + b

√
c2 + 4), correspond to

the integral solutions of (13). There are infinitely many of them by the Dirichlet’s Unit Theorem.
Algorithm 5.7.2 in Cohen [2] computes the fundamental unit of a rational quadratic number field
with positive discriminant.

Therefore, for a fixed c, we can produce units in Q(
√

c2 + 4), thus determining b and d ; then
a may found from (12). �
2.2. Asymptotic properties of Gn(Z)

Lemma 2.11. Let 0 �= f ∈ Z[x1, . . . , xn]. Then V (f ) = {a ∈ Zn | f (a) = 0} has zero asymptotic
density in Zn.

Proof. Put Bk = {(a1, . . . , an) ∈ Zn | −k � ai � k for all i}. The case n = 1 is clear because
#Bk � deg(f ) for all k.

Let n = 2, x = x1, y = x2 and d = deg(f ). Then f (x, y) = ∑d
j=1 fj (x)yj for some fj (x) ∈

Z[x]. Let S = {−k � a � k | fj (a) = 0 for all j}. Then #S � d . We may write V (f ) = A ∪ B ,
where

A = {
(a, b) ∈ V (f )

∣∣ a ∈ S
}

and B = {
(a, b) ∈ V (f )

∣∣ a /∈ S
}
.
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If a ∈ {−k, . . . , k} − S, then #{b | (a, b) ∈ B} � d . Hence,

#V (f ) � #A + #B � (#S)
(
#{−k, . . . , k}) + #

({−k, . . . , k} − S
)
d = O(k).

Since #Bk = (2k + 1)2, we conclude that the lemma is true when n = 2.
The case n � 3 is handled similarly by induction on n. �
The exponent of k in the estimate #(Bk ∩ V (f ))/#Bk = O(k−1) in the proof of Lemma 2.11

is the best possible in general, as exemplified by the polynomial f (x1, . . . , xn) = x1.

Corollary 2.12. The set Mn(Z)n − Gn(Z) is not algebraic.

Proof. Suppose that the theorem is false. Then Lemma 2.11 implies that Gn(Z) has asymptotic
density 1 in Mn(Z)2. This is false, however, because Mn(2Z)2 ⊆ Mn(Z)2 −Gn(Z), and Mn(2Z)2

has asymptotic density 2−2n2
in Mn(Z)2, implying that Gn(Z) ∩ Mn(2Z)2 is nonempty. �

In case n = 2, we obtain the following more precise result.

Theorem 2.13. The set G2(Z) has zero asymptotic density in M2(Z)2.

Proof. Put I = I2. Let A,B ∈ M2(Z) such that I , A, B generate M2(Z) as a ring. Put
S = Z〈A,B〉. The Cayley–Hamilton Theorem applied to the matrices A, B , A + B yields
that A2,B2, (A + B)2 are integral linear combinations of I , A, B . Since in addition, BA =
(A + B)2 − A2 − B2 − AB , we conclude that S = ZI + ZA + ZB + ZAB . Let T be a 4-by-4
matrix whose rows are the flattened matrices I , A, B , and AB . Then S = M2(Z) if and only if
detT = ±1. It remains to apply Lemma 2.11. �

This result sometimes clarifies the relationship between G2(Z) and the other subsets of
Mn(Z)2. We will give an example. Let S be set of all (A,B) ∈ M2(Z)2 −G2(Z) such that all the
8 entries are relatively prime in pairs. We will see that asymptotically, almost all elements of S

lie outside of G2(Z). To formalize this statement, let mk = ∏
p prime, p�k p and

Dk =
{
(a1, . . . , a8) ∈ Z8: max

1�i�8
|ai | � mk

}
.

We claim that

lim
k→∞

#S ∩ Dk

#Dk

=
∏

p prime

(p − 1)7(p + 7)p−8 > 0. (14)

We give a heuristic argument first. For a fixed prime p, we consider the Bernoulli scheme of
choosing 8 integers independently and at random with the probability of success p−1. Then the
probability of at most 1 success is (1−p−1)8 +(8

1

)
p−1(1−p−1)7 = (p−1)7(p+7)p−8. Taking

the product over all primes gives (14).
Next we prove (14). We thank Doug Hensley [7] for communicating the following argument

to us. It is convenient to decrease the sets S and Dk to retain only the 8-tuples with all positive
entries. For a prime p, let Sp be the set of all 8-tuples (a1, . . . , a8) whose entries are positive
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integers, and p � gcd(ai, aj ) if i �= j . Then S = ⋂
p Sp . The Chinese Remainder Theorem applied

to the ring Z/mkZ implies

#S ∩ Dk

#Dk

�
#
⋂

p�k Sp ∩ Dk

#Dk

=
∏
p�k

(p − 1)7(p + 7)p−8. (15)

For the primes p > k, we have #Sp ∩ Dk �
(8

1

)
mk�mk/p�7. Therefore

#S ∩ Dk

#Dk

�
#
⋂

p�k Sp ∩ Dk

#Dk

−
∑
p>k

#Sp ∩ Dk

#Dk

=
∏
p�k

(p − 1)7(p + 7)p−8 + o(1). (16)

Comparing (15) and (16) yields (14).

