
J. Symbolic Computation (1996) 22, 665–698

NatureTime: Temporal Granularity in Simulation of
Ecosystems†

EDJARD MOTA‡, DAVID ROBERTSON‡ AND ALAN SMAILL‡

Department of Artificial Intelligence, The University of Edinburgh
80 South Bridge, Edinburgh EH1 1HN, Scotland

(Received 31 October 1995)

Granularity of time is an important issue for the understanding of how actions performed
at coarse levels of time interact with others, working at finer levels. However, it has not
received much attention from most AI work on temporal logic. In simpler domains of
application we may not need to consider it a problem but it becomes important in more
complex domains, such as ecological modelling. In this domain, aggregation of processes
working at different time granularities (and sometimes cyclically) is very difficult to
achieve reliably. We have proposed a new time granularity theory based on modular
temporal classes, and have developed a temporal reasoning system to specify cyclical
processes of simulation models in ecology at many levels of time.

c© 1996 Academic Press Limited

1. Introduction

Temporal logics and reasoning systems usually treat time as a linear sequence of discrete
points or linear intervals. Such abstract views of time have been used in the develop-
ment of many specification languages for real-time systems, databases, planning, etc.
One might expect that temporal logics would be a natural way to represent conventional
simulation models, since these also represent change over time. However, when we at-
tempt to do this we almost immediately encounter obstacles: different parts of the model
may operate at different temporal granularities; processes may operate cyclically; the ax-
ioms familiar to temporal logicians may be far removed in programming style from those
of simulationists. We encountered all these obstacles when applying temporal logics to
ecological modelling. Moreover, many phenomena in nature cannot be easily understood
in only one scale of time, and using different scales is essential to their comprehension.

Nowadays, integration of ecological models is an important issue. There are many in-
dividual models of parts of systems, and people want to solve problems which require
the behaviour of a number of different models to be combined. However, there is little

† This work and the first author (on leave from Department of Computer Science, University of
Amazonas-Brazil) are sponsored by the Brazilian Ministry of Education, grant no. 01723/93-8/CAPES.
‡ E-mail: {edjardm, dr, smaill}@aisb.ed.ac.uk

0747–7171/96/110665 + 34 $25.00/0 c© 1996 Academic Press Limited

666 E. Mota et al.

standardization in the combination process. This is critical when the models were con-
ceived for different levels of time granularity to simulate processes working at different
levels of abstraction, but which are somehow related.

In this paper we present a temporal logical reasoning framework to deal with time
granularity based on an ontology of time called a Linear-Cyclic Hierarchy. Granular-
ity of time is defined by means of a hierarchy of modular sets and an easy mechanism
for specifying processes working at different time scales and which can also be cyclical is
provided. The logic was used in the representation of seasonal cycles in agroforestry prob-
lems, and we show how it can be used as a programming language to develop simulation
models working at different levels of time granularities, particularly for ecosystems.

2. Motivation

Granularity is very important if we intend to look at the world at different levels of
abstraction, when switching from one level to another may be necessary for the compre-
hension of the phenomena being observed .(Hobbs, 1985). In particular we are concerned
with the representation of processes, cyclical or not, working at different time scales. A
logical framework for representing and reasoning about this kind of knowledge should
deal with the problems of:

(i) Definition of propositions at appropriate levels of temporal granularity.
(ii) Relationships between propositions defined over different time granularities.

(iii) Alignment of temporal domains, allowing events at different temporal granularities
to be synchronized.

(iv) Dealing with the “next” temporal operator. For instance, “next time I will play
football” may have different interpretations depending on the level of time we are
talking about.

Along with these problems we address the need for dealing with cyclical events or
processes, at different levels of time and which may interact. The following example
shows how such a need arises in an ecosystem model, the agents involved, and the effect
of their (possibly cyclical) actions.

Example 1: A piece of forest is composed of 10 trees, each one allocated in a square
with sides of 3 m, where the shape of the tree is assumed to be unimportant. Each
tree has a growth rate ri, per some unit of time, which varies according to the
season and the level of nutrients in the soil. The growing process of one tree may
affect the growth of its neighbours because of the competition for nutrients and
light, assuming constant absorption of light per unit area of the canopy of the
tree.

The problem of interest in this scenario is to predict the change of height of the trees in
a weekly scale of time, and as a consequence their biomass and the biomass of the whole
forest. A sophisticated simulation model for this problem should consider as a relevant
part of the scenario the following processes.

(i) The rate of water uptake, based on the features of the soil where the tree is placed.
This rate would be at some scale of time. Note that the water in-flow of the soil
would also change according to the season of the year. So we may need to represent
it as a cyclical process.

NatureTime: Temporal Granularity in Simulation of Ecosystems 667

(ii) The rate of the absorption of nutrients (or uptake), e.g. carbon (photosynthesis)
and nitrogen (roots). Another time scale may be needed for this.

(iii) The influence of the concentration of water, nutrients, etc, in the soil, according
to the age of the forest. This will be responsible for stopping the increase of tree
biomass. Another time scale may be needed.

(iv) Competition for light, assuming the absorption of light per area of the canopy of
the trees, and also its height. Another scale may be needed.

(v) External events which change the environment

– natural events such as fire, storms, epidemics of insects, new trees appearing
due to natural production of seeds, etc

– cutting some trees down, reforesting some areas, etc.

Let us consider the process involving the leaves and the roots of a tree, and make an
intuitive analysis of their effect on the growth rate. The effect of photosynthesis changes
in a scale of minutes, since the incidence of light changes minute by minute within a
day. On the other hand, the effects of water uptake and nitrogen absorption by the
roots are more effectively described on a hourly time scale. The processes clearly work at
different time granularities and we need to integrate them to represent their influence in
the growth rate of a tree properly. Due to the great complexity of the processes involved,
what is usually done, in practice, is either to keep individual models separately (maybe
some parameter values or data sets are shared on an ad hoc basis), or one very large
imperative model is built. In the latter case, the control structure of all models must be
adapted.

The work presented in this paper proposes a temporal logical reasoning framework for
problems of this nature.

3. NatureTime Logic Definition

In this section we will present the hierarchical theory of time originally proposed in
.Mota (1994), which was an attempt to provide a logic-based language to represent con-
cepts of time, following closely the forms of expression used informally in descriptions of
ecological systems. The basic idea of our logic is to separate the task of defining relations
within the model from the task of computing when these relations hold. We view tem-
poral reasoning as a problem of unification between temporal labels, where the flow of
control of program execution is influenced by this. Although this can be seen as similar
to unification between sorts in order sorted logics, the presentation of our time theory is
not directly based on that approach. We leave this for future work, and any use of the
term sort in this work does not assume any underlying sorted logic theory.

3.1. basic assumptions

Our main concern is to provide a logical framework for which the translation of tem-
poral knowledge from a complex domain (in our case ecological modelling), is not a too
painful process. Because the different levels of time are usually expressed by using a label
for each one, such references about scales should be part of the model. For this reason,
we decided not to “disturb” accepted ways of representing simulation models using com-
putational logic, e.g. .Robertson et al. (1991). That is, it would be ideal if the temporal

668 E. Mota et al.

aspects of the program could be thought as labels for components of Prolog-like clause
programs, so that we could distinguish the task of defining relations within the model
from the task of saying when these relations hold. By taking domain examples in the
form of English text .(Sinclair et al., 1993; Haggith et al., 1992), we classified the sorts
of expressions that are normally used to refer about inherently cyclical temporal classes,
and that are hierarchically related. For instance,

(i) “the tree grows faster during the rainy season (say February) than in any other
season” (from the example in Section 2)

(ii) “The effect of photosynthesis changes on a scale of minutes. On the other hand, the
effects of water up take and nitrogen absorption by the roots are more effectively
described on a hourly time scale. Both processes influence the growth rate of a
tree”.

We can see from the first example that it is necessary to talk about things which happen
intermittently through the flow of time. From the second example we have processes which
can also change at different temporal scales. The main issue in these examples is to merge
specifications at different time scales coherently in such a way that the responses of lower
levels can influence the responses of higher levels. There may exist some cases in which
the opposite effect occurs. For instance, some ecological models consider a forest as “a
big leaf”, and the behaviour of the forest may affect the behaviour of each individual tree
over very long periods of time. Another example from a very different field is inflation,
in economics. It is a property of the overall economy, but which affects individuals in
different ways. Thus, what is needed is a framework of time which allows us to define
cyclical relations and relations at many levels of time granularity.

As an initial step we took actual phenomena in nature which led us to use references
of time as in these simple examples. This is depicted in Figure 1, where we view the
granularity of time as being a hierarchy of modular sets which are related by a kind of
“inclusion relation”. At all levels, except one (possibly the highest being considered),
time is closed, i.e. time moments are isomorphic to points on a circle .(Poidevin and
MacBeath, 1995). According to this view of time we can understand, for instance, years
as being modular cycles of months, [lunar] months of days, and so on.

The basic mathematical framework to model concepts like “seasons”, or cyclical pro-
cesses and such a hierarchy of cycles is modular arithmetic [also called clock arithmetic

.(Biggs, 1987)]. In this way, each cyclical temporal class is defined by one modular set, and
so we permit the succession of time in a cyclical way, where the last element is followed
by the first. The theory is based on the following assumptions.

1. Temporal entity (TE)—is a reference to a measure of time, e.g. June 24th, 1980.
This allows us to define the “previous” and “next” operators without ambiguity,
since they will refer to temporal entities at the same level of time granularity. For
instance, “next month” would refer to another month, as “previous year” refers to
another year.

2. TEs are grouped and circularly ordered, forming modular temporal classes (MTC),
e.g. December and January are TEs of the class “month”, and the last element,
December, is followed by the first, January.

3. Temporal classes are modularly sub-divided in other temporal classes by what we
call modular values. For instance, 60 is the modular value which sub-divides an

NatureTime: Temporal Granularity in Simulation of Ecosystems 669

?

Sub-atomic universe

Earth & Moon

Solar system

Figure 1. View of the natural events we use to refer about time. Years are cycles of months, months
of days, and so on.

hour into minutes. This provides us with a facility to subdivide temporal classes in
the way we need.

4. The specification of one MTC defines one level of a time hierarchy. There may exist
as many levels of hierarchy as we want. For instance, one could be interested just
in days and hours, and so there would be two levels where the second (day) would
be defined by the first (hour). This allows us to have multiply nested levels of time
granularity.

