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The expression of lineage-associated genes, as well as the survival and expansion of committed B
cell progenitors, is controlled by multiple transcriptional regulators and growth-factor receptors.
Whereas certain DNA-binding proteins, such as Ikaros and PU.1, are required primarily for the forma-
tion of more primitive lymphoid progenitors, other factors such as E2A and EBF1 have more direct
roles in specifying the B cell-specific gene-expression program. Further, Pax5 functions to promote
B cell commitment by repressing lineage-inappropriate gene expression and reinforcing B cell-
specific gene expression. In this review, we focus on recent studies that have revealed that instead
of a simple transcriptional hierarchy, efficient B cell commitment and differentiation requires the
combinatorial activity of multiple transcription factors in a complex gene regulatory network.
Introduction
Development of a functional immune system requires

appropriate regulation of dynamic transcription-factor

networks that activate lineage-specific gene expression

and restrict the differentiation options of hematopoietic

stem cells (HSCs) and their progeny (Laiosa et al., 2006).

A description of both the wiring and the logic of these tran-

scriptional networks will be essential for a complete

understanding of immune cell development and how alter-

ations in these networks lead to diseases such as immune

deficiency, autoimmunity, and cancer. As the sole source

of immunoglobulin, B lymphocytes (or B cells) are an es-

sential component of the adaptive immune system, and

the cellular and molecular mechanisms that control their

development have been under intense scrutiny for the

past two decades (reviewed by Hardy et al. [2007] in this

issue of Immunity). B lymphopoiesis has emerged as

one of the leading models for studies of lineage specifica-

tion (induction of a lineage-specific gene-expression pro-

gram) and commitment (repression of alternative gene-

expression programs) owing to the availability of in vitro

culture conditions that support B cell development and

the ease by which these cells can be analyzed in vivo.

Given these advantages, many of the key regulators of B

lymphopoiesis have been identified and complex net-

works of interactions are beginning to be revealed. In

this review, we examine the known components of the

transcriptional networks that promote specification and

commitment of HSCs to the B cell lineage.

Overview of Early B Cell Development
B cells, like all hematopoietic cells, are produced in a step-

wise process from self-renewing HSCs in the fetal liver

and postnatal bone marrow. The earliest differentiated

progeny of HSCs are multipotent progenitors (MPPs),

which have lost the capacity for extensive self-renewal
but retain multilineage differentiation potential (Adolfsson

et al., 2001). A subset of MPPs expressing high amounts

of the tyrosine kinase receptor Flt3 have little erythromega-

karyocytic potential but retain lymphoid and other myeloid

potential leading to their designation as lymphoid-primed

MPPs (LMPPs) (Adolfsson et al., 2005). The LMPP popula-

tion contains early lymphoid progenitors (ELPs), lymphoid-

restricted cells defined by expression of a Rag1-GFP

reporter (Igarashi et al., 2002; Schwarz et al., 2007). LMPPs

or ELPs, in particular those expressing CCR9 or CD62L,

function as efficient thymus-seeding progenitors and are

the likely precursors to early T lineage progenitors (ETPs),

although the precise origin of ETPs remains controversial

(reviewed by Bhandoola et al. [2007] in this issue of Immu-

nity). ELPs are the precursors of bone-marrow common

lymphoid progenitors (CLPs), which give rise to B lympho-

cytes, natural killer (NK) cells, dendritic cells (DC), and T

lymphocytes but lack all myeloid potential when tested in

vivo but not in vitro (Balciunaite et al., 2005; Kondo et al.,

1997; Rumfelt et al., 2006; Traver et al., 2000). However,

in vivo CLPs may be primarily progenitors of B lympho-

cytes and NK cells (Allman et al., 2003; Harman et al.,

2006; Kondo et al., 1997). The first clearly identifiable B

cell-specified progenitors arise from CLPs in the bone

marrow and are variously termed pre-pro B cells, fraction

A, or CLP-2 and can be identified by expression of the B

cell-associated marker B220 and activation of many B

cell-lineage-associated genes (Gounari et al., 2002; Li

et al., 1996; Rumfelt et al., 2006). Cells committed to the

B cell lineage can be identified by expression of CD19, a

target of the lineage-commitment factor Pax5 (see below).

Lymphoid Specification
Until recently, it was believed that the first step in MPP dif-

ferentiation resulted in efficient segregation of lymphoid

and myeloid potential resulting in CLPs and common
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Table 1. Structure and Function of Transcription Factors Implicated in the Networks Controlling B cell Development

Transcription Factor

(Gene Symbol)

DNA-Binding Motif

(Consensus-Binding

Sequence)

Ectopic Expression

Phenotype

B Cell Phenotype of

Mouse Germline (KO)

and Conditional (cKO)

Deficiency

Association with

Human B Cell

Malignancies

PU.1 (Sfpi1) Ets (AGGAAGT) In PU.1�/� fetal-liver

cells graded amounts

of PU.1 rescue B cell
and macrophage

development.