2.3. Asymptotic and topological properties of Gn(F) for fields

Lemma 2.14. Let F be a field. Then Mn(F)2 − Gn(F) is a nonempty algebraic set consisting of
all (A,B) ∈ Mn(F)2 such that the matrix Tn2−1,n2,F (A,B) does not have full rank.

Proof. The equality of the two sets above follows from Lemma 2.8. The set Gn(F) is nonempty
because Gn(Z) is nonempty. �

Next, we will apply Lemma 2.14 to normed fields satisfying the following

Property 2.15. F is a normed field (with the norm denoted by | · |) such that for any ε > 0 there
exists 0 �= aε ∈ F with |aε| < ε.

Among the fields having Property 2.15 are all the subfields of C or Cp with their respective
standard Euclidean or p-adic norms.

Lemma 2.16. Let F have Property 2.15, and let Z � Fn be an algebraic set. Then Fn − Z is
dense in Fn in the norm topology.

Proof. Let z ∈ Z. We show that there exists a sequence {zn} in Fn − Z with limn→∞ ‖z − zn‖
= 0. Since Z � Fn, there exists a line Lz passing though z and not contained in Fn. Substituting
the parametric equations for Lz into the polynomial equations defining Z, we obtain a system
of equations in one variable, which has finitely many solutions, one of them being z. We may
choose ε > 0 sufficiently small to ensure that z is the only solution contained in the ball Bε(z) of
radius ε and centered at z. Then there exists a sequence {zn} in Bε(z) ∩ Lz such than zn �= z and
limn→∞ ‖z − zn‖ = 0. In particular zn ∈ Fn − Z. �
Theorem 2.17. Let F have Property 2.15. Then Gn(F) is open and dense in Mn(F)2 in the norm
topology.

Proof. The result follows from Lemmas 2.14 and 2.16. �
Next we consider similar results for finite fields.
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Lemma 2.18. Let 0 �= f ∈ Fq [x, y] and V (f ) = {v ∈ F2
q | f (v) = 0}. Then #V (f ) � 2q deg(f ).

Proof. Let d = deg(f ). Then f (x, y) = ∑d
j=0 fj (x)yj for some fj (x) ∈ Fq [x]. Let S =

{a ∈ Fq | f0(a) = · · · = fd(a) = 0}. Then #S � d .
For every a ∈ S, there are at most q values of b ∈ Fq such that (a, b) ∈ V (f ). Let

A = {(a, b) ∈ V (f ) | a ∈ S}. Then #A � qd .
Next let B = {(a, b) ∈ V (f ) | a /∈ S}. Then there are at most d values of b ∈ Fq such that

(a, b) ∈ V (f ) for some a ∈ Fq . Then #B � qd .
Finally, V (f ) = A ∪ B , so that #V (f ) � #A + #B � 2qd . �

Theorem 2.19. For a fixed n � 2, we have

lim
q→∞

#Gn(Fq)

#Mn(Fq)2
= 1.

Proof. By Lemma 2.14, the set Mn(Fq)2 − Gn(Fq) is an intersection of finitely many hypersur-

faces, each of them having O(q2n2−1) points over Fq by Lemma 2.18. Each such a hypersurface
is defined by a polynomial equation in 2n2 variables with coefficients in Z, the equations being
independent of Fq . It follows that

1 � #Gn(Fq )

#Mn(Fq )2 = 1 − #(Mn(Fq )2−Gn(Fq ))

#Mn(Fq )2 � 1 − O(q2n2−1)

q2n2 q→∞ 1. �
However, we do not know whether the following limit exists:

lim
n,q→∞

#Gn(Fq)

#Mn(Fq)2
. (17)

Lemma 2.14 together with Theorems 2.2, 2.17, and 2.19 imply that the set of (A,B) ∈
Mn(F)2 having a proper common invariant subspace, is small in the appropriate sense. We note
that our arguments do not involve characteristic polynomials.

3. Presentations of Mn(ZZZ) and their applications

We begin by recalling the definitions of the matrices X = ∑n
i=1 Ei+1,i and Y = E11 for some

fixed n � 2, and the noncommutative polynomials

r1,n = r1,n(x) = xn − 1, r2,n = r2,n(x, y) =
n−1∑
i=0

xn−iyxi − 1,

s0 = s0(y) = y2 − y, sj = sj (x, y) = yxjy for j � 1.

Theorem 3.1. The ring Mn(Z) has the following presentations:

〈x, y | r1,n = r2,n = sm = 0, 1 � m � n − 1〉, (18)〈
x, y

∣∣ r1,n = r2,n = s0 = sk = 0, 1 � k � �n/2�〉. (19)

Both ring isomorphisms are obtained by mapping x to X and y to Y .
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Proof. We see that X and Y satisfy all the relations of (18) and (19).
Next we prove that (18) is a presentation of Mn(Z). To fix the notation, let R be the ring

defined by (18). We observe that

1 · y =
(

n−1∑
i=0

xn−iyxi

)
y = y2 +

n−1∑
i=1

xn−i
(
yxiy

) = y2.

Therefore, R is spanned as an Abelian group by the n2 elements xiyxj where 1 � i, j � n;
hence dimZ R � n2. On the other hand, the map α given by α(x) = X and α(y) = Y extends to
the ring epimorphism α : R� Mn(Z) because Eij = Xi−1YX1−j .