5. The number of levels of a time hierarchy must be finite. The highest can be con-
sidered as the larger interval, and the lowest as the smallest. This is to make the
theory a tractable one, because without this restriction there would be no way to
compute the operations over our time expressions

6. The highest level of the hierarchy is not circularly grouped to form a MTC, but
it is linearly ordered in an infinite sequence. Thus, for each instance of the highest
temporal class there is one positive integer. In the example of the previous item,
day would be a temporal class with its instances linearly ordered, but not those
for minutes which would be circularly ordered. This is to prevent the flow of time
being an eternal cycle.

670 E. Mota et al.

3.2. elements of the language

We now present a logic programming language enhanced with some special symbols,
terms, and a unification algorithm for temporal labels. In this work we also allow negation
by failure under the closed world assumption. So, the syntax is basically Prolog-like but
with some special features according to the following definition.

3.2.1. vocabulary

(i) Alongside Prolog variables, represented here by Lv, there is a disjoint set Ltv of
temporal variables, where xi, yi, zi are variables of Lv, si, ti, ui are variables of Ltv.

(ii) a finite set Lc of constants.
(iii) a finite set Lf of non-temporal function symbols of the form fn, where n is the

arity of the function.
(iv) a finite set Ltc of special constants defined as {lowest ,flowtime, infinity , smallest}∪

TC , where TC = {c1, . . . , cn}, and each ci is a special constant or names of temporal
classes.

(v) a finite set of temporal function symbols Ltf = {p2, i2, tn · · ·2 , plus2, after2, before2,
of 2}, where · · ·2, plus2, after2, before2, of 2 are all of arity 2 but written using infix
notation. For instance, p, plus, i, t, after , of , and last in p(2, hour) plus p(37,minute),
i(2 . . . 3,month), t(17, 6, 1994), p(1, day) after t(12, 3, 1995), p(13,month) plus
p(25, day) before t(25, 12, 1994), day(1) of week , last(day(2) of week of month(2) of
year(1996)) are function symbols. The meta-term fnt will be used to refer to tem-
poral function symbols with arity n.

(vi) a finite set Lp of predicate symbols pn, where n > 0 is the arity of p, and {subclasses2,
on2, mod temp class3, mod value2, mod value3, change mod value3} is a special
subset of Lp.

(vii) the set Z of integers is also part of the vocabulary.
(viii) the propositional connectives for negation, conjunction, disjunction, and reverse

implication are represented here by ¬, &, ∨, and⇐=, respectively. The truth value
for true is represented by >, and false by ⊥.

(ix) a temporal connective @.

3.2.2. classes of expressions

By using these symbols we define the following classes of expressions, where the capital
letters A,B,C are used for formulae.

(i) a logical term is defined as usual. Examples of logical terms are maize, grass,
height(tree(t1)), biomass(forest(f1)).

(ii) a temporal term (TT) is

- a temporal variable s ∈ Ltv.
- a temporal constant ct ∈ TC .
- a temporal function symbol ft ∈ Lft in one of the following forms.

∗ a period, which is recursively defined as

· a single period p(s,m) where s ∈ Z+ and m ∈ TC .

NatureTime: Temporal Granularity in Simulation of Ecosystems 671

· a composite period P plus P ′, where P is single period, and P ′ is a
period term at a higher scale than P .

∗ a cyclical interval i(s . . . t,m), where s, t ∈ Z+ and m ∈ TC
∗ a smallest temporal entity t(t1, . . . , tk), where for n as the number of ele-

ments in TC , then k ≤ n, each ti ∈ Z+, and each i corresponds to exactly
one element of TC . This can also be seen as a moment of time.
∗ a linear interval s1 . . . s2, where s1 and s2 are in the form t(t1, . . . , tk).
∗ a collection interval

· α where α ∈ TC .
· ft(n), where ft ∈ Ltf , and n ∈ Z+, and ft is some α ∈ TC . For instance,

the function symbol of week(1) corresponds to week of TC
· α(n) of S, where ft ∈ Ltf (same as previous item), and n ∈ Z+, and S

is a collection interval.

A ground temporal term is a TT with no variables, e.g. i(2 . . . 2,month) is a GTT
while i(2 . . . x,month) is not. Examples of TT are p(3,month) plus p(2, day),
i(10 . . . 3,month), t(15, 2, 1994), . . . , t(3, 4, 1994), minute(43), day(5), week(3),
year(12), minute(43) of day, minute(43) of day(3) of week , day(1) of month of
year(1994). Note, that collection interval is more general than cyclical interval
in the sense that it may define cyclical and non-cyclical intervals. For instance,
day(2) of week of month is intended to represent all Mondays of all months, and
so is cyclical. However, day(2) of week of month(2) of year(1996) is not cyclical be-
cause it represents the finite sequence of days 5th, 12th, 19th, and 26th of February
1996.

(i) a first and last TT of a collection interval are represented by first(X) and last(X),
respectively, where X is a collection interval . For instance, suppose X is day(2) of
week of month(2) of year(1996)), then first(X) corresponds to exactly the temporal
entity t(5, 2, 1996), while last(X) corresponds to t(26, 2, 1996).

(ii) a pure temporal expression (PTE)

– s, if s is a TT, but not a period term.
– p after s, where p is a period term, and and s is a pure temporal expression.

Examples of PTE are p(3,month) after i(10 . . . 11,month), p(24, year) after
t(17, 7, 1970), hour(4) of day(1) of week(1) of month(3). We say that one of the TT
are canonical forms of PTE.

(iii) an atomic formula (AF) is

– > and ⊥ are atomic formulae
– if x1, . . . , xn are logical terms and pn ∈ Lp, then p(x1, . . . , xn) is an atomic

formula
– if A is an AF, so is ¬A

(iv) classical atomic formulae can be annotated with a PTE by using the temporal
operators “@”, which means that a classical logical formula is true throughout the
whole interval, i.e.

– A, if A is an AF, then it is an atomic temporal formula (ATF).
– A@T , where A is an AF and T is a PTE, is an ATF

Some examples of ATFs are,

672 E. Mota et al.

– time between(i(2 . . . 4,month), p(3,month)) which means that the period of
time between February and April, including both, is always equal to 3 months

– harvested(maize, highlands) @ i(12 . . . 1,month) which means that maize is har-
vested in the high lands throughout the whole interval from December up to
January.

(v) body is in one of the forms A&B, A∨B, or C, where A and B are bodies and C is an
ATF. A typical example of a body is time between(i(2 . . . 4,month), p(3,month)) &
harvested(maize, high lands) @ i(12 . . . 1,month).
When representing different propositions A and B which are true at the same time
interval T , it will be required to write (A&B) @T rather than A@T &B@T .

(vi) a well formed temporal formula (WFTF) is

– if A is a positive ATF (non-negated ATF), then A is a WFTF with an empty
body

– if A is a positive ATF and B 6= >,⊥, and B is a body then
A⇐= B is a WFTF, and A is called the head

Note that a WFTF where its head is an AF, and body is formed only by atomic
formulae corresponds exactly to a Prolog clause with no temporal contents.
An example of a WFTF is

harvested(tomatoes) @ p(6,month) after T ⇐= planted(tomatoes) @T .

Which means if tomatoes are planted throughout an interval T , then they are
harvested 6 months after T .

3.3. the linear-cyclic hierarchy structure

The temporal structure of time, called Linear-Cyclic Hierarchy, is a 4-tuple LCH =def

〈E ,≺, Th,
t
Â〉, where E is a non-empty set of temporal entities (or units of time), ≺ is

a binary relation of precedence over the set of moments of time in E , Th is a finite set

{c1, . . . , cn} of modular temporal classes, and
t
Â is a partial ordering relation over Th.

This relation induces a special set Tmh ⊆ Th, {mc1, . . . ,mck} and k ≤ n, called the main
time hierarchy (MTH), defined by a sequence of relations as follows.

mod temp class(flow time, ck, infinity), where ck ∈ TC
mod temp class(ci, ci−1,mv), where 1 < i ≤ n, ci, ci−1 ∈ TC , and mv ∈ Z+ or
mv = x . . . y and x, y ∈ Z+ and x < y.
mod temp class(c1, lowest , smallest), where c1 ∈ TC .

Each pair ci, cj of Th such that cj
t
Â ci holds is related by mod temp class(cj , ci,mv)

and mv is called the modular value of the modular set of ci which defines cj . Each ci is
called the name of the class. As

t
Â (properties are in Appendix A is a partial ordering

relationship, there will be some MTCs of the set Th which will not hold such a relation
between them. Note that the set E is a set of temporal entities which are the forms of
TT we have presented, i.e. moment of time, cyclical, linear and collection interval. In the
final case, these classes are out of the MTH and are said to be disjointed.

NatureTime: Temporal Granularity in Simulation of Ecosystems 673

There are two things worth noticing. First, flow time is defined as a special MTC
which in fact does not belong to the hierarchy, but it is used to say that the class cn
is the highest class, and that the flow of time will be associated with infinite instances
of cn. Second, the fact that the lowest level of the hierarchy is defined in terms of a
temporal constant symbol, i.e. lowest , allows us to interpret this structure as a hierarchy
of discrete intervals. However, such an assumption is not necessary since we may consider
the lowest level as belonging to the set of rationals, which would give us a dense model
of time.

In the case that a non-regular MTC is defined, i.e. the modular value mv is a range
rather than a single value, then we need to specify the subclasses, the modular value for
each one, and any relationship between them and other levels. Such a kind of MTC is
useful for solving the problem related with the irregularity of the real calendar. This is
done as follows.

(i) subclasses(c, l), where c is a irregular MTC and c is a list of constant symbols
representing the names of the subclasses of c.

(ii) mod value(c,m), where c must be an element of a list of subclasses, as defined in
the previous item, and m ∈ Z+.

(iii) change mod value(ci, s1 . . . s2, p(d, cj)), where ci is an irregular MTC which has its
modular value ranging between s1 and s2 (positive integers), at every d units of
time at the level of cj , and cj is a MTC defined by Ci.

(iv) mod value(ci, Icj , z), where ci is an irregular MTC, Icj is an instance of the MTC cj ,
which is defined by ci, and z is the modular value of ci according to the following
recursive definition.

– mod value(ci, , z) iff there is some Z ∈ Z+ such that mod value(ci, z).
– mod value(ci, Icj , z) iff both change(ci, s1 . . . s2, p(d, cj)) and R(Icj , d, s1, s2, c)

hold, where R is a meta-predicate to represent a temporal relation between
Icj , d, s1, s2 that will compute z.