KO: lack fetal B cells

and CLPs; cKO: normal

B2 and expansion
of B1 cells.

Not mutated in B-ALL.

Ikaros (Ikzf1) Zinc finger (TGGGAA) N.D. KO: lack all stages of
B cell differentiation.

Deletions identified in
17 cases of B-ALL.

E2A (Tcfe2a) bHLH (CANNTG,

prefers ACACCTGC)

Induces cell-cycle

arrest and apoptosis in
T or B cell lines, in the

70Z/3 macrophage line

induces B cell-lineage

conversion.

KO: block prior to

pre-pro-B cells; cKO:
reduced survival in

pre-B cell lines. Ectopic

E protein antagonist:

pro-B cell-growth
arrest, decreased pro-B

cell gene expression.

E2A-Pbx1 and

E2A-HLF translocation
in approximately 6% of

B-ALL, mutation in one

case of B-ALL.

Early B cell factor,
EBF1 (Ebf1)

Zinc knuckle
(ATTCCCNNG GGAAT)

Induces B cell
differentiation in

multipotent

progenitors, rescues
B lymphopoiesis in

PU.1�/�, E2A�/� or

IL-7R�/� progenitors.

KO: arrest at CLP to
pre-pro-B cell

transition, no cells

with Igh gene
rearrangement.

Eight cases of B-ALL
with monoallelic

deletion of the EBF1

gene, six of these
deletions are limited to

EBF1.

Pax5 (Pax5) Paired domain

(A/GNCNANTC/GAT/A
GCGG/T

A/G
T/A

A/C)

Impairs T cell

development and

promotes T cell-

lymphoma formation.
Variably affects

myeloid and erythroid

differentiation.

KO: Fetal liver lacks B

lineage cells. Adult

bone marrow block at

pro-B cell stage but
have D-JH but only

a few proximal V-DJH

rearrangements;

cKO: required for the
maintenance of B cell

fate and repression of

plasma-cell

differentiation.

Copy-number

alterations, primarily

monoallelic loss in

29.7% of B-ALL.
Rearrangements to

the IgH in t(9:14)

translocation in large

diffuse cell lymphoma/
B-NHL.

Aiolos (Ikzf3) Zinc finger (TGGGAA) N.D. KO: regulates B cell

activation and

differentiation to
effector stage.

Represses l5 in

pre-B cells.

Deletion identified

in three cases of

pre-B-ALL.

Sox4 (Sox4) HMG-box (CCTTTGAA) N.D. KO: lethal at e13.5,

pro-B cells fail to

expand in IL-7 and few
pro-B after fetal-liver

transfer into irradiated

adults.

N.D.

Lymphoid enhancer
factor, Lef1 (Lef1)

HMG-box
(CCTTTGA/T A/T)

N.D. KO: decreased pro-B
cells in fetal liver and

neonatal bone marrow,

pro-B cells respond to
IL-7 but not Wnt3a.

Deletions identified in
three cases of B-ALL.

Bcl11a (Evi9) Zinc finger (GGCCGG) N.D. KO: no B lineage cells. Amplified in

approximately 20% of
B-NHL.
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Table 1. Continued

Transcription Factor
(Gene Symbol)

DNA-Binding Motif

(Consensus-Binding
Sequence)

Ectopic Expression
Phenotype

B Cell Phenotype of

Mouse Germline (KO)

and Conditional (cKO)
Deficiency

Association with

Human B Cell
Malignancies

GABP (gabpa) Ets (AGGAAGT) N.D. Hypomorphic gene trap
allele lethal between

E12.5-14.5. Impaired B

cell development and

Pax5 expression after
fetal-liver transfer into

irradiated adults.

N.D.

N.D., not determined; ALL, acute lymphoblastic leukemia; and NHL, non-Hodgkin’s lymphoma. The relevant references can be

found in the text.
myeloid progenitors (CMPs) (Akashi et al., 2000). How-

ever, the identification of LMPPs revealed that the loss

of myeloid potential en route to lymphoid specification is

a more gradual process and is associated with increasing

expression of Flt3 (Adolfsson et al., 2005; Mansson et al.,

2007). Given this recent realization, our understanding of

the mechanisms driving specification of LMPPs from

MPPs is limited compared to what is known about devel-

opment of CLPs and their downstream progeny. Flt3 may

be required for the specification of the LMPPs, because

Flt3- and Flt3-ligand (L)-deficient mice display a marked

decrease in B cell progenitors, their HSCs are impaired

in their ability to differentiate into myeloid and lymphoid

cells, and recent evidence suggests that Flt3L may influ-

ence development of LMPPs (Ceredig et al., 2006; Mack-

arehtschian et al., 1995; McKenna et al., 2000; Schwarz

et al., 2007; Sitnicka et al., 2002).