It remains to show that (19) is a presentation of Mn(Z). Since all the relations of (19) hold
in (18), it remains to establish the converse. We propose to consider the cases of n even and odd
separately. The arguments involved in either of them are the same; therefore, we will do only the
case when n = 2s +1 is odd. Multiplying the relation 1 = ∑n−1

i=0 xn−iyxi by y on the right yields

y = 1y = y2 + xn−1(yxy) + xn−2(yx2y
) + · · · + xn−s+1(yxsy

)
+ xn−syxs+1y + · · · + xyxn−1y. (20)

Since y2 = y and yxy = yx2y = · · · = yxsy = 0, and x is invertible, the formula (20) shortens:

yxn−1y + xyxn−2y + · · · + xsyxs+1y = 0. (21)

Multiplying (21) on the left by y, as before, yields

yxn−1y = 0, (22)

which is partly what we need. Now substitute (22) in (21), cancel by x on the left, and then
multiply by y on the left. The result is yxn−2y = 0. In a similar fashion, it follows that all
sj (x, y) = 0 for all j . �

The next theorem shows that Presentation 19 for n = 4,5 may be shortened.

Theorem 3.2.

M4(Z) ∼= 〈x, y | r1,4 = r2,4 = s0 = s1 = 0〉, (23)

M5(Z) ∼= 〈x, y | r1,5 = r2,5 = s0 = s1 = 0〉. (24)

Proof. (1) To prove (23), observe that 0 = yr2,4 = s3x + s2x
2, so that s3 = −s2x and s3 = s3y =

−s2xy = −yx2y(yxy) = 0. Therefore s2 = s3 = 0, and the result follows from Theorem 3.1.
(2) We prove (24) in several steps.

0 = yr1,5 = y + s4x + s3x
2 + s2x

3 + s1x
4 − y = s4x + s3x

2 + s2x
3 + s1x

4 = 0

�⇒ s4 + s3x + s2x
2 = 0. (25)
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Similarly, by expanding 0 = r2,5y we have

s4 + xs3 + x2s2 = 0. (26)

Multiply (26) by y on the right:

s4 + s2
2 = 0. (27)

Equate (25) and (26): s3x + s2x
2 = xs3 + x2s2, and then multiply the result by y on the right:

s2
2 = xs3 + x2s2 implying

s3 = x4s2
2 − xs2. (28)

Multiply (28) by y on the left s3 = ys3 = yx4s2 − yxs2 = s4s
2
2 and use (27):

s3 = −s4
2 . (29)

Substitute (29) in (29):

−s4
2 = x4s2

2 − xs2. (30)

Multiply (30) by yx2 on the left and then use (29):

−yx2s4
2 = yx2x4s2

2 − yx2xs2 �⇒ −s5
2 = −s3s2 = −(−s4

2

)
s2 = s5

2

�⇒ 2s5
2 = 0. (31)

Multiply (30) by yx4 on the left: −s4s
4
2 = s3s

2
2 − s2. Then by (27) and (29): s6

2 = s3s
2
2 − s2 =

(−s4
2)s2

2 − s2. Finally, by (31): s2 = −2s6
2 = −s2(2s5

2), and the claim follows from Theo-
rem 3.1. �

Next we record some properties of Presentations (18) and (19) in connection with their mini-
mality.

Theorem 3.3.

(1) The ring 〈x, y | r2,n = sj = 0, 1 � j � n − 1〉 has infinite rank.
(2) The ring 〈x, y | r1,n = sj = 0, 1 � j � n − 1〉 has infinite rank.
(3) 〈x, y | r1,n = r2,n = 0〉 � Mn(Z).
(4) If 1 � k � n−1 and k �= n/2, then the relation sk = 0 follows from the other relations in (18).

In particular, this explains why (3) is a presentation of M3(Z).
(5) Removing from (18) any two relations sh = sn−h = 0 results in a ring of an infinite rank.
(6) Removing from (18) any two relations sh = s2h = 0, provided 1 � h < 2h � n − 1, results in

a ring of an infinite rank.
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Proof. (1) Let Z(t) be the ring of rational functions in t with integral coefficients. Consider the
matrices A = t

∑n−1
i=0 Ei+1,i and B = (1/tn)E11. Let R be the subring of Mn(Z(t)) generated

by A and B . These matrices satisfy all the relations of R. At the same time, An = tnI ∈ R, so
that R contains

∑∞
k=1 tknI , an Abelian subgroup of infinite rank.

(2) Consider the matrices A = ∑n−1
i=0 Ei+1,i and B = tE11. Let R be the subring of Mn(Z[t])

generated by A and B . These matrices satisfy all the relations of R. At the same time,∑n−1
i=0 A−iBAi = tIn ∈R, and as above, we conclude that R has infinite rank.
(3) Suppose the claim is false. Then by mapping y to zero, we have Mn(Z) ∼= 〈x, y | r1,n =

r2,n = 0〉 � Z[x]/(xn − 1), but the ring Mn(Z) does not a have proper ideal of infinite index.
(4) We need to show that the relation yxky = 0 follows from the other relations of (18). We

have

0 = r2,ny = y2 + x−kyxky − y and 0 = yr2,n = y2 + yxkyx−k − y.