For instance, the real calendar can be defined as follows.

mod temp class(flow time, year , infinity).
mod temp class(year ,month, 12).
mod temp class(month, day , 28 . . . 31).
mod temp class(day , lowest level , smallest).
subclasses(month, [january , february ,march, april ,may , june, july ,

august , september , october ,november , december]).
mod value(january , 31).
all other cases until mod value(december , 31).
change mod value(february, 28 . . . 29, p(4, year)).
mod value(Class, , Z)⇐=

mod value(Class, Z).
mod value(Class,Year , Z)⇐=

change mod value(Class, Z1 . . . Z2, p(MF , year)) &
LeapYear is Year mod MF &
(LeapYear = 0 &
Z = Z2

674 E. Mota et al.

...

day(1)...
day(31)

day(31)

...
28..29

day(1)

...
month(2)

month(12)

... year(1)

month(1)

 ...

...

...
day(31)

day(1)

day(31)

day(1)...

...
28..29

day(1)

month(1)

month(12)

month(2)

...year(m)

...

day(1)

Figure 2. A view of the Linear-Cyclic Hierarchy of time. The inner circles represent lower levels of
time granularity like day and month, while the outest circles represent the highest level, like year .

∨
LeapYear > 0 &
Z = Z1).

A view of this hierarchy is depicted in Figure 2.
The temporal entity which we can represent through the MTH is the smallest interval

t(x1, . . . , xn). In the calendar defined above the term t(1, 1, 1996) represents the first day
of the first month of the year 1996. Along with these MTC we may define other types
which do not belong to MTH, e.g. week. This could be defined, for example, as follows.

mod temp class(lunar month,week , 4).
mod temp class(week , day , 7).
mod temp class(labour week , day , 5).

The temporal entities of this MTCs are represented by collection intervals as described
in Section 3.2.2. Although the logic has expressive power to represent such a kind of time
interval, we will not explore it in this work since simulation models usually do not need
such a kind of temporal reference.

3.4. past and future relations

There are two relations for the notions of future and past. The first is for linear intervals,
and it is used to implement the usual relations between linear intervals .(Allen, 1983; Allen
and Hayes, 1985). As linear intervals are represented by a pair of smallest temporal
entities (moments of time), which is a structure relating instances of all MTCs of the
MTH, then instead of using the less than (<) relation directly, as in the case of a single
time scale, we have the following linear precedence relation.

Definition 3.1. Let R = t(x1, . . . , xk) and S = t(y1, . . . , yk) be two smallest intervals.
We say that R is linearly precedent to S, written as R ≺ S if, and only if

xk < yk, or
xi < yi and for all xj , yj such that i < j ≤ k and xj ≤ yj.

We also say S is a moment in the future in relation to R.

NatureTime: Temporal Granularity in Simulation of Ecosystems 675

The second notion relates one TE in the past with another in the future, and also with
the period of time between them. However, because a cyclical interval, at any level of
granularity, is defined as a closed time structure, then every time “instant” is both before
and after any other (including itself). Because of this, we use the expression relative past
to mean that a given TE is the past of another one by a specific period of time, because
there may exist many others that are also in the past but separated by different periods.
Analogously, relative future means that a given TE is in the future of another one in
relation to one specific period of time. Both concepts are captured by the predicate
future(S, P, T) to mean the future of S after P is T . In the case where both S and T
are smallest intervals the definition is trivial and makes use of the temporal precedence
relation as defined above and the period of time between them. The definition of this
concept for cyclical intervals is defined as follows, where ⊕ is the modular sum operation
of modular sets .(Biggs, 1987).

Definition 3.2. Let S, T be two cyclical intervals of a MTC ci, and suppose there is a
MTC defined as mod temp class(ci+1, ci,m), and P is a period of time of the level i. We
say that S is the relative past of T , where the period of time between them is P , written
as future(S, P, T) iff S ⊕ P = T . We say that T is the relative future of S.

Now, we use these relations in order to map complex PTEs to canonical forms. This
is done by using the operations of up-wave modular sum and subtraction defined in
Appendix B.

Definition 3.3. Let P = p(∆, ci) be a period of time, T a temporal interval. Then P
after T is the temporal entity in the future of T , defined as

a- i(s1 ⊕∆ . . . s2 ⊕∆, ci), if T is a cyclical interval i(s1 . . . s2, ci)
b- t(s′1, . . . , s

′
n)ω⊕ P . . . t(t1, . . . , t′n)ω⊕ P , if T is a linear interval t(s1, . . . , sn) . . .

t(t1, . . . , tn).

The converse of this operator, before is easily defined if we change the up-wave mod-
ular sum by subtraction. Examples of how the after operator works are: p(3,month) after
i(3 . . . 4,month) is equivalent to i(6 . . . 7,month). p(2,month) after t(1, 10, 1990) . . .
t(12, 11, 1990) is equivalent to the interval t(1, 12, 1990) . . . t(12, 1, 1991).

3.5. desired inferences

Now, we are going to elaborate on the kind of temporal inferences that should be drawn
when using NatureTime for dealing with cyclical events or for the specification of agents
behaving at different levels of time granularity. In the first case, the mechanism is simple.
In the second case, we will elaborate on a particular type of agent specification that, to
our knowledge, has not been treated so far. This is for the specification of the behaviour
of an agent is simulation models, specially those used for ecosystems. We will discuss
why an executable temporal (logical) reasoning system is suitable for such a problem,
and then what are the problems we may come across and how we can overcome them
using NatureTime. Both cases may also be combined as will be shown in Section 5. In
either case, the way in which a temporal sentence will being provable from a knowledge
base will differ only in the way the proof is constructed.

676 E. Mota et al.

3.5.1. temporal unification

Before we describe the desired inferences we need to define the concept of temporal
unification which is the core of our logic. Unification as traditionally understood is the
process of determining whether two expressions can be made identical by performing
appropriate substitutions for their variables.

Temporal unification is the process of determining whether two temporal entities (inter-
vals or moments of time) have some temporal entity in common. In traditional temporal
reasoning jargon this is equivalent to finding if they are equal, overlap or one is included
into the other (i.e. during, starting or finishing). Note that we do not mention substi-
tution of variables, it is implicit that if one (or both) of the temporal entities is (are)
a variable, then one may substitute the other. A full description of how this unification
works is given in the next section.

3.5.2. temporal query and provability

We now give the notion of what one would expect as a correct answer for a given
temporal query about a knowledge base. Formally, we have.

Definition 3.4. Let ∆ be a set of temporal formulae (i.e. a knowledge base). For any
query φ@ τ we want to know if there is an interval τ ′ (possibly more than one), where τ ′

occurs within τ (possibly equal to it), such that φ@ τ ′ holds.

The concept underlying the process of proving a given query is temporal provability
defined as follows.

Definition 3.5. Let ∆ be a set of temporal formulae, φ@ τ a temporal formula. We say
that φ@ τ is temporally provable (or temporally derivable from ∆, written ∆ `t φ@ τ if
by systematically applying modus ponens, along with standard and temporal substitution,
to the set of temporal assertions and temporal logical axioms of ∆ we can find a temporal
substitution τ ′ for τ such that we can derive the formula φ@ τ ′, written ∆ `t φ@ τ ′.

Given a certain goal, the interpreter we are going to present in the next section searches
systematically for derivations of temporal formulae according to the above definition.

Because it is well known that provability intuitively suggests how logical implication
can be automated, then we may say that ∆ `t φ@ τ is equivalent to say that ∆ |=t φ@ τ ,
i.e. φ@ τ temporal logically follows from ∆.

3.5.3. reasoning about cyclical events

Any inference about any cyclical event E can be obtained by, first, specifying an atomic
temporal formula involving the event and the interval of time at which such a repetition
happens at a given time granularity. In this case the temporal entity T should be a
cyclical interval, e.g. i(s1 . . . s2, ci). Then we write E@ i(s1 . . . s2, ci) to mean that E is
true throughout the cyclical interval s1 . . . s2 at the level i of granularity defined by the
MTC ci.

Example 2 : Suppose we have the following sentences in a knowledge base

NatureTime: Temporal Granularity in Simulation of Ecosystems 677

harvest(corn) @ i(5 . . . 6,month).
harvest(herb tea) @ i(2 . . . 10,month).
harvest(coffee) @ i(8 . . . 4,month).
harvest(rice) @ I ⇐= (harvest(tea) & harevst(coffee)) @ I.

The types of inference cyclical reasoning about this KB could be:

Q - harvest(corn) @ i(6 . . . 9,month).
A - {harvest(corn) @ i(6 . . . 6,month)}
Q - harvest(corn) @ i(3 . . . 5,month).
A - {harvest(corn) @ i(5 . . . 5,month)}
Q - harvest(rice) @T .
A - {harvest(rice) @ i(8 . . . 10,month), harvest(rice) @ i(2 . . . 4,month)}
Q - harvest(corn) @ t(x1, x2, x3) . . . t(y1, y2, y3)
A - harvest(corn) @ t(1, 3, x3) . . . t(31, 5, y3)

Note that the last query is more specific in the levels of time required. This will
be very useful when we have processes involved at different granularities. The process
of reasoning is standard backward chaining. As shown in .Mota (1994), it is suitable for
representing entailed events (cyclical or not) of temporal knowledge for ecological domain
and for reasoning about when an implication holds in a given knowledge base, i.e. for a
knowledge base ∆ we may be interested to know if ∆ ` P → Q, where P and Q are atomic
sentences. However, because backward chaining involves looking back in time for clauses
for events, under certain circumstances, forward chaining can be computationally more
attractive. One of these is the case of reasoning about simulation models of ecosystems
(i.e. simulating the behaviour of some agent), where backward chaining does not seem to
provide reliable solutions for testing more complicated problems as in the case of many
agents interacting at different scales of time. Our next step will be to show why we also
need forward chaining, and for what kind of inferences it is useful.

3.5.4. reasoning about an agent’s behaviour

There are some cases in which the behaviour of certain entities could be represented by
means of differential equations, which is an expressive way of representing the continuity
of their behaviour. But a continuous representation of time is not always the best for
the domain of ecosystems. For example, if we want to represent the behaviour of agents
which immigrate and emigrate from one population to another, then it is inconvenient
to represent this using continuous functions.