The emergence of CLPs from LMPPs is demarcated

by increased expression of the a chain of the receptor

for interleukin 7 (IL-7Ra). The IL-7R is composed of the

common g chain (Il2rg) and IL-7Ra (Il7r); the latter is also

a component of the thymic-stromal-derived lymphopoie-

tin receptor (TSLP-R) (Kang and Der, 2004). Consistent

with IL-7Ra being required for two different receptors

that function in B cell development, IL-7Ra-deficient mice

have a more pronounced B cell deficiency than Il2rg�/�

mice, which have an intact TSLP-R (Peschon et al., 1994;

Vosshenrich et al., 2003). Although IL-7Ra expression

marks CLPs, IL-7R signaling is not absolutely required

for generation of these cells. IL-7- and IL-7Ra-deficient

mice show a 3-fold decrease in CLP numbers but are

profoundly impaired in their ability to differentiate into

pre-pro-B lymphocytes and to undergo cytokine-induced

expansion (Dias et al., 2005; Kikuchi et al., 2005). As de-

scribed in the next section, this decreased B cell differen-

tiation suggests a role for IL-7R-modulated transcription

factors in the network controlling induction of the B cell-

lineage-specification factor EBF1 (Dias et al., 2005; Kiku-

chi et al., 2005). Importantly, mice lacking both Flt3- and

IL-7R-derived signals fail to develop any B cells, demon-

strating that together these receptors and their ligands

are essential for virtually all B cell development (Sitnicka

et al., 2003; Vosshenrich et al., 2003).
To date, no transcription factors have been identified

that are definitively required for specification of LMPPs

from MPPs. The closest candidate is PU.1, a hematopoi-

etic-specific member of the ETS family of transcription fac-

tors (Table 1). Mice harboring a germline mutation in Sfpi1

(the gene encoding PU.1) die during late embryogenesis

or shortly after birth and have severely impaired myeloid

and lymphoid differentiation (McKercher et al., 1996; Scott

et al., 1994). Sfpi1�/� embryos lack identifiable B cells in

the liver, as well as T cells in the thymus, suggesting a block

in development at or before a common progenitor of these

cells or distinct roles for PU.1 in both lineages (DeKoter

et al., 2002; Scott et al., 1994). Flt3, the definitive marker

of LMPPs, is not expressed at wild-type amounts in

Sfpi1�/� embryos, making it difficult to ascertain whether

PU.1 is required for development of LMPPs, or whether

PU.1 functions after specification to regulate differentia-

tion from LMPPs, as was recently demonstrated for Ikaros

(see below). Nonetheless, PU.1 functions very early in the

stepwise progression toward B cell specification.

Previous studies implicated PU.1 dose as a determinant

of B lymphocyte versus macrophage specification (De-

Koter and Singh, 2000). This conclusion was based on the

observation that PU.1-deficient fetal-liver cells transduced

with a PU.1-producing retrovirus formed macrophages

with high ectopic PU.1 expression, whereas B cells ex-

pressed substantially lower amounts of ectopic PU.1 (De-

Koter and Singh, 2000). This finding parallels the known

differential expression of PU.1 in B cells and macrophages

(Nutt et al., 2005). However, this model for PU.1-dose-

driven specification has been challenged by the finding

that PU.1 expression is similar in HSCs, CLPs, and CMPs

when assayed in bone marrow from adult mice carrying

an IRES-GFP sequence inserted into the endogenous

Sfpi1 locus (Back et al., 2005; Dakic et al., 2007; Nutt

et al., 2005). These data suggest that in adult bone marrow,

the dichotomy in PU.1 expression is revealed only after

specification to the macrophage or B cell lineages.