Hence

y − y2 = yxkyx−k = x−kyxky. (32)

Next, we work with the expressions y(y −y2) and (y −y2)y with the help of (32). We see that
on the one hand, y(y − y2) = (yx−ky)xky = 0, and on the other hand y(y − y2) = y2xsyx−k .
Therefore y2xkyx−k = 0, and since x is invertible,

y2xky = 0. (33)

Likewise, (y − y2)y = x−kyxky2 = yxk(yx−ky) = 0, so that

yxky2 = 0. (34)

Applying (32), (33), and (34) yields

yxky = yxk
(
y − y2) = yxk

(
x−kyxky

) = y2xky = 0.

(5) It suffices to give an example of the ring of infinite rank, where all the relations of (18) are
satisfied except for yxhy = yxn−hy = 0.

Let Z[t] be a polynomial ring, X be the permutational matrix of oder n acting on columns,
and Y1 = tE11 + (1 − t)E1+h,1+h. We denote by R the subring of Mn(Z[t]) generated by X

and Y1. If 1 � i � n − 1, then

XiY1X
−i = tE1+i,1+i + (1 − t)E1+h+i,1+h+i (35)

implying
∑n−1

i=0 XiY1X
−i = I . Next, multiply (35) by Y on the left:

Y1X
iY1X

−i = t (1 − t)(E11E1+h+i,1+h+i + E1+h,1+hE1+i,1+i ). (36)

We see that Y1X
iY1X

−i = 0, and therefore Y1X
iY1 = 0, unless i = ±h. In the latter cases we

have that Y1X
hY1X

−h = t (1 − t)E11 and Y1X
−hY1X

h = t (1 − t)E1+h,1+h. Therefore, in R all
the relations of (18) are satisfied except for yxhy = yxn−hy = 0. Another consequence of (36) is
t (t − 1)In ∈ R because

∑n−1
i=1 X−i (Y1X

hY1X
−h)Xi = t (1 − t)

∑n−1
i=1 X−iE11X

i = t (t − 1)In.
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Therefore, R contains an Abelian subgroup of infinite rank, implying that the rank of R is infinite
as well.

(6) As above, it suffices to give an example of the ring of infinite rank, where all the relations
of (18) are satisfied except for yxh = yx2hy = 0, provided 1 � h < 2h � n − 1.

Let Z[t] be a polynomial ring, X be the permutational matrix of order n acting on columns,
and Y1 = E11 + tE1,1+h − tE1−h,1.

The relation
∑n−1

i=0 XiY1X
−i = In is satisfied because the subscripts (1,1 + h) and (1 − h,1)

are in the same orbit of X.
Next we investigate the monomial relations.

Y1X
iY1X

−i = (E11 + tE1,1+h − tE1−h,1)(E1+i,1+i + tE1+i,1+h+i − tE1+i−h,1+i ). (37)

On multiplying out, we see that (37) is zero unless i = h,2h. In the latter two cases, we have that

Y1X
hY1X

−h = t2(E1,1+2h + E1−h,1+h) and Y1X
2hY1X

−2h = −t2E1,1+h.

Finally, −∑n−1
i=0 X−i (Y1X

2hY1X
−2h)Xi = ∑n−1

i=0 X−i t2E1,1+hX
i = t2X1−h. Therefore, the

ring generated by X and Y1 has infinite rank. �
The above theorem describes some situations (with the possible exception of part (3)) where

the removal of certain relations results in a ring of infinite rank. In contrast, the theorem below
gives two instances in which the removal of certain relations results in a ring of finite rank.

Theorem 3.4.

(1) The ring R = 〈x, y | r1,n = sm = 0, 0 � m � n − 1〉 is isomorphic to a direct sum of the
rings Mn(Z) and ZCn.

(2) Let ∅ �= H � N = {1,2, . . . , n− 1} and H ′ = N −H . Suppose that H satisfies the following
conditions modulo n:
(a) {a + b | a, b ∈ −H ∪ H } ⊆ H ′.
(b) If h, k, l,−h + k + l ∈ H , then h = k or h = l.
Then the ring S(H) = 〈x, y | r1,n = r2,n = sj = 0, j ∈ H ′〉 has finite rank.

Proof. We prove the two claims of the theorem in the two respective parts below.
(1) Firstly, r2y = yr2 = 0, r2x = xr2, (−r2)

2 = −r2. Therefore, r = −r2 is a central idempo-
tent, and R = rR⊕ (1 − r)R = rZ〈x〉⊕ (1 − r)R where (1 − r)R ∼= Mn(Z), and rZ〈x〉 ∼= ZCn.

(2) We construct a finite set, call it S , such that every element of S(H) may be written as an
integral linear combination of the elements of S .

Multiply the relation r2,n(x, y) = 0 by y on the left:

y2 +
n−1∑
i=1

yx−iyxi − y = 0 �⇒ y2 − y = −
∑
h∈H

yxhyx−h. (38)

Therefore, for k ∈ H , we have(
y − y2)xky =

∑
yxhyx−hxky = yxky2. (39)
h∈H
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Multiply the relation r2,n(x, y) = 0 by y on the right:

y2 +
n−1∑
i=1

x−iyxiy − y = 0 �⇒ y2 − y = −
∑
h∈H

x−hyxhy. (40)

It follows that

y3 − y2 = −y
∑
h∈H

x−hyxhy = 0. (41)

Therefore, multiplying (39) by y on the left yields

y2xky2 = −(
y3 − y2)xky = 0. (42)

Let k ∈ H , then equating the right-hand sides of (38) and (40) gives us

yxkyx−k = −
∑

k �=h∈H

yxhyx−h +
∑
h∈H

x−hyxhy. (43)

Next, multiplying (43) by yxl on the left and by xk on the right yields

yxlyxky = −
∑

h∈H,h�=k

yxlyxhyx−h+k +
∑
h∈H

yxlx−hyxhyxk = y2xlyxk. (44)

We conclude that every word in x and y may be rewritten in such a way that the following
conditions are satisfied:

(1) x occurs finitely many times with exponent between 0, . . . , n−1, because one of the relation
in (18) is xn = 1.