A more usual way of modelling the changes in the state of such agents is to perform
them at the time step of their corresponding granularity (sometimes with a fine grained
“internal” time scale to approximate continuous change). This yields a discrete approxi-
mation to continuous models. However, a discrete approach does not usually allow us to
compute the value of some attribute at a time in between two consecutive time steps. For
instance, if we have the specification of some ecological entity working at a weekly scale
of time, then because its attribute would be updated only at every week we could not
obtain its value separately within a week. To overcome this, an additional mechanism
seems to be needed beyond the standard way of proving a sentence.

One way of obtaining such a value is to assume that the attribute changes in a linear

678 E. Mota et al.

fashion, and then using a linear equation to estimate it. For more complex processes a
non-linear behaviour might be assumed and the value would be computed in the same
way. When doing this, we have to assume that the process does not interact with other
processes (possibly of other agents) that may affect the attributes in question. The reason
for such an assumption is that the function used to estimate the desired value needs the
values of the attribute at the end points of the interval between the consecutive time steps,
i.e. the previous and the future values. However, if there is such an interaction, then we
cannot estimate the future value because it may happen that the other process(es) have
influenced so much that the effect over the attribute can be much more than the expected.
Moreover, to estimate such a future value it is needed to know the wanted value which
leads us to a situation of “deadlock”.

For simplicity we avoid interpolation between time points. In this case every entity
with its behaviour specified at a coarser level will have its state changed only at that
level, i.e. any query about its state at any time between two consecutive time steps will
always give the computation for the last one. Based on these assumptions, the temporal
reasoning system should reason about queries like:

1. What is the value of an attribute of an entity at any given time?
2. When will any two entities (no relation between them) have the same value?
3. What is the value of a given entity at a given time which interacts with another

entity which works at different time scale?

There are two important components to this problem. First we want the deduction
process to be able to search for a value which satisfies one query, but this value should be
determined by a given temporal entity. This time can be synchronous or asynchronous
in relation to the updating time steps of the attributes of the ecological entity we want
to know something about. Second, the computation of the value of an attribute of an
agent at a given time i depends on the value at time i− 1. Because of this, a simulation
model can be interpreted as being a relation between the state of the agent in the past
and its state in the future ruled by certain conditions of state transition.

This idea of constructing the future state based on the past is known as declarative
past and imperative future .(Gabbay, 1989). In this view programs should be expressed
in a temporal language which could be read in a declarative way, and when the program
runs it should construct a model for the temporal sentence it is intended to represent

.(Gabbay and Reynolds, 1995). Relating it to the usual simulation models of ecosystems
are developed, this is equivalent to describing the behaviour of agents using a temporal
logic. The simulation of the behaviour of the agent through the flow of time corresponds
to the construction of a model, or running the program for a temporal sentence at each
time step. As our language deals with explicit representation of time, the usual way of
representing past → future in this work should consider the length or period of time
between past and future (or present). As far as simulation models are concerned, such an
imperative formulation can be represented in NatureTime as in the following schematic
way.

A′@P after Tp ⇐= A@Tp &R(A,A′).

where A represents the information about an ecological species, Tp the previous time,
P is normally in the form p(1, C), C is an MTC, and the second order predicate R is
intended to represent the sequence of formulae which involves A and A′ to produce their

NatureTime: Temporal Granularity in Simulation of Ecosystems 679

relationship within the flow of time. However, Gabbay’s approach proposes not to use
the traditional execution mechanisms based upon resolution and refutation. In this paper
we do not need to make such an assumption. If A and A′ both simply refer to the same
predicate (e.g. A is value(a,Xp) and A′ is value(a,Xf)), then we do not have to worry
about branches in the search space. We simply follow a single chain of conclusions until
we have reached some desired (possibly the final) time.

For instance, suppose we have the following hypothetical agent specification.

1 - value(a, 100) @ t(1, 1, 1).
2 - value(a,Xf) @ p(1,week) after Tp

⇐=
value(a,Xp) @Tp &
Xf is Xp + 1.

The execution of this program would generate the value of a for every week, but without
using the traditional combination of backtracking and recursion until the initial state.
Instead, the generation of the model for the sentence should get the previous state of the
computation (past) in order to produce the next state (future). For this example we have
the following table with the first steps of execution for a goal value(a,X) @T , showing
the present state of computation, the sentence being matched for each backtracking step
for the generation of the future state. After the initial state the sentence used is always
the second, and to compute a new state it is not necessary to reach the initial state again
as backward chaining would do.

Present Sentence matched Future

— 1 value(a, 100) @ t(1, 1, 1)

value(a, 100) @ t(1, 1, 1) 2 value(a, 101) @ t(1, 7, 1)

value(a, 101) @ t(1, 7, 1) 2 value(a, 102) @ t(1, 14, 1)

value(a, 102) @ t(1, 14, 1) 2 value(a, 103) @ t(1, 21, 1)

4. The Enhanced Meta-interpreter for Temporal Reasoning

In this section we will show the specification of the simple meta-interpreter of the
NatureTime system. We will show the clauses of the extended temporal meta-interpreter,
with an explanation for each extension.

4.1. a meta-interpreter for NatureTime

The meta-interpreter is an extension of the one presented by .Sterling and Shapiro
(1986). Because we are interested in problems where the specification of the behaviour
of agents through the flow of time is basically a clause where the state of the agent in
the past is related to the (present or) future, then we also allow the meta-interpreter to
deal efficiently with this kind of clause. This will be presented in Section 4.1.2.

680 E. Mota et al.

4.1.1. extending a standard meta-interpreter

The extensions are basically twofold. First, the predicate clause must also identify well-
formed temporal formula as specified in Section 3.2.2; second, the introduction of a special
unification for PTEs. Note that most of the unification will still be done by standard
Prolog unification, except when involving PTEs. However, as we treat temporal reasoning
as a problem of unifying PTEs, then we need to control the part of the unification which
deals with it. Because of this, the standard solve1 predicate .(Sterling and Shapiro, 1986)
is changed to be a binary relation solve2. The meta-interpreter accepts queries which are
temporal formulae. It succeeds if the query holds throughout some interval within the
given PTE as specified in Definition 3.6. So, the first argument is the temporal formula
to be solved, and the second the result of the computation for the first argument be true.
In what follows, system(X) succeeds if X is a system predicate but not a negation. The
meta-interpreter is defined as follows.

1 - solve(X,X) : −
¬temp formula(X),
(clause(X ⇐= Y),
solve(Y,)
;
system(X),
call(X)).

2 - solve(¬X,) : −
¬solve(X,).

3 - solve(A@T1, A@T3) : −
¬A = (&),
clause(A@T2),
temp unify(T1, T2, T3).

4 - solve(A@T,A@RT) : −
A = (A1 &A2),
solve(A1 @ , A1 @T1),
solve(A2 @ , A2 @T2),
temp unify(T1, T2, RT1),
temp unify(T,RT1, RT).

5 - solve(A&B,A1 &B1) : −
solve(A,A1),
solve(B,B1).

6 - solve(A ∨ B,R) : −
(solve(A,R) ;
solve(B,R)).

7 - solve(A@T1, A@T3) : −
clause(A@T2⇐= Body),
solve(Body ,),
temp unify(T1, T2, T3).

The first clause deals with classical formula in the usual way. The second implements
the negation by failure as using the standard way of negating if it cannot be proved.
The third clause consults the Knowledge Base (KB) to check whether we can directly

NatureTime: Temporal Granularity in Simulation of Ecosystems 681

match A@T1 to some unit clause or not. The fourth clause deals with composite events,
where we want to know if there is some time interval throughout which they can happen
all together. Clauses 5 and 6 are just another way of re-writing the standard clauses
for logical conjunction and disjunction, and so do not need any detailed explanation.
The last clause is the clause for logical implication, which gives an alternative for the
first two clauses if they fail. To understand the clauses of the meta-interpreter we need
to understand the declarative interpretation of each one; they should be interpreted as
follows.

3 - A is true throughout T3, if A is not a composite event, and A is true throughout T2,
and T3 is the temporal unification of T1 and T2.

4 - A is true throughout T if, A is a composite event consisting of A1 &A2, and A1
is true throughout T1, and A2 is true throughout T2, and RT1 is the temporal
unification of T1 and T2, and RT is the temporal unification of T and RT1.

7 - A is true throughout T3 if, the A@T2 is the head of a temporal Horn clause with
body Precondition, and the body can be solved, and T3 is the temporal unification
of T1 and T2.

In the first (1) and in the last clause (7), when the Y and Body are solved, any
occurrence of temporal entities within them will be substituted by standard unification.
The value computed by the second argument is ignored here. This can give unsound
results if there are shared variables present. We restrict programs and queries to avoid this
situation. The ideal solution is either if the solver carries a list L of temporal variables and
binds them only after solving all temporal formulae in a wftf, or having a sort of memory
for storing operations over PTE and combining those stored with the new one during
the process of deduction. This is similar to the idea of environment .(van Emden, 1984)
used in the implementation of Prolog machines. However, this would require a more
sophisticated meta-interpreter, and for the purposes of this work this simple solution
provides a powerful mechanism for a significant subset of temporal problems.

4.1.2. dealing with simulation models

As we have discussed in Section 3.5.4 it is interesting to deal with simulation clauses
in a different way. The process of reasoning should be Forward Chaining rather than
backward, and we also want to obtain the state of agent at any time in between two
consecutive time steps of its behaviour, i.e. asynchronous information. Although the
basic extension defined in the last section can be used for the specification of simple
simulation models .(Mota et al., 1995a), we have shown .(Mota et al., 1995b) that for more
complicated models, where it is needed to obtain asynchronous information, the solver2

does not offer mechanisms for this. In this work we will provide the meta-interpreter
with such a facility. Because we are considering discrete models, then every entity with
its behaviour specified at coarser levels will have its state changed only at that level, i.e.
any query about its state at any time between two consecutive time steps will always
give the computation for the last one.

For a given goal A@T the solving process should first check if the time requested is a
fixed time. If it is the case, then verify if this formula can match with part of the body of
a temporal formula like the schemata given in Section 3.5.4, which we call a simulation
clause. After this, instead of using the meta-interpreter as above (which would apply

682 E. Mota et al.

backward reasoning), the search should re-use, at every time step, the last value for the
state of the entity in order to reason forwards.

What if the time in the goal is not a ground temporal term? We will use the same
solution, except that the searching process does not need to check the next time with
the previous one in order to stop the search.