Until recently, it was believed that PU.1 was absolutely

required for the formation of clonogenic B cell progenitors

(pro-B cells), potentially because of its role in regulating

Il7r expression (DeKoter et al., 2002); however Graf and

colleagues demonstrate that Sfp1�/� B cell colonies can
Immunity 26, June 2007 ª2007 Elsevier Inc. 717
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be derived from fetal-liver progenitors, albeit at a low fre-

quency and with slower kinetics than from wild-type em-

bryos (Ye et al., 2005). The embryonic lethality that results

from PU.1 deficiency has hampered any further under-

standing of the function of PU.1 in adult bone-marrow lym-

phopoiesis. Recently this bottleneck has been overcome

with both PU.1 conditional mutant mice and hypomorphic

mutations that knock down PU.1 expression but still result

in viable adult mice (reviewed by Dakic et al. [2007]). The

conditional inactivation of PU.1 throughout adult bone

marrow results in a greatly perturbed hematopoiesis and,

in surprising contrast to fetal-liver development, markedly

excess granulopoiesis (Dakic et al., 2005). Adult PU.1-de-

ficient mice lack an identifiable CLP population and are

not able to contribute to the lymphoid lineages in a com-

petitive-reconstitution assays, indicating that PU.1 func-

tions at or before the CLP stage. Surprisingly, inactivation

of PU.1 in committed B cells with a Cre recombinase

driven by the Cd19 promoter allowed relatively normal B

cell differentiation and function (Polli et al., 2005; Ye

et al., 2005). Moreover, in vitro inactivation of PU.1 in

sorted CLP also allowed B cell differentiation, suggesting

that PU.1 functions primarily to specify lymphoid progen-

itors but is not required for further B lymphocyte differen-

tiation (Iwasaki et al., 2005).

A second genetic model of PU.1 function in adults was

produced by the deletion of an upstream regulatory ele-

ment in the Sfpi1 gene resulting in a 3-fold reduction in

PU.1 expression and a profound block in B cell develop-

ment at an early stage (Rosenbauer et al., 2006). Recently

an alternative hypomorphic allele of Sfpi1 was described

in a study that reached a similar conclusion (Houston

et al., 2007). Interestingly, lowering PU.1 expression pref-

erentially allows B1 B cell development (Rosenbauer et al.,

2006). A similar expansion of B1 cells was reported in

aged mice after conditionally inactivating PU.1 in B lym-

phocytes, suggesting a role for PU.1 in specifying or main-

taining the B1 versus conventional (B2) B cell fate (Ye

et al., 2005). Although these experiments clearly point to

an essential role for PU.1 in early lymphopoiesis, the fac-

tors that regulate PU.1 expression and the molecular

targets involved in initial lymphoid specification remain

to be determined.

A second transcriptional regulator implicated in early

lymphoid specification is Ikaros (Table 1). The Ikaros

gene (Ikzf1) encodes multiple transcription factors through

alternative splicing of exons encoding the zinc fingers in-

volved in DNA binding (Molnar and Georgopoulos,

1994). The Ikaros proteins can function as transcriptional

activators or repressors and may function as antagonists

of other Ikaros or related transcription factors (Ng et al.,

2007). Biochemical studies have shown that in T cell and

erythroid progenitors, Ikaros is associated with two chro-

matin remodeling complexes, the NuRD (nucleosome

remodeling and deacetylase) and the SWI-SNF complex

(Kim et al., 1999; O’Neill et al., 2000). This finding, along

with the accumulation of Ikaros protein at pericentric het-

erochromatin where it colocalizes with repressed genes,

suggests that Ikaros functions predominantly as a tran-
718 Immunity 26, June 2007 ª2007 Elsevier Inc.
scriptional repressor (Brown et al., 1997). However, the

regulation of target genes is likely to be gene specific

because Ikaros can both activate and repress reporter

plasmids in transfection assays and endogenous genes

(Harker et al., 2002; Trinh et al., 2001).

Loss-of-function and dominant-negative experiments

demonstrated that Ikaros is essential for multiple aspects

of lymphoid development (Georgopoulos et al., 1994;

Wang et al., 1996). Ikzf1�/� mice completely lack B cells

from the earliest detectable stage (Wang et al., 1996),

whereas a hypomorphic allele of Ikaros results in impaired

ability to undergo the pro- to pre-B cell transition and to

form IL-7-dependent pro-B cell colonies in vitro (Kirstetter

et al., 2002). Interestingly, postnatal, but not fetal, T cell

development proceeds in Ikaros-deficient mice (Wang

et al., 1996).

Determining the point at which Ikaros is essential for

B lymphopoiesis has proven a difficult challenge. Ikaros-

deficient hematopoietic progenitors lack expression of

Flt3, leading to the apparent loss of LMPPs; however, ex-

pression of an Ikzf1 promoter/enhancer-driven GFP trans-

gene in these cells revealed that LMPPs develop in Ikaros-

deficient mice (Yoshida et al., 2006). In the absence of

Ikaros, LMPPs are impaired in B cell and T cell develop-

mental potential and displayed reduced expression of

lymphoid genes including Il7r and Rag1. These data sug-

gest that Ikaros is not essential for development of LMPPs

but is required for their further specification into the lym-

phoid pathway. Mechanistically, this may be because of

failed expression of the IL-7R and Flt3, suggesting over-

lapping functions for Ikaros and PU.1 in early lymphoid

specification (Figure 1). Nonetheless, it remains to be de-

termined whether transcriptional-activating or -repressing

functions of Ikaros are critical for its lymphoid-specifica-

tion functions.