(2) Powers of y may occur as subwords at most twice because of (44).
(3) y occurs with exponent between 0, 1, 2 because y3 = y2 by (41).

Stated another way, every element in S(H) may be written as Z-linear combination of the words
of the form xα1yβ1xα2yβ2xα3 , where α1, α2, α3 ∈ {0, . . . , n − 1} and β1, β2 ∈ {0,1,2}. �
3.1. Magnus-type ring extension of Mn(Z)

In the proof of Theorem 3.5 below, we introduce an analog of the Magnus Embedding from
Magnus [12] (see lemma on p. 764 of [12]).

Theorem 3.5. The ring Z{x, y} has a quotient R= Rn such that

(1) R is an over-ring of Mn(Z).
(2) Under the natural epimorphism Z{x, y} � R, the images of the ideals generated by

r1n, s1, . . . , sn form a direct sum.
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Proof. The proof consists of finding a ring R such that

(1) R is generated by two elements x,y together with 1R.
(2) Let R1 = Rr1,n(x)R, Si = Rsi(x,y)R for 1 � i � n − 1, and S0 = Rs0(y)R. Then R1 ∩

S0 = {0R} and S0 = S1 ⊕ · · · ⊕ Sn−1.

Put M = Mn(Z) and consider the ring M = (
M 0

ξM⊕ηM Z

)
where ξ and η are independent

variables commuting with each other and with every matrix from M . Let R be the subring of M
generated by the matrices

I =
(

I 0
0 1

)
, X =

(
X 0
ξ 1

)
, Y =

(
Y 0
η 0

)
.

Then the projection on the top left corner is a ring epimorphism R � M , by Theorem 3.1. Define
the polynomials q0(t) = 0 and qi(t) = 1 + t + · · · + t i−1, i � 1. Then

Xi =
(

Xi 0
ξqi(X) 1

)
, X−i =

(
X−i 0

−ξqi(X)X−i 1

)
,

XiY =
(

XiY 0
ξqi(X)Y + η 0

)
, X−iY =

(
X−iY 0

−ξqi(X)X−iY + η 0

)
,

YXiY =
(

0 0
ηXiY 0

)
,

X−iYXi =
(

X−iYXi 0
−ξqi(X)X−iYXi + ηXi 0

)
.

For the remainder of the proof, let r1 = r1,n(X), sj = sj (X,Y), and 1 � i � n − 1. Then

r1 =
(

0 0
ξqn(X) 0

)
, s0 =

(
0 0

η(Y − 1) 0

)
, si =

(
0 0

ηXiY 0

)
.

Therefore,

R1 =
(

0 0
ξqn(X)M 0

)
, S0 =

(
0 0

η(Y − 1)M 0

)
, Si =

(
0 0

ηXiYM 0

)
.

We see that R1 ∩ S0 = {0}. The significance of this fact will become apparent from the fol-
lowing claim that will finally prove the theorem.

Claim. The sum
∑n−1

i=1 Si is direct and equals S0.

We argue as follows. An element u0 in S0 has the form

u0 =
(

0 0
ηT0 0

)
where T0 = (Y − 1)M0 for some M0 =

⎛⎜⎝ M01
...

M

⎞⎟⎠ ∈ M.
0n
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Therefore,

T0 = −

⎛⎜⎜⎜⎝
0

M02
...

M0n

⎞⎟⎟⎟⎠ .

An element ui in Si (1 � i � n − 1) has the form

ui =
(

0 0
ηTi 0

)
where Ti = XiYMi for some Mi =

⎛⎜⎝ Mi1
...

Min

⎞⎟⎠ ∈ M.

Then the (i + 1)st row of Ti is Mi1, the other rows being zero. Therefore,

n−1∑
i=1

Ti =

⎛⎜⎜⎜⎝
0

M11
...

Mn−1,1

⎞⎟⎟⎟⎠
is of the same form as T0 , and hence

∑n−1
i=1 Ti ∈ S0. We conclude that

∑n−1
i=1 Ti = 0 if and only

if Mi1 = 0 for all i ∈ {1, . . . , n − 1}. �
3.2. Mn(Z) as a quotient of rings without identity

To motivate this discussion, let R = Z{{e11, . . . , enn}} be a free nonassociative ring without
identity. Let I be the ideal of R generated by the elements eij ekl − δjkeil . Then the quotient ring
R/I is isomorphic to Mn(Z).