In the more complicated case, the searching process basically checks if the solution
found is that of the specified time. If it is not the case, then if the given time T is
the future of Tp and the PTE P after Tp is not the future of T , a new instance of the
simulation clause is used to continue the search. More formally we have.

Definition 4.1. Given an atomic temporal assertion Ai @Ti (or the initial state for A),
a goal A1 @T , one (or more mutually exclusive) simulation clause schemata

C = A′@P after Tp ⇐= A@Tp & Constraints ,

where A, A′, Ai and A1 have the same predicate name and arity. Then, the forward
computation which will search for a solution for the goal A1 @T is given as follows.

if T is ground temporal term then

reduce T to a canonical PTE, say T1

T ′i = Ti
A′i = Ai
while T ′i ≺ T1 then

get a new instance C ′ of C, matching A@Tp with A′i @T ′i , and
future(T ′i , P, T

′
j) holds and

if T1 ≺ T ′j holds then stop the search, otherwise
if ¬T1 ≺ T ′j holds and Constraints is found to be true by the solver clauses
then
T ′i = T ′j and A′i = A′

if T is a temporal variable then

get a new instance C ′ of C, matching A@Tp with A′i @T ′i , and
future(T ′i , P, T

′
j) holds and

Constraints is found to be true by the solver clauses then
T ′i = T ′j and A′i = A′

return A′i @T ′i

Note that this algorithm is guaranteed to terminate, in the case that T is a ground
TT, because of the fact that the condition T ′i ≺ T1 will eventually fail, or T1 ≺ T ′j
will eventually hold. If more solutions are requested, then backtracking over the clause
selection strategy is possible to find another one only if T is not a ground TT because
there will always be a T ′j such that future(T ′i , P, T

′
j) holds. But in the case T1 (the reduced

form of T) is a ground TT, then once ¬T ′i ≺ T1 holds the computation will never get
new instances of C, and so no more solution will be found.

4.2. general unification algorithm

The specialized unification algorithm we developed to treat PTEs consists of two steps.
First, every complex PTE is reduced to a canonical form of temporal entities. Second, as

NatureTime: Temporal Granularity in Simulation of Ecosystems 683

canonical forms of a temporal entity are in fact intervals of time, or collections of them,
then they are unified according to the usual relations between time intervals. These are
based on the future and past relations, and also in the relation between periods of time at
different levels of granularity. The result of a unification between two temporal entities is
not their most general unifier as is traditional, but rather the canonical form of temporal
entity which is the result of their matching, and this can involve more than one temporal
entity as an example will show. The temporal unification is defined as follows.

Definition 4.2. Let t1, t2 and t be three PTE. We write temp unify(t1, t2, t) to mean
that t1 and t2 are unifiable and t is the unified term iff either

• t1 = t2 = t′ and t is the reduction of t′, written reduce(t, t′), or
• t1 6= t2, and

t1 is reducible to rt1 - reduce(t1, rt1) and
t2 is reducible to rt2 - reduce(t2, rt2) and
t is reducible to t′ - reduce(t, t′) and
t′ is the matching of rt1 and rt2 - unify units(rt1, rt2, t′).

For instance, suppose we want to unify i(2 . . . 10,month) (or all intervals from Febru-
ary to October) with i(8 . . . 4,month) (or all intervals from August to April). In this
case there will be two different instances of the canonical form of cyclical interval, i.e.
i(2 . . . 4,month) and i(8 . . . 10,month). How unification works is related to the unification
of temporal units as defined in Section 4.4.

4.3. reduction of temporal terms

The reduction algorithm is divided into two groups of clauses. The first consists of
the clauses to deal with canonical forms of temporal expression. The second, deals with
complex forms. First we introduce what we mean by temporal variable: a term t is a
temporal variable if it is a logical variable, i.e. if t ∈ Lv, or a canonical form of PTE
where all its elements are logical variables. Based on it we have the following reduction
algorithm.

Definition 4.3. Let t1 be a PTE, and t2 a canonical PTE. We say that t1 is reducible
to t2, written reduce(t1, t2) iff one of the following holds.

• t1 = t2, and t1 is a temporal variable, temp var(t1).
• ¬temp var(t1) and is in the form t(x1, . . . , xk), so t2 = t1
• t1 = s1 . . . s2, and t2 = rs1 . . . rs2 where

s1 is reducible to rs1 and
s2 is reducible to rs2.

• t1 = t2 = i(s . . . t, c)
• t1 = t after ∆ and

t1 is reducible to rt1 and
t2 is reducible to rt2 and
future(rt1,∆, rt2) holds.

684 E. Mota et al.

• t1 = t before ∆ and
t1 is reducible to rt1 and
t2 is reducible to rt2 and
future(rt2,∆, rt1) holds.

For instance, p(1,week) after (p(1,week) plus p(3, day) after t(14, 2, 1994)) is reduced to
t(1, 3, 1994).

4.4. unification of time units

The unification on the level of units is just the matching of temporal entities. This
has to deal with linear and cyclical intervals, and also intervals of both types. The linear
unification is based on the ≺ ordering relationship of the bounding temporal entities of
the interval, and the modular unification is based on the matching of circular intervals.
In both cases we use the relations during and overlap .(Allen and Hayes, 1985) taking
into account that the “last” element of a modular set is followed by the first. Because of
this, the linear match has four different cases, and the modular case six as described in
Appendix C.

Its definition is as follows.

Definition 4.4. Let s1, s2 and s3 be three canonical forms of PTEs. We say that s3 is
the unit matching from s1 and s2, written match units(s1, s2, s3) if one of the following
holds.

• s1 = s2 = s3.
• s1 and s2 are linear intervals, and s2 is during s1, s3 = s2.
• s1 and s2 are cyclical intervals of a MTC c, and

mod temp class(c′, c,mv) holds and
s3 is the cyclical interval from the modular matching between s1 and s2. (could

be more than one matching)
• s1 is a cyclical interval and s2 is a linear interval and

s′1 is a linear instance of s1, written time instance(s1, s
′
1), and

s3 is the linear matching between s′1 and s2

• s1 is a linear interval and s2 is a cyclical interval and match units(s2, s1, s3) holds.

Note that time instance creates a linear instance of a cyclical interval. As a cyclical
interval represents a collection of linear intervals, there may exist many instances of it
in the level of linear intervals. For this reason, this is one of the most important features
of the logic because without it, the concept of cyclical interval would be useless. In a
pure linear model of time, it is necessary to introduce some “expert” computation over
recurrent representation, in order to obtain reasoning about cyclical events. In our work,
the use of cyclical interval provides an easy and elegant mechanism to represent and
obtain reasoning about cyclical events and processes, since this new type of interval
represents many instances in the linear level.

Example 3 : Suppose we have the following sentences in a knowledge base

NatureTime: Temporal Granularity in Simulation of Ecosystems 685

harvest(corn) @ i(5 . . . 6,month).
harvest(herb tea) @ i(2 . . . 10,month).
harvest(coffee) @ i(8 . . . 4,month).
harvest(rice) @ I ⇐= (harvest(tea) & harevst(coffee)) @ I.

In what follows, the symbols “: |” and “>>” represent the query and answer
prompts, respectively, of the NatureTime system. When a query is done the
dialog interface calls the solve2, and shows the second argument of it as the
answer.

: | harvest(corn) @ i(6 . . . 9,month).
>> harvest(corn) @ i(6 . . . 6,month)
: | harvest(corn) @ i(3 . . . 5,month).
>> harvest(corn) @ i(5 . . . 5,month)
: | more.
>> Sorry, no further solution is possible.
: | harvest(rice) @T .
>> harvest(rice) @ i(8 . . . 10,month)
: | more.
>> harvest(rice) @ i(2 . . . 4,month)
: | more.
>> Sorry, no further solution is possible.

The more command allows all possible solutions by backtracking. In the next section
we shall show two examples of simulation models specified in our language, and how they
are solved.

5. Simulation Models in NatureTime

This section presents the application of our logic language to develop a simulation
model for the growing process of the trees of the example of Section 2, and we also present
another example of two temporal entities working at different time scales and which
interact with one another. After this, we point out the limitations of this implementation
and of the language.

5.1. example of tree growing process

Usually, a discrete model of the height of a tree ti at a given time t + 1 might be
represented by an equation of the form

Hi(t+ 1) = Hi(t) + riHi

(
1− Hi

MAXHi

)
, (5.1)

where MAXHi is the maximum height that a tree ti can reach, ri is the intrinsic growth
rate of ti, and Hi is the height of ti. Usually, ri is assumed to be an average value per
some unit of time. However, it does not explicitly model the interaction among trees,
which may affect this rate. The influence on a tree ti by other trees is approximated as
a function of their height and their distance from ti. This is intended to represent how
the acquisition of biomass of other trees affects ti. Basically, the taller a tree tj , the more
effect it will have on the growth rate of ti, and the further tj is from ti the less effect
it will cause. This will be represented by the quantity kHjdij , where k is a constant which

686 E. Mota et al.

would normally be determined empirically, and dij is the distance between ti and tj . The
increase of the height at every time step will be given as follows.

∆′H =
(
rs −

nb∑
j=1

k
Hj

dij

)
Hi

(
1− Hi

MAXHi

)
, (5.2)

where rs is the standard growth rate of a tree if no influence is present, nb is the number
of tree neighbours of ti.

In our previous scenario, as the scale of time used was week, we could define another
MTC within the hierarchy defined, that is mod temp class(week , day , 7). The rainy sea-
son, assumed to be only in February, can be written as season(rain) @ i(2 . . . 2,month).
So, in every instance of February, within a MTC of year, it will rain.

The height of a tree can be calculated by using the equation (5.1), but we have to make
the growth rate ri a function of the interaction between the tree and its neighbour trees
as in equation (5.2). To do this, we first define a predicate to represent the neighbours
of a tree along with the distance between them. The height must be calculated for each
time step. This will be represented by the following predicate definition, where the base
case is the initial height for each tree.

height(Tree, H) @ p(1,week) after T
⇐=
height(Tree, H1) @T &
max height(Tree,MAX) &
real gr(Tree, T, . . . , (p(1,week) after T,RGr)) &
neighbours(Tree,NTrees) &
influences(NTrees, T, R) &
sum(R,TR) &
(Gr is RGr − TR) &
(C is Gr ∗H1 ∗ (1−H1/MAX)) &
(H is H1 + C).