The basic helix-loop-helix proteins, E12 and E47, col-

lectively known as E2A, although extensively character-

ized as regulators of B cell lineage specification, are also

required for proper formation of CLPs (Bain et al., 1997;

Borghesi et al., 2005). In the absence of E2A, no B cell pro-

genitors develop owing to a requirement for E2A in the in-

duction of EBF1 (see below). E2A regulates expression of

many lymphoid genes, but loss of these genes is not pre-

dicted to lead to impaired CLP development. Therefore,

the mechanism underlying the decreased number of CLPs

in these mice remains to be determined.

Specification of the B Lymphocyte Program
One of the critical events in specification of the B cell de-

velopmental program is induction of early B cell factor-1

(Ebf1). EBF1 is the founding member of the COE (Collier-

Olf-EBF) family of transcription factors that bind DNA

through an amino-terminal domain containing a novel

zinc-coordination motif (Hagman and Lukin, 2005). EBF1

contains a helix-loop-helix (HLH) domain, required for

dimerization, and a C-terminal activation domain that is

not absolutely required for EBF1 function (Hagman and

Lukin, 2005). Mice lacking EBF1 fail to express most B cell

genes including Cd79a (mb-1, Iga), Cd79b (Igb, B29), Igll1
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Figure 1. Multistep Model of B Cell Development
Successive stages of differentiation from the LMPP (lymphoid-primed multipotent progenitor), ELP (early lymphoid progenitor), pre-pro-B cell, and
committed pro- and pre-B cell are depicted. Developmental capacities of the successive stages are indicated. Key transcription factors, growth-
factor receptors, and cell-surface markers are shown, with important events initiated at a particular stage shown in blue. An arrow pointing upward
indicates positive interactions, and t indicates gene repression. RAG1 expression is initiated in the ELP and is maintained until throughout the
remaining stages depicted. IRFs, interferon regulatory factor-4 and -8; and preBCR, pre-B cell receptor.
(l5), and VpreB1 and do not undergo any Igh recombina-

tion in the bone marrow (Lin and Grosschedl, 1995). Ret-

rovirus-mediated expression of EBF1 in HSCs skews

differentiation toward the B cell lineage, suggesting that,

in the context of other lymphoid-specific transcription fac-

tors, EBF1 appears sufficient to activate the B cell-lineage

gene program (Zhang et al., 2003). This hypothesis gained

further support when it was demonstrated that ectopic

expression of EBF1 is able to rescue B lymphocyte differ-

entiation from multipotent progenitors blocked at earlier

stages of development because of targeted deletion of

key lymphoid transcription factors (Table 1). Ectopic ex-

pression of EBF1 in E2A-deficient (Tcfe2a�/�) HSCs res-

cues B lymphocyte differentiation in vitro (Bain et al.,

1994; Seet et al., 2004). However, Tcfe2a�/� EBF1-ex-

pressing pro-B cells fail to proliferate in response to IL-7

because of a requirement for E2A in IL-7R-induced

N-myc (mycn) upregulation (Seet et al., 2004). EBF1 also

rescues B lymphocyte differentiation, but not IL7-depen-

dent expansion, from Il7r�/� pre-pro-B cells or IL7�/�

CLPs, which fail to express Ebf1 (Dias et al., 2005; Kikuchi

et al., 2005). In addition, B cells develop in vitro from

Sfpi1�/� HSCs forced to express EBF1 (Medina et al.,

2004). However, because a small number of B lympho-

cytes develop from Sfpi1�/� fetal-liver HSCs cultured

in vitro, PU.1 may facilitate, but not be essential for, Ebf1

expression (Ye et al., 2005). In each of these cases, ec-

topic expression of Pax5, a paired-domain transcription

factor essential for B cell lineage commitment (see next

section), did not rescue B lymphopoiesis, indicating that

EBF1 performs other functions in addition to activating

Pax5 expression (Dias et al., 2005; Kikuchi et al., 2005;

Medina et al., 2004; Seet et al., 2004). Taken together,

these studies indicate that EBF1 is an essential specifica-

tion factor for the B cell lineage.