Another way to present Mn(Z) as a quotient of a ring without identity is to modify Presenta-
tion (18) to obtain Mn(Z) as a quotient of the integral semigroup ring Z[FS(x, y)]. This yields
the following

Theorem 3.6. Let X = ∑n
i=1 Ei,i+1 and Y = E11. Then the map

f : Z
[
FS(x, y)

] → Mn(Z), x �→ X, y �→ Y,

is a ring epimorphism with kernel generated by the n + 2 elements

xn+1 − x, yxn − y, −xn +
n−1∑
i=0

xn−iyxi, yxj y, 1 � j � n − 1. (45)

Proof. Put R = Z[FS(x, y)]. All computations in this paragraph will be done modulo I =
Ker(f ). We firstly observe that xn−1(xn+1 − x) = 0 yields x2n = xn. Therefore y2 =
y(

∑n−1
i=0 xiyxn−i ) = yxn = y, so that y = y2 = (

∑n−1
i=0 xiyxn−i )y = xny. Therefore, z = xn

an identity element.
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It remains to show that ideal I0 generated by the elements (45) equals I . Firstly, I0 ⊆ I be-
cause the corresponding relations are satisfied by X and Y . On the other hand, the computations
in the previous paragraph show that the ring R/I0 is generated by the n2 elements xi + I0,
xiyxj + I0, 1 � i, j � n. Since dimZ Mn(Z) = n2, it follows that I = I0. �
3.3. Linear representations of matrix rings

We prove below that 4 relations in X and Y are sufficient to describe Mn(Z) in the context of
matrix rings.

Theorem 3.7. Let D be a commutative domain of characteristic either zero or at least m+1, over
which every finitely generated projective module is free. Let S be a subring of Mm(D) generated
by some nonzero X1 and Y1 such that

Xn+1
1 = X1, Y1X

n
1 = Y1, Y 2

1 = Y1,

n−1∑
i=0

Xn−i
1 Y1X

i
1 = Xn

1 . (46)

Then the trace k of Y1 is a positive integer, and there exist B ∈ GLm(D) such that, putting
r = m − kn, we have

B−1X1B =
(

Ik ⊗ X 0k×r

0r×k 0r×r

)
and B−1Y1B =

(
Ik ⊗ Y 0k×r

0r×k 0r×r

)
.

An exposition of commutative domains over which every finitely generated projective module
is free can be found in Lam [9].

Proof of Theorem 3.7. Since Xn
1 is an idempotent, we decompose Dm as the direct sum of the

image P and the kernel N , i.e. Dm = P ⊕Z where

(1) P and Z have D-ranks q and r , respectively.
(2) Xn

1 |P = Iq and Xn
1 |Z = 0r .

We observe from (46) that P and Z are S-invariant and S|Z = 0r . Choose some free generating
sets for P and Z . Then with respect to these sets, X1 and Y1 are represented by the matrices(

X2 0
0 0

)
and

(
Y2 0
0 0

)
, respectively. Furthermore, the matrices X2 and Y2 satisfy the following rela-

tions

r1,n(X2, Y2) = r2,n(X2, Y2) = s0(Y2) = 0. (47)

Let k = tr(Y2). Then (47) yield

q = tr(Iq) = tr

(
n−1∑

Xi
2Y2X

n−i
2

)
=

n−1∑
tr
(
Y2X

n−i
2 Xi

2

) = nk. (48)

i=0 i=0
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P decomposes with respect to the idempotent Y2 as a direct sum of the image U and the kernel V .
The restriction maps Y2|U and Y2|V are the identity and zero maps, respectively. Therefore

k = tr(Y2) = tr(Y2|U ) + tr(Y2|V ) = tr(Y2|U ) = tr(idU ). (49)

In particular, k is an integer.
Let

Û =
n−1∑
i=0

Xi
2(U).

Then (46) implies that Û is an S-module. In addition, Y2|V = 0 yields Y2|P/Û = 0. In turn,

(46) implies X2|P/Û = 0, which amounts to the identity map acting as zero on P/Û . Therefore

P = Û . The sum
∑n−1

i=0 Xi
2(U) is direct because by passing to the field of fractions F of D, we

have Fq = ∑n−1
i=0 Xi

2(F ⊗D U). By (53), this sum is a sum of n linear spaces of dimension k,
and we know from (52) that dimF Fq = nk. Therefore

Dq =
n−1⊕
i=0

Xi
2(U).

Let B = {s1, . . . , sk} be a free D-basis of U . Then B̂ = ⋃n−1
i=0 Xi

2(B) is a free D-basis of P .
Hence, X2 may be represented with respect to B̂ by an n-by-n block matrix (Xij ) with k-by-k
blocks, where Xij = 0 unless i = j + 1, and Xj+1,j = Ik for 1 � j � n − 1. Similarly, Y2 =
(Yij ) where Y11 = Ik and Yij = 0 for i �= 1 because Y2|U is the identity map, and Y2|P/U is the
zero map. Since Iq = Xn

2 = X1,n ⊗ In, we arrive at X1,n = Ik . Therefore, X2 is represented in
the basis B̂ by the permutation matrix X ⊗ Ik in block form. It remains to observe that from
r2,n(X2, Y2) = Iq it follows that Y1j = 0 for 2 � j � n. Consequently Y2 is represented with
respect to B̂ by the matrix Y ⊗ Ik . �
Corollary 3.8. Let D be a commutative domain of characteristic either zero or at least n + 1.
Then the automorphism group of the ring Mn(D) is generated by the automorphism group
Aut(D) of the ring D, and by the projective general linear group PGLn(D), where

(1) Aut(D) acts on Mn(D) by acting on each entry of a matrix.
(2) PGLn(D) acts on Mn(D) by conjugation.