The influences/3 predicate represents the influence of the neighbours of a tree since
the time T . The sum/2 predicate represent the relation between a list of values and a
number which is the sum of these values. The real gr/3 gets the supposed “real” growth
rate of the tree throughout the interval of one week. The real gr/3 can be defined in a
standard Prolog style, for example, as follows

real gr(Tree, T,Gr)
⇐=
season(rain) @T &
growth rate(Tree,LowGr) &
(Gr is 1.2 ∗ LowGr).

real gr(Tree, T,Gr)
⇐=
¬ season(rain) @T &
growth rate(Tree,Gr).

NatureTime: Temporal Granularity in Simulation of Ecosystems 687

Gr is the growth rate if T is a rainy season and Lowgr is a standard growth rate, then
Gr = LowGr ∗ 1.2. Gr is the growth rate if it is not true that T is a rainy season. Note
that we call the solve meta-interpreter to use its facilities of unification as we saw in
Section 4. The complete knowledge base of our example is shown in the Appendix D.

Below, we show the simulation of the growing process. Note that when the simulation
“leaves” the rainy season the growth rate decreases, as expected.

| : height(t1, H) @T .
>> height(t1, 1) @ t(14, 2, 1994)
| : more.
>> height(t1, 1.01) @ t(21, 2, 1994)
| : more.
>> height(t1, 1.02) @ t(28, 2, 1994)
| : more.
>> height(t1, 1.03) @ t(5, 3, 1994)
| : more.
>> height(t1, 1.037) @ t(12, 3, 1994)
| : more.
>> height(t1, 1.045) @ t(19, 3, 1994)
| : more.
>> height(t1, 1.054) @ t(26, 3, 1994)
| : more
>> height(t1, 1.062) @ t(3, 4, 1994)

5.2. two ecological species working at two time scales

The following example is part of our discussion on the granular aspects of time in
simulation models of ecosystems .(Mota et al., 1995b).

Example 4 : The ecological entities are a tree growing, called simply tree and an
insect (or a cloud of insects) called bug . The tree has its growth rate affected by
the bug only if it flies on the top of the tree. The height reached by the bug will
depend on the height of the tree, and the height of the tree depends on the time
spent by the bug at a certain position, say 5 m. For simplicity, instead of using
the logistic equation for the growing process, the tree grows 0.5 m every week.
The time scale of the bug’s movement is considered to be day.

There is an interaction between these two entities, and we will assume that the tree
should get the “progress” of the bug’s position in a period of one week. However, in the
tree’s behaviour specification there is no need to explicitly represent the scale of the bug ,
because it could be another entity interacting with it. Then we shall use the predicate
scale(time,Object ,Process,MTC) to specify at which scale of time the process of a given
entity works. In this way we have the following facts in our KB.

growth rate(tree, 0.5).
scale(time, bug ,movement , day).
scale(time, tree, growing ,week).
depend(height , growing).
value(height , tree, 9) @ t(1, 1, 1).

688 E. Mota et al.

value(pos, bug , 6) @ t(1, 1, 1).

Now we need a general way to capture the progress of an attribute of a given agent
throughout a certain period of time. We will use the predicate progress4 to represent the
progress observed of the value of an attribute Att of an agent Obj , from a given temporal
entity T during a given period of time P , and the progress will return in a list of all the
values for Att during T . A simple specification for progress/4 is in Appendix E, and a
more deep discussion on the specification of interacting agents working at different levels
of time granularity is out of the scope of this work. More details can be found in .Mota
et al. (1995b). The specification of the tree’s growing process can be, for example, as
follows.

value(height , tree, H) @ p(1,week) after T
⇐=
value(height , tree,Hi) @T &
progress(value(pos, bug ,) @T, p(1,week), L) &
growth rate(tree,GR) &
influence(GR, L,RealGR) &
(H is Hi + RealGR).

The specification of the bug ’s movement can be as follows.

value(pos, bug ,PB) @ p(1, day) after T
⇐=
value(pos, bug ,PBi) @T &
value(height , tree, H) @T &
new pos(PBi , H,PB).

The new pos3 simply implements a change of the bug’s position, and it is also in the
Appendix E. For this specification we have the following results for the simulation of the
bug’s position.

| : value(pos, bug ,Pos) @T .
>> value(pos, bug , 6) @ t(1, 1, 1)
| : more.
>> value(pos, bug , 8) @ t(2, 1, 1)
. . .
| : more.
>> value(pos, bug , 8) @ t(8, 1, 1)

For the tree’s growing process we have.

| : value(height , tree, H) @T .
>> value(height , tree, 9) @ t(1, 1, 1)
| : more.
>> value(height , tree, 9.44) @ t(8, 1, 1)

NatureTime: Temporal Granularity in Simulation of Ecosystems 689

. . .
>> value(height , tree, 11.2) @ t(6, 2, 1)
| : more.
>> value(height , tree, 11.64) @ t(13, 2, 1)

This just shows the behaviour through the flow of time. In the case of a query about
the value of the tree’s height at any time we will have the following results, as expected.

| : value(height , tree, H) @ t(10, 1, 1).
>> value(height , tree, 9.44) @ t(10, 1, 1)
| : value(height , tree, H) @ t(10, 2, 1).
>> value(height , tree, 11.2) @ t(10, 2, 1)

Note that queries were for time values in between two synchronous time steps of the
tree’s growth.

6. Analysis and Related Work

6.1. strengths of the NatureTime system

NatureTime is a comparatively simple logic which does not stray far from the tra-
ditional style of mainstream logic programming—yet it can deal with a wide range of
the problems commonly encountered in ecological modelling and simulation. Moreover,
when much of the ecosystem is stable (i.e. unchanging when events happen) then most
of the updating would be redundant. By using a logic we have presented in this paper
we only need to deduce changes to the relevant aspects of the ecosystem. Thus if our
simulation needs to include things working at a very small temporal granularity (like a
little insect) together with things which change slowly (like a tree), it is redundant to
update the state of the tree with every event affecting the insect. Our system does not
involve this redundancy as we have demonstrated in the Example 3 of Section 5.2.

In terms of representation, NatureTime has a simple and elegant mechanism for
the representation of cyclical knowledge by using the concept of cyclical intervals. This
allows us to write harvested(coffee) @ i(8 . . . 4,month), without the necessity of saying
that harvesting can occur every year, since the MTC month is included in the definition
of year, and year is flow of time. This can also be used to create another MTC which are
not nested within the main hierarchy. For instance,

mod temp class(labour week , day , 5).
mod temp class(labour month, labour week , 4)
mod temp class(lunar month,week , 4).

In this paper we did not present any mechanisms to deal with more complex cyclical
intervals, and other temporal entities like collection intervals and fluctuation of temporal
entities over other temporal entities. This is basically related to introduce mechanisms
of inference to reason about sentences like “all Mondays of 1996”, although it does not

690 E. Mota et al.

seem to be useful in simulation models. Such a treatment, here, would distract from the
main point of this work.

The temporal operator after allows a more legible reading of some temporal statements,
and it represents well enough the relation between past and future at different levels of
time granularity. This leaves the user free to write his/her inference rules without the
necessity of using properties and relations between temporal units. It is just needed to
understand what a temporal formula is intended to mean and how we can map temporal
knowledge to the forms of expressions of the language. For instance, the sentence grass
is free to grow up 1 month after a certain month X if sheep use the meadow up to X
can be easily translated to our logic as follows.

grow free(grass ,meadow) @ p(1,month) after i(X . . .X,month)
⇐=
use(sheep,meadow) @ i(Z . . .X,month).

6.2. limitations of the NatureTime system

The main limitation of NatureTime with earlier approaches using traditional com-
putational logic, is its exponential search requirement in the case we have many agents
interacting. However, because it uses a forward chaining strategy to re-use the previous
computation of a given attribute, then the reduction of search space is considerable.

Another limitation which does not seem to affect the application for the more precise
problems we proposed to tackle, is the lack of a suitable temporal connective for the
representation of sentences like “it rained from 3 pm to 5 pm sometime last week”. This
could be the operator 3 usually known as “sometimes”.

6.3. related work

One early investigation on the representation of time clock on any scale was pro-
posed in .Ladkin (1986a), where interval calculus .(Allen, 1983) is extended to achieve
a time framework where different time units (TU) can be specified. This extends the
idea of convex to union-of-convex intervals .(Ladkin, 1986b), where there may exist gaps
between convex intervals. The representation of Basic Time Units is a sequence like
[year ,month, day , hour , . . .]. In .Ladkin (1987) it was shown that by introducing appro-
priate relations between intervals such a sequence gives a suitable representation for a
convex rational interval structure. We provide a similar entity that we called smallest in-
terval which also has as many elements as desired, but we reach this representation from
different concepts, i.e. this will depend on the number of MTCs defined. In NatureTime
it seems to be a bit easier to define calendars, and we incorporate circularity within the
model. Although union-of-convex intervals can be compared to our cyclical interval,
Ladkin did not explore the subject of dealing with cyclical events.

A similar approach was proposed in .Leban et al. (1986), where the basic idea is to use a
set of primitive collections to specify other collections by using two operators, slicing and
dicing, in order to select intervals from collections of intervals. Each primitive is defined
by specifying the intervals of which it is composed. In this approach, circular aspects of
time can be obtained from the δ-values which are treated as if they were a circular list.
Although this approach was shown to be useful for reasoning about scheduling, it does
not really deal with different granularities of time because it does not seem to be clear

NatureTime: Temporal Granularity in Simulation of Ecosystems 691

how we can we specify relationships between propositions defined over different time
scales. Furthermore, the way in which circularity is obtained is very much dependent on
the implementation of circular list rather than the concept itself, although it gives a close
idea of it.

Another approach for representing cyclical events was proposed by .Koomen (1989),
which is based on Allen’s system .(Allen, 1984; Allen and Hayes, 1985). The idea is
to define a recurrent event e by stating explicitly that it is true repeatedly over an
interval I, i.e. RT(I, e). However, it is not clear whether the interval I is convex or not,
and it is not obvious how to use the mechanisms of inference to model cyclical events in
a “natural” way to obtain appropriate inferences. As this approach does not deal with
metric information, no representation of propositions at different time scales is possible.