The central role of EBF1 in B cell lineage specification

brings to the forefront the question of how Ebf1 is regu-

lated. Determining the combinatorial inputs to this gene
is likely to reveal the factors and mechanisms underlying

activation of the B cell program. One of the first regulators

of Ebf1 to be identified was E2A. E2A induces Ebf1 in

a macrophage line, and together these proteins coopera-

tively regulate most B cell-specific genes, resulting in con-

version of these cells to the B cell lineage (Kee and Murre,

1998; Sigvardsson et al., 1997). E box sequences, the

DNA target for E2A, are present in the Ebf1 promoter, in-

dicating that Ebf1 is a bona fide E2A target gene (see

Smith et al. [2002] and Figure 2A). Surprisingly, however,

inhibition of E protein activity (E2A is one of three E box-

binding proteins, E proteins) in pro-B lymphocytes in vitro,

or deletion of E2A in pre-B cell lines, had less of an impact

on Ebf1 mRNA than was predicted by these previous

studies (Kee, 2005; Lazorchak et al., 2006). The recent

characterization of two Ebf1 promoters has helped to

resolve this conundrum (Roessler et al., 2007).

Ebf1 is controlled through two promoters, a distal pro-

moter (a) and a proximal promoter (b) that produce two

EBF1 proteins that differ by 11 amino acids in the N termi-

nus (see Roessler et al. [2007] and Figure 2A). In transient-

transfection assays, these distinct proteins activate the

Igll1 promoter equivalently, indicating that the alternative

proteins are probably a consequence of the need for dif-

ferential promoter regulation rather than distinct biological

functions. The Ebf1a promoter is active in a pro-B lympho-

cyte line (PD31) and transient-transfection assays reveal

regulation by E2A and indirectly STAT5 (Roessler et al.,

2007). Because STAT5 is activated by IL-7R signaling,

this finding provides a possible explanation for the depen-

dence of initial Ebf1 expression on both E2A and IL-7R

(Dias et al., 2005; Kikuchi et al., 2005; Seet et al., 2004)

(Figure 1). EBF-binding sites are also present in the Ebf1a

promoter, suggesting an autoregulatory function for EBF1

(Roessler et al., 2007). The Ebf1b promoter shows prefer-

ential activity in a mature B lymphocyte line (Raji) and is

regulated by Ets1, PU.1, and Pax5 (Roessler et al., 2007).

A role for Pax5 in promoting Ebf1 expression was also
Immunity 26, June 2007 ª2007 Elsevier Inc. 719
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Figure 2. Combinatorial Control of
B Cell-Specific Gene Expression
(A) Regulation of the Ebf1 gene. The two pro-
moters of Ebf1 along with the known regulators
are indicated. The EBF1 protein is shown in
yellow. The gene product of the two promoters
differs by 11 amino acids in the N terminus
(shown in orange). The IL-7R-STAT5 pathway
has been shown to influence Ebf1a promoter
activity, although direct DNA binding has not
been demonstrated. Although Pax5 binds to
the Ebf1b promoter, the functionality of individ-
ual Pax5-binding sites for Ebf1 expression has
not been confirmed.
(B) Regulation of the Pax5 gene. Pax5, like
Ebf1, has two independent promoters; how-
ever, beyond a role for EBF1, very little is
known about the control of Pax5 transcription.
(C) Cd79a is regulated by the combinatorial in-
puts from E2A, EBF1, Pax5, Ets1, Sp1, and
Runx1. Ets1 can only bind to a nonclassical
site via cooperative interaction with Pax5 in
the absence of DNA methylation (a process
that requires E2A, EBF1, and Runx1 binding).
(D) The Igll1 promoter is regulated by competi-
tion between Ikaros family members (Ikaros
and Aiolos) and EBF1 for overlapping binding
sites. In pro-B cells, relatively higher levels of
EBF1 favor Igll1 activation. However, at the
pre-B cell stage, pre-BCR signaling leads to in-
creased expression of Aiolos, which promotes
gene silencing.
suggested by the finding that ectopic expression of Pax5

in T cell progenitors induced Ebf1 (Fuxa et al., 2004). Be-

cause expression of Pax5 is dependent on EBF1, EBF1

regulates its own expression directly through induction

of the Ebf1a promoter and indirectly through upregulation

of Pax5. Compared to wild-type pro-B cells, Pax5�/� pro-

B cells have reduced Ebf1 mRNA that is predominantly

because of decreased transcription from the Ebf1b pro-

moter (Roessler et al., 2007). This feedback regulation

by Pax5 on Ebf1 could function to amplify B cell-specific

gene expression and solidify commitment to the B cell

pathway (Figure 1). These studies suggest a progressive

Ebf1 induction occurring through three phases as follows:

(1) E2A- and STAT5-dependent activation of Ebf1a; this is

followed by (2) EBF1 enhanced expression from the Ebf1a

promoter and induction of Pax5 and, finally, (3) Pax5-,

Ets1-, and PU.1-directed activation of the Ebf1b promoter

(Figure 2A). Nonetheless, in all primary lymphoid popula-

tions expressing Ebf1, including CLPs, transcripts initiat-

ing from both Ebf1a and Ebf1b are detected and the

Ebf1b-derived transcripts are most prevalent (Roessler

et al., 2007). Therefore, these three phases of Ebf1 induc-

tion may occur in rapid succession and may not be truly

separable by the developmental stage.