Proof. Any automorphism σ of the ring Mn(D) leaves the center invariant. In other words, there
exist α ∈ Aut(D) such that for every a ∈D, we have σ(a

∑n
i=1 Eii) = α(a)

∑n
i=1 Eii .

Next we consider β = α−1σ , which is a D-algebra automorphism of Mn(D). Then the pair
(βX,βY ) satisfies the relations of (19). Therefore, by Theorem 3.7 there exists U ∈ Mn(D)

which conjugates βX to X and βY to Y . The conjugations by U and −U produce identical
results, and there are no further such identifications. Therefore the automorphism group of the
D-algebra Mn(D) is isomorphic to PGLn(D). �
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The result of Corollary 3.8 is not new. More general results are contained Rosenberg and
Zelinsky [13]. In particular, that paper shows that Corollary 3.8 is false, for example, for
Dedekind domains with class number at least 2.

We will need the following theorem of G. Higman [8].

Theorem 3.9 (G. Higman’s Theorem). The unit group U of the integral group ring of a finite
Abelian group G is given by U = ±G ×F , where F is a free Abelian group of rank

1

2
(#G + t2 − 2l + 1). (50)

Here t2 is the number of elements of G of order 2, and l is the number of cyclic subgroups of G.

By analyzing some elementary inequalities, it follows that F = {0} if and only if n = 2,3,4,6.

Theorem 3.10. The set Y = {Y1 ∈ Mn(Z) | Y 2
1 = Y1, r2,n(X,Y1) = 0} has the property that the

pair (X,Y1) satisfies all relations of (19), and all Y1 have trace 1. If n = 2,3,4,6 then Y1 = Eii

for some i. Otherwise, Y is infinite, and if Y1 �= Eii then it has both positive and negative entries.
Any Y1 is of the form (cidj ) for some integers ci , dj such that the matrices circ(c1, . . . , cn) and

circ(d1, . . . , dn) are mutually inverse. Any Y1 is conjugate to Y by an integral circulant matrix
with determinant ±1.

Proof. Let Y1 = (yij ). Then r2,n(X,Y1) = 0 implies

n∑
k=0

yi+k,j+k = δij . (51)

These formulas prove the claim about the possible signs of entries of Y1.
Applying the trace to r2,n(X,Y1) = 0 implies

n = tr(In) = tr

(
n−1∑
i=0

XiY1X
n−i

)
=

n−1∑
i=0

tr
(
Y1X

n−iXi
) = n tr(Y1). (52)

Zn decomposes with respect to the idempotent Y1 as a direct sum of the image I and kernel K.
Therefore

1 = tr(Y1) = tr(Y1|I) + tr(Y1|K) = tr(Y1|I) = tr(idI). (53)

Therefore, Y1 is a rank 1 projection. The image of Y1 is an Abelian group is generated by some
(d1, . . . , dn) ∈ Zn. It follows that on the standard basis e1 = (1,0, . . . ,0), . . . , en = (0, . . . ,0,1)

the action of Y1 is described by Y1ei = cid1 + · · · + cidn for some integer ci . Therefore Y1 =
(cidj ). Next, from r2,n(X,Y1) = 0 we conclude that

∑n−1
k=0 ci+kdj+k = δij , which is the same as

saying that the matrices circ(c1, . . . , cn) and circ(d1, . . . , dn) are mutually inverse.
Now, going back to (51), we see that the relations Y1X

kY1 = 0 follow from the
relations r1,n(X) = r2,n(X,Y1) = 0. Indeed, (XkY1)ij = ci+kdj . Therefore (Y1X

kY1)ij =
ci(

∑n
u=1 ducu+k)dj = ciδkndj = 0. It follows that (X,Y1) ∈ Gn(Z) by Theorem 3.1 and because

all proper quotients of the ring Mn(Z) are finite.
In the cases of n = 2,3,4,6 the group U(Z〈X〉) consists precisely of 2n matrices ±Eii . �
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Theorem 3.10 may be strengthened as follows. If all entries of X1 ∈ Mn(Z) are nonnegative,
and Xn

1 = In , then in each row of X1 there exactly one positive entry, and it equals 1. We will
prove this assertion in 2 steps.

(1) Suppose that in each row of X1 there is exactly one nonzero entry. Then from detX1 = ±1
it follows that X1 is of the required form.

(2) Suppose that X1 = (xij ) has a row with at least 2 positive entries xij and xij ′ . The ith
column of X1 contains a nonzero entry xmi . We conclude that the matrix X2

1 = (tkl) has the
property that tmj , tmj ′ > 0. Similarly, any positive power of X1 has at least two positive entries
in some row. We obtain a contradiction, however, by considering Xn

1 = In.
We remark that G. Higman’s Theorem 3.9, when applied to a cyclic group of order n, may be

restated in terms of solutions of the following Diophantine equations:

det circ(x1, . . . , xn) = ±1. (54)

Unfortunately, there appears to be no efficient algorithm to find solutions of (54). Computer
experiments with (54) eventually led us to Theorem 3.10.

3.4. Presentations of direct sums of matrix rings over Q and Z

Our next result gives infinitely many 2-generator presentations for the ring Mn(Z). We obtain,
as a consequence, presentations for several types of direct sums of matrix rings. We do not write
down these presentations explicitly based on the following reason. If I and J are ideals of a
ring R such that I + J = R, then I ∩ J = IJ + J I . Therefore, if the ideals I and J are
generated by explicitly given i and j elements, respectively, then I ∩J is generated by at most
2ij explicitly given elements.