A more pragmatic approach for dealing with time granularity was proposed in .Dean
(1989), in order to speed up the information retrieval on a large temporal data base
maintained by the time map system. This work proposes a hierarchical framework of
time such that events at different levels of abstraction can be easily represented and
retrieved by using a structure similar to the usual calendar. The hierarchy over a linear
structure of time is obtained by the concept of a partitioning scheme, which is a sequence
of partitions P1, P2, . . . , Pn of the set of reals, in such a way that for each i < n if an
interval I belongs to a partition Pi, then there is a set of time intervals in Pi+1 such that I
is partitioned by it. Although this approach shows to be very successful in the context
of data base maintenance, the aspect of representing and reasoning about cyclical events
was not explored. Moreover, it does not seem to be a suitable approach for modelling
more complex problem in the real world. As we often want to obtain some prediction
via inference rules, and not only retrieve assertions about temporal knowledge, then this
approach is not suitable for the type of problem we are dealing with.

A more recent approach .(Ciapessoni et al., 1993; Montanari, 1994) proposed a many-
sorted first order logic augmented with temporal operators and a metric on time to deal
with time granularity. This is achieved by introducing contextual and projection oper-
ations into topological logic .(Rescher and Urquhart, 1971) (i.e. standard propositional
logic added with a parameter operator Pα, where Pα(p) is intended to mean “propo-
sition p is realized at the position α”). The first identifies the domain or level of time
granularity at which a given formula has to be considered. The second is used to con-
strain formulae to different domains. The hierarchy of time is a linear structure called
the universe of domains, where a granularity ordering relationship is imposed over this
universe. Also a partial ordering of disjointedness is provided to relate domains at dif-
ferent levels of granularity. This is similar to the partitioning scheme of Dean’s approach
(op. cit.). Temporal domains are related to our concept of modular temporal class. Their
concept of locally temporally valid is related to the meaning of the throughout temporal
connective. Finally, because we define grains of time based on modular chain of modular
sets, cyclicity of events happening at different granularities is more easily obtained.

In the context of reactive systems specification and reasoning, .Fiadeiro and Maibaum
(1994) proposes a hierarchical (vertical) decomposition (or abstract implementation), of
object specification in temporal logic. Such objects are seen as building blocks of the
design process of reactive systems. At each layer of such a hierarchy there is a logic
dealing with a single time scale, isomorphic to the set of natural numbers, and there
is a collection of objects that may be used for composing complex objects (systems)at
higher levels of abstraction. In this way, temporal execution of an abstract action is done
by the temporal execution of concrete actions of the level below. The interface between

692 E. Mota et al.

both levels is given by axioms which says when the concrete actions start, are being
executed or have finished. This work does not intend to represent or reason about time
explicitly. However, close observation shows us that the granularity of time is embodied
within the specification of actions at each level. We could not see how cyclical processes
might be represented in such a framework. Although it is allowed to represent interaction
between abstract and concrete actions, the opposite direction of relation does seem to be
straightforward. Our approach, though based on explicit reference of time and different
mechanisms, is more general because we allow interaction in both direction.

An approach which allows many granularities in the same logic, for specifying asyn-
chronous execution of agents is proposed in .Fisher (1995). In this work, granularity
(though not mentioned) is achieved by providing each agent with its own local clock
represented by the predicate tick(O). The problems with the “next” operator is solved
by using the auxiliary predicates next-tick(O,X)—which is true if X is satisfied within
the next O tick, analogously last-tick(O,X). No mechanism is proposed for dealing with
interacting agents working at different ticks of the global clock.

The systems we have mentioned so far do not provide mechanisms for representing
events, or actions at different levels of time granularity and cyclicity in the same logical
framework. Only recently, in a parallel work to ours, .Cukierman and Delgrand (1995)
propose a framework of time based on the notion of calendars which are regarded as
being cyclic temporal objects, and are related to our concept of MTC. Since TUs are
formally represented in a linear hierarchy, recurrent activities are dealt with non-convex
intervals as suggested in Ladkin’s approach (op. cit.). While granularity is obtained by
decomposing all TUs into contiguous partially ordered sequences of other TUs, we take
a more abstract way by defining a chain of MTCs and thus obtaining both concepts at
once. TUs are related to our temporal terms using a different notation, but the set-based
language for specifying TUs generates complex expressions to be read when representing
concepts like collection intervals. They do not explore mechanisms to obtain inferences
about processes working at different time scales.

What seems to be common to almost all of these approaches is that they start from
linear structure, and then try to achieve granularity by imposing a hierarchy among
different time intervals, and cyclicity representation by using the concepts of convex and
non-convex. Although we have not started from the same point, we could interpret our
time intervals in the same way, but we do not need to do that for the understanding of
the principles of the theory proposed here. Furthermore, the basic assumptions of these
theories do not include cyclical aspects of time in their models. Such a need has also been
addressed in .Pachet et al. (1995) for dealing with musical objects.

Finally, the style in which we present our logic is very close to proposed in .Fruhwirth
(1996), where temporal reasoning is treated as an application of Annotated Constraint
Logic Programming. The reason is because we also view a logical formula as a classical
formula annotated with a PTE. Fruhwirth’s work even uses a notation for time which is
similar to our smallest interval. However, there are no special mechanisms for granularity
of time and circular time as we have, although it seems to be possible.

7. Conclusion and Future Work

In this paper we presented a new theory of time granularity which can be easily under-
stood and used to define as many levels of time hierarchy as needed. We also showed that
such a theory is useful in the representation of cyclical processes in simulation models for

NatureTime: Temporal Granularity in Simulation of Ecosystems 693

ecosystems. In particular, the theory offers a simple and elegant mechanism to specify
as many collections of time intervals as wanted, that is the concept of MTC.

As a specification language for simulation models which interact, the NatureTime
logic was shown to be a powerful tool. It offers a very expressive way to define executable
simulation models to be tested, mainly in the case of ecosystem domain.

Other possible branches of research from this work are:

To investigate the expansion of the logic for full resolution.
To adequate the temporal unification process for different types of temporal con-
nectives. For instance, the present version would not deal properly with a temporal
connective like “sometime”.
To propose a more general proof procedure which can deal with PTE.
To extend to a multi-agent framework .(Mota, 1995).

Acknowledgements

The first author would like to thank Wamberto Vasconcelos for his encouraging ideas
during many “academic coffees”. We would like to thank Robert Muetzelfeldt and Paulo
Salles who have contributed to our understanding on ecological modelling and simulation.
We also thank to Mandy Haggith for proof-reading this work and previous contribution
that helped the present paper. Finally, we thank the referees who carefully read and gave
valuable comments for this final version.

References
.—.—Allen, J.F., Hayes, P.J. (1985). A common sense theory of time. In Proc. IJCAI, pp. 528–531.
.—.—Allen, J.F. (1983). Maintaining knowledge about temporal intervals. Comm. ACM, 26(11).
.—.—Allen, J.F. (1984). Towards a general theory of action and time. Artificial Intelligence, 23(1).
.—.—Biggs, N.L. (1987). Discrete Mathematics. Oxford Science Publication.
.—.—Ciapessoni, E., Corsetti, E., Montanari, A., San Pietro, P. (1993). Embedding time granularity in a

logical specification language for synchronous real-time systems. Science of Computer Programming,
20(1):141–171.

.—.—Cukierman, D., Delgrand, J. (1995). A language to express time intervals and repetition. In Proc. 2nd
International Workshop on Temporal Representation and Reasoning, Melbourne Beach, Florida,
USA, April.

.—.—Dean, T. (1989). Using temoral hierarchies to efficietly maintain large temporal databases. J. ACM,
36(4):687–718.

.—.—Fiadeiro, J.L., Maibaum, T. (1994). SOMETIMES “TOMOROW” IS SOMETIME action refinement in
a temporal logic of objects. In First International Conference on Temporal Logic, pp. 48–66, Bonn,
Germany, July. Springer-Verlag.

.—.—Fisher, M. (1995). Towards a semantics for concurrent metatem. In Fisher, M., Owens, R., eds, Executable
Modal and Temporal Logics, pp. 86–102. Springer-Verlag. V(897).

.—.—Fruhwirth, T. (1996). Temporal annotated constraint logic programming. J. Symbolic Computation
22(5/6):555–583.

.—.—Gabbay, D., Reynolds, M. (1995). Towards a computational treatment of time. In Handbook of Logic
in Artificial Intelligence and Logic Programming, volume 4 Epistemic and Temporal Reasoning.
Oxford University Press.

.—.—Gabbay, D. (1989). The declarative past and imperative future. In Barringer, H., ed., Coloquim on
Temporal Logics and Specification, pp. 409–448. Springer-Verlag. V(398).

.—.—Haggith, M., Robertson, D., Walker, D., Sinclair, F., Muetzelfeldt, R. (1992). TEAK—tools for elicit-
ing agroforestry knowledge. In British Computer Society Symposium of IT—Enabled Charge in
Developing Countries.

.—.—Hobbs, J.R. (1985). Granularity. In Proc. IJCAI, pp. 1–4.

.—.—Koomen, J.A.G.M. (1989). Reasoning about recurrence. Technical Report Technical Report 307, Depart-
ment of Computer Science—University of Rochester, Rochester, USA.

.—.—Ladkin, P. (1986a). Primitives units for time specification. In Proc. AAAI, pp. 354–359.

694 E. Mota et al.

.—.—Ladkin, P. (1986b). Time representation: A taxonomy of interval relations. In Proc. AAAI, pp. 360–366.

.—.—Ladkin, P. (1987). The completeness of a natural system for reasoning with time intervals. In Proc. AAAI,
pp. 462–467.

.—.—Leban, B., McDonald, D.D., Foster, D.R. (1986). A representation for collections of temporal intervals.
In Proc. AAAI, pp. 367–371.

.—.—Montanari, A. (1994). A metric and layered temporal logic for time granularity, syncrony and asyncrony.
Unpublished work of the First International Conference on Temporal Logic, July.

.—.—Mota, E. (1994). Temporal representation of ecological domains. DAI TP-31, Department of Artificial
Intelligence, University of Edinburgh.

.—.—Mota, E. (1995). Time granularity in simulation models within a multi-agent system. DAI Discussion
Paper 158, Department of Artificial Intelligence, University of Edinburgh, April.

.—.—Mota, E., Haggith M., Smaill, A., Robertson, D. (1995a). Time granularity in simulation models of
ecological systems. In Workshop on Excutable Temporal Logics—Montreal, Canada. DAI RP-740,
Edinburgh University.

.—.—Mota, E., Robertson, D., Muezelfeldt, R. (1995b). On the granular aspects of time in simulation models.
TP-39, Detartment of Artificial Intelligence/University of Edinburgh.