Major insights into the combinatorial mechanisms pro-

moting lineage-specific gene expression have come from

analysis of the regulatory regions of B cell-specific genes.

Although our knowledge is far from complete, studies of

the immunoglobulin heavy (Igh) and light chains (Igk and

Igl), Igll1-VpreB1, Rag1-Rag2, and Cd79a led to the iden-

tification of numerous transcription factors, their mecha-
720 Immunity 26, June 2007 ª2007 Elsevier Inc.
nisms of DNA binding, and transcription activation either

alone or in cooperation with other factors (Hagman and

Lukin, 2005; Hsu et al., 2003; Sabbattini and Dillon, 2005;

Schlissel, 2004). These studies revealed that cis-acting

regulatory regions in many B cell genes are cooperatively

activated by, at a minimum, E2A and EBF1. Consistent

with this finding, mice with compound heterozygous mu-

tations in Tcfe2a and Ebf1 fail to express many B cell

genes in the bone marrow and B lymphopoiesis is arrested

at an early pro-B cell stage (O’Riordan and Grosschedl,

1999). However, in the presence of ectopic EBF1, the

functions of E2A can be partially replaced by the low

amount of related E proteins expressed in B lineage cells

(Seet et al., 2004; Zhuang et al., 1996). Although many

transcription factors cooperate to regulate B cell genes,

to date, E2A and EBF1 are the only factors whose syner-

gistic activity has been demonstrated to be required for

B lymphopoiesis. The requirement for cooperation be-

tween these factors may be due to regulation of the essen-

tial B lineage-commitment factor Pax5. However, surpris-

ingly little is known about the mechanisms controlling

expression of Pax5; only EBF1 and Stat5 have been di-

rectly examined as regulators of this gene (Figure 2B) (Hir-

okawa et al., 2003; O’Riordan and Grosschedl, 1999).

The Cd79a and Igll1 genes have been useful models for

analysis of cis- and trans-regulatory mechanisms control-

ling B cell gene expression (Figures 2C and 2D). Cd79a en-

codes a transmembrane ITAM (immunoreceptor tyrosine-

based activation motif)-containing protein essential for

pre-B cell receptor (BCR) and mature BCR signal trans-

duction (Clark et al., 2005). The Cd79a promoter proximal
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enhancer is regulated by combinatorial inputs from E2A,

EBF1, Pax5, Ets1, and Runx1 (also known as AML1) (Hag-

man and Lukin, 2005). Early analysis of the Cd79a en-

hancer led to the identification, purification, and cloning

of EBF1 (Hagman et al., 1993). Subsequent studies re-

vealed a nonclassical Ets-binding site that can be bound

by Ets1 only through cooperative interaction with Pax5,

which induces a conformational change that allows DNA

binding in Ets1 (Fitzsimmons et al., 1996). However, even

in the presence of Pax5, binding of Ets1 to the Cd79a en-

hancer requires demethylated DNA, which is achieved

only after binding of E2A, EBF1, and Runx1 to sequences

upstream of the composite Pax5 and Ets site (Maier et al.,

2004).

The mechanisms controlling expression of Igll1 (l5)

have been studied extensively both because it is a B

cell-restricted gene and because its expression is extin-

guished after successful rearrangement of the Igh gene,

during transition to the pre-B cell stage (Martensson

et al., 2001). B cell-specific expression of Igll1 is ensured

by sequestration of the Igll1 gene in centromeric hetero-

chromatin by repressive complexes containing Ikaros

(Brown et al., 1997). Interestingly, a recent study demon-

strated that Ikaros-family proteins compete with EBF1

for binding to the Igll1 promoter, because both factors

share overlapping binding sites (Thompson et al., 2007)

(Figure 2D). During induction of the B cell gene program,

increasing amounts of EBF1 are likely to tip the balance to-

ward Igll1 induction, given that other essential regulators,

such as E2A, are present (Sigvardsson et al., 1997). Sub-

sequent downregulation of the Igll1 gene in pre-B cells

requires Aiolos, an Ikaros-related protein, that is induced

after pre-BCR signaling (Thompson et al., 2007) (Table

1). Therefore, repression of Igll1 involves not only expres-

sion of repressive DNA-binding factors but also efficient

competition with positive regulators such as EBF1.