Theorem 3.11. The ring Z{x, y} has an infinite family of ideals {In(m)}m∈Z defined by

In(m) = (
r1,n(x,mx + y), r2,n(x,mx + y), sj ,1 � j � n − 1

)
, In = In(0).

This family of ideals has the following properties:

(1) Z{x, y}/In(m) ∼= Mn(Z) for any integer m.
(2) If m1, . . . ,mk � 2 are integers, and the sets S1, . . . , Sk ⊆ Z are finite, then

Z{x, y}⋂k
i=1

⋂
si∈Si

Imi
(si)

⊗Z Q ∼=
k⊕

i=1

Mmi
(Q)#Si .

(3) If |k − l| � 2, then even though Z{x, y}/In(k) ∩ In(l) � Mn(Z)2, it embeds as a subring of
finite index.

(4) Define the map t : Z{x, y} → Z{x, y} by f (x, y)t = f (y, x), then for any pairwise different
integers n1, . . . , nk � 2, we have

Z{x, y}⋂k
j=1 I t

nj
∩ Inj

∩ Inj
(1)

∼=
k⊕

j=1

Mnj
(Z)3.

(5) Z{x, y}/I2 ∩ I t ∩ I2(1) ∩ I2(1)t ∼= M2(Z)4.
2
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Proof. We find it convenient to introduce a family of ring automorphisms {ϕm}m∈Z of Z{x, y}
given by ϕm(x) = x and ϕm(y) = mx + y. Then In(m) = ϕm(In). Theorem 3.1 implies
Z{x, y}/In(m) ∼= Mn(Z).

We will show that all these ideals are different, i.e. In(k) = Im(l) if and only if m = n and
k = l.

Let us consider the case m = n. Suppose that our claim is false, so that In(k) = In(l) for some
k �= l. Then

In = ϕ−k

(
In(k)

) = In(l − k) = In(a), where 0 �= a = l − k.

Therefore,

• r2,n(x, ax + y) = a
∑n−1

i=0 xn+1 + r2,n(x, y) ≡ nax (mod In),
• r2,n(x, ax + y) ∈ In,
• x is invertible modulo In

imply that na ∈ In. Therefore, {0} = na(Z{x, y}/In) ∼= Mn(Z), a contradiction.
Now suppose that m < n. Then In = Im(l − k). Therefore modulo either of these ideals,

0 = sm(x, y) = yxmy = y2 = y, yielding 0 = r2,n(x, y) = −1.
Since the ring Mn(Q) is simple, the arguments above together with Chinese Remainder The-

orem prove part (2).
Next we prove part (3). We observe that the restriction of the maps ϕm to Z is the identity

map. Therefore,(
In(k) + In(l)

) ∩ Z ⊆ (
In + In(k − l)

) ∩ Z ≡ In ∩ Z ≡ {0} (mod k − l),

so that (In(k) + In(l)) ∩ Z �= Z and therefore In(k) + In(l) �= Z{x, y}.
We prove part (4) by showing that the sum of any two of the three ideals I t

k, Im, In(1) is
Z{x, y}.

(1) We claim that J = Im + In(1) = Z{x, y}. If m > n, then modulo J we have 0 =
sn(x, y) = yxny = y2 = y, so that 0 = r2,m(x, y) = −1. Suppose that m < n, then consider the
ideal J ′ = ϕ−1(J ) = Im(−1) + In. Then modulo J ′ we have 0 = sm(x, y) = yxmy = y2 = y,
so that 0 = r2,n(x, y) = −1.

(2) We claim that K = I t
m + In = Z{x, y}. All computations here are done modulo K. From

x2 = x and xn = 1 we conclude that x = 1, and therefore 0 = xyx = y, and consequently 0 =
0m = ym = 1.

(3) The proof that L= I t
m + In(1) = Z{x, y} is exactly as above.

It remains to prove part (5) of the theorem.
(4) We claim that N = I2(1) + I2(1)t = Z{x, y}. The computations will be done modulo N .

x + y = (x + y)2 = x2 + xy + yx + y2 = 2 + xy + yx, (55)

0 = (x + y)x(x + y)y = (
x3 + x2y + yx2 + yxy

)
y = xy + 2 + yx. (56)

The right-hand sides of (55) and (56) are equal, hence x +y = 0. Therefore, 0 = r2,2(x, x +y) =
r2,2(x,0) = −1.

(5) We claim that O = I2 + I2(1)t = Z{x, y}. The computations will be done modulo O.
Multiplying both sides of (55) by y on the right yields y = 0, so that 0 = r2,2(x, y) = −1.
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(6) The equality I t
2 + I2(1)t = Z{x, y} is proved similarly, by multiplying (55) by x on the

right. �
For all sufficiently large k, the ring Mn(Z)k does not admit 2 generators, because the same

holds modulo any prime by a simple counting argument. Therefore, it should be of interest to
investigate the minimum number of generators for finite direct sums of integral matrix rings.
The situation is philosophically similar to the result of Philip Hall [6, p. 137], that “the direct
product of the nineteen icosahedrals can be generated by two elements, but not the direct product
of twenty.”
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