.—.—Pachet, F., Ramalho, G., Carrive, J., Cornic, G. (1995). Representing temporal musical objects and
reasoning in the muses system. In International Congress on Music and Artificial Intelligence,
pp. 33–48.

.—.—Le Poidevin, R., MacBeath, M., eds (1995). The Philosophy of Time, chapter IX, pp. 149–167. Oxford
Readings in Philosophy. Oxford University Press.

.—.—Rescher, N., Urquhart, A. (1971). Temporal Logic. Springer-Verlag.

.—.—Robertson, D., Bundy, A., Muetzefeldt, R., Haggith, M., Uschold, M. (1991). Eco-Logic Logic-Based
Approaches to Ecological Modelling. The MIT Press.

.—.—Sinclair, F, Robertson, D., Muetzelfeldt, R., Walker, D., Haggith, M., Kendon, G. (1993). Formal rep-
resentation and use of indigenous ecological knowledge about agroforestry. ODA Forestry and
Agroforestry Research Strategy—Project R4731 Second Annual Report, University of Edinburgh.

.—.—Sterling, L., Shapiro, E. (1986). The Art of Prolog. The MIT Press.

.—.—van Emden, M.H. (1984). An interpreting algorithm for prolog programs. In Prolog Implementations,
Ellis Horwood Series ARTIFICIAL INTELLIGENCE, pp. 93–110. Ellis Horwood Ltd.

Appendix A. Properties of
t
Â

In what follows, Cmii means the MTC of level i defined with modular value mi . This

relation establish a sub-division relationship between MTCs. The
t
Â relation has the

following properties.

The
t
Â relation has the following properties.

transitive—if Cmii , Cmjj and Cmkk are MTCs and Cmkk
t
Â Cmjj and Cmjj

t
Â Cmii , then

Cmkk
t
Â Cmii .

reflexive—if Cmii is a MTC then Cmii
t
Â Cmii (every MTC can be subdivided in itself)

anti-symmetric—if Cmii , Cmjj are MTCs, and i 6= j, and Cmjj
t
Â Cmii , then Cmii 6

t
Â Cmjj .

Appendix B. Up-Wave Modular Sum and Subtraction

Definition B.1. Let P = p(∆, ci), where ci defines another MTC as mod temp class(ci+1,
ci,m), and I = t(s1, . . . , sk). The up-wave modular sum between P and I, I ω⊕ P , is
defined as

I ω⊕ P = t(s1, . . . , si + ∆, . . . , sk), iff si + ∆ < m

I ω⊕ P = t(s1, . . . , si ⊕ ∆, . . . , sk)ω⊕ P ′, iff si + ∆ ≥ m, and P ′ = p(∆′, ci+1), where
∆′ = si + ∆ div m.

NatureTime: Temporal Granularity in Simulation of Ecosystems 695

s

t

0

Figure 3. Time interval in a modular temporal structure.

s t

Figure 4. Correspondent interval at any arbitrary interval in the infinte line.

Definition B.2. Let P = p(∆, ci), and ci defines another MTC as mod temp class(ci+1,
ci,m), and I = t(s1, . . . , sk). We call the up-wave modular subtraction between P and I,
I ωª P , defined as

I ωª P = t(s1, . . . , si −∆, . . . , sk), iff ∆ < si

I ωª P = t(s1, . . . , si ª∆, . . . , sk)ωª P ′, iff ∆ ≥ si and P ′ = p(∆′, ci+1), where ∆′ = ∆
div m.

B.1. diameter function

Definition B.3. Let S be an interval in a Linear-Cyclic hierarchy of time, P a period
of time. We call diameter of time, written ®, to the function which maps S to P . More
generally, ® : E → P, where E is the set of all temporal entities and P the set of all
periods, or length of time.

B.2. linear realizability of a circular time structure

This section presents what was called Linear Realizability in .Rescher and Urquhart
(1971) in which it was established a relationship between a course of history in a circular
structure of time and the same course in a linear time. Consider a temporal structure
which is one-dimension, finite and closed Cm, where m is the number of elements in the
circular set C. Then any of the possible courses of history realized in C can also be
realized on the line. We can see this if we consider the arbitrary interval s . . . t in the
circle Cm as shown in Figure 3.

By putting it in correspondence with an arbitrary interval (with the same size), in the
infinite line, as shown in Figure 4.

Now, at any distance m forwards from s and t in the circular structure Cm in corre-
spondence the forwards oints at the same distance from the linear interval s . . . t; and
analogously backwards. Thus we put the circle into correspondence over and over again
with an equally long segment on the line as depicted in Figure 5.

696 E. Mota et al.

s

t

0

s t s t s t s t

LR

Figure 5. Linear equivalent intervals of the circular interval.

Appendix C. Matching Between Cyclical Intervals

Definition C.1. Given the cyclical intervals S = i(s1 . . . s2, ci) and T = i(t1 . . . t2, ci)
of a MTC ci. Then, the matching between these intervals results in i(t1 . . . t2, ci) in the
case that one of the following holds.

s2 ≥ t2 and t2 > t1 and t1 ≥ s1, or
t2 > t1 and t1 ≥ s1 and s1 > s2, or
s1 > s2 and s2 ≥ t2 and t2 > t1, or
t1 ≥ s1 and s1 > s2 and s2 ≥ t2.

In this case we say that T is included in (or is during) S.

Definition C.2. Given the cyclical intervals S = i(s1 . . . s2, ci) and T = i(t1 . . . t2, ci)
of a MTC ci. Then, the matching between these intervals results in

i(t1 . . . s2, ci) if one of the following holds

t2 > s2 and s2 ≥ t1 and t1 > s1, or
s2 ≥ t1 and t1 ≥ s1 and s1 > t2, or
t1 > s1 and s1 > t2 and t2 > s2, or
s1 > t2 and t2 ≥ s2 and s2 ≥ t1

i(t1 . . . s2, ci) and also i(s1 . . . t2, ci) if one of the following holds

t2 ≥ s1 and s1 > s2 and s2 ≥ t1, or
t1 > t2 and t2 ≥ s1 and s1 > s2.

In both cases S and T overlap.

Appendix D. KB Definition for the Example 1

D.1. neighbours definition

neighbours(t1, [(t2, 4.24), (t3, 4.24), (t5, 6)]).

NatureTime: Temporal Granularity in Simulation of Ecosystems 697

neighbours(t2, [(t1, 4.24), (t3, 6), (t4, 4.24), (t5, 4.24)]).
neighbours(t3, [(t1, 4.24), (t2, 6), (t5, 4.24), (t6, 4.24), (t7, 6)]).
neighbours(t4, [(t2, 4.24), (t5, 6), (t8, 4.24), (t9, 3)]).
neighbours(t5, [(t1, 6), (t2, 4.24), (t3, 4.24), (t4, 6), (t6, 6), (t7, 4.24), (t8, 4.24)]).
neighbours(t6, [(t3, 4.24), (t5, 6), (t7, 4.24)]).
neighbours(t7, [(t3, 6), (t5, 4.24), (t6, 4.24), (t8, 6)]).
neighbours(t8, [(t2, 6), (t4, 4.24), (t5, 4.24), (t7, 6), (t9, 3), (t10, 3)]).
neighbours(t9, [(t4, 3), (t8, 3), (t10, 2.24)]).
neighbours(t10, [(t8, 3), (t9, 4.24)]).

D.2. initial and maximum height, and growth rate of each tree

height(t1, 1) @ t(14, 2, 1994). max height(t1, 7). growth rate(t1, 0.01).
height(t2, 1) @ t(14, 2, 1994). max height(t2, 10). growth rate(t2, 0.012).
height(t3, 1) @ t(14, 2, 1994). max height(t3, 12). growth rate(t3, 0.015).
height(t4, 1) @ t(14, 2, 1994). max height(t4, 5). growth rate(t4, 0.0009).
height(t5, 1) @ t(14, 2, 1994). max height(t5, 5). growth rate(t5, 0.008).
height(t6, 1) @ t(14, 2, 1994). max height(t6, 7). growth rate(t6, 0.011).
height(t7, 1) @ t(14, 2, 1994). max height(t7, 12). growth rate(t7, 0.015).
height(t8, 1) @ t(14, 2, 1994). max height(t8, 6). growth rate(t8, 0.01).
height(t9, 1) @ t(14, 2, 1994). max height(t9, 4). growth rate(t9, 0.006).
height(t10, 1) @ t(14, 2, 1994). max height(t10, 13). growth rate(t10, 0.018).

D.3. influence of other trees in one tree

influences([], , []).
influences([Y |T],Time, [R1|TR]) : −

ind influence(Y,Time, R1),
influences(T,Time,TR).

ind influence((Tree, D), T, I) : −
solve(height(Tree, H) @T,),
(I is H/(D ∗ 1000)), !.

Appendix E. KB Definition for the Example 2

E.1. progress and influence specification

The progress observed of the value of an attribute Att of an agent Obj , from a given temporal
entity T during a given period of time P , is represented in a list composed with the values for
Att during T . This list is computed as defined in the meta-language as follows.

progress(value(Att ,Obj , V)@T, P, [V |R]) : −
change(Att ,Proc),
scale(time,Obj ,Proc, C),
solve(value(Att ,Obj , V) @T,),
future(T, P,Tf),
progression(value(Att ,Obj , V) @T,Tf , C,R).

progression(@T,Tf , C, []) : −
next(T,C,Tf).

progression(value(Att ,Obj ,Vi) @ Ti ,Tf , C, [V j|R]) : −
¬next(Ti , C,Tf),
value(Att ,Obj ,Vj) @ p(1, C) after Ti ⇐= value(Att ,Obj ,Vi) @ Ti & Constraints,
solve(Constraints,),
next(Ti , C,Tj),

698 E. Mota et al.

progression(value(Att ,Obj ,Vj) @ Tj ,Tf , C,R).

influence(GR, [],GR).
influence(GR, [Pos|R],RealGR) : −

Pos > 7,
NGR is GR − 0.02,
influence(NGR, R,RealGR).

influence(GR, [Pos|R],RealGR) : −
Pos ≤ 7,
influence(GR, R,RealGR).

E.2. bug’s position

new d(Pos1,M,H,D1, D2) : −
Pos2 is Pos1 +M ,
Pos2 ≤ H,
D2 is D1 ∗ (−1).

new d(Pos1,M,H,D1, D2) : −
Pos2 is Pos1 +M ,
Pos2 > H,
D2 is D1 ∗ (−1).