B Cell Commitment
For many years, lineage specification and commitment

were considered as a single synonymous event; however,

the finding that transcripts from multiple lineages could be

found in multipotent cells, a phenomenon referred to as

lineage priming, suggested that the specification and

commitment processes were temporally and genetically

distinct (Hu et al., 1997; Traver and Akashi, 2004). The B

cell lineage provides one of the best examples of the dis-

sociation of these processes, with factors such as EBF1

and E2A functioning directly in B cell specification and

indirectly controlling commitment through induction of

Pax5, which is required to complete the commitment pro-

cess (Table 1).

Pax5 is a multifunctional transcriptional regulator that is

expressed at a remarkably stable amount throughout the

B cell lineage, from the pro-B cell stage until its downregu-

lation in plasma cells (Fuxa and Busslinger, 2007). Pax5

binds to DNA through an N-terminal paired-domain motif

and can both positively and negatively regulate transcrip-

tion (reviewed by Cobaleda et al. [2007]). In the absence of

Pax5, B cell development is arrested at the early pro-B cell
(or pre-BI) stage of differentiation characterized by ex-

pression of many B cell-specific transcripts and D-JH rear-

rangements at the Igh locus (Nutt et al., 1997). Intriguingly,

although Pax5�/� pro-B cells are unable to differentiate

into mature B cells, they can be cultivated indefinitely

in vitro in the presence of IL-7 and stroma. Most surpris-

ing, however, is that these pro-B cells are not committed

to the B cell lineage but instead are capable of differenti-

ating into a broad spectrum of hematopoietic cell types

(Nutt et al., 1999; Rolink et al., 1999). Restoration of Pax5

expression in Pax5�/� pro-B cells suppresses this multili-

neage potential, whereas conditional inactivation of Pax5

in pro-B cells reverts lineage commitment and allows re-

acquisition of multilineage potential (Mikkola et al., 2002).

A similar capacity for multilineage differentiation was re-

ported for E2A-deficient lymphoid cell lines, and such

a finding is in keeping with the fact that these cells lack

high expression of markers of B cell specification as well

as Pax5 expression (Ikawa et al., 2004).

The requirement for Pax5 in both initiating and maintain-

ing B cell commitment has generated intense interest in

understanding the mechanisms by which Pax5 controls

gene expression and the nature of the target genes. The

ability to propagate the Pax5�/� pro-B cell lines has been

a crucial asset for the analysis of Pax5-dependent gene

expression (Nutt et al., 1998). Because Pax5 has the ability

to both activate and repress genes, it was hypothesized

that Pax5 may promote B cell commitment by repressing

the expression of non-B cell genes. In keeping with this

concept, Pax5�/� pro-B cells express many genes associ-

ated with multipotent progenitors or non-B lineage cells

(Delogu et al., 2006; Nutt et al., 1999). Striking examples

include the genes encoding the cell-surface receptors

MCSF-R and Notch1, associated with macrophage and

T cell development, respectively, and their expression

provides a molecular explanation for the lineage plasticity

of the Pax5�/� pro-B cells (Souabni et al., 2002; Tagoh

et al., 2006). Another key target of Pax5-mediated repres-

sion is Flt3, which is directly repressed by Pax5 upon lin-

eage commitment (Delogu et al., 2006; Holmes et al.,

2006) (Figure 1). This repression is crucial for B lymphopoi-

esis because enforced expression of Flt3 throughout

hematopoiesis or injection of saturating amounts of Flt3L

blocks B cell formation potentially by diverting progenitors

down the DC pathway (Ceredig et al., 2006; Holmes et al.,

2006). Therefore, Pax5 functions to promote B cell lineage

commitment through repression of essential receptors for

other differentiation pathways.

Global transcriptional profiling has been employed with

great success to identify Pax5-repressed genes (Delogu

et al., 2006). Using this approach, >100 Pax5-repressed

genes that are involved in many biological processes have

been identified and validated, with the majority of these

target genes normally expressed in non-B cell lineages.

Surprisingly, the conditional inactivation of Pax5 in com-

mitted pro-B cells or mature B cells resulted in the reacti-

vation of many of these repressed genes; such a reactiva-

tion also occurs to some degree after the physiological

downregulation of Pax5 during plasma-cell differentiation
Immunity 26, June 2007 ª2007 Elsevier Inc. 721
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(Delogu et al., 2006; Kallies et al., 2007; Nera et al., 2006).

This finding is consistent with the reacquisition of multili-

neage differentiation after inactivation of Pax5 and con-

firms that B cell lineage commitment needs to be continu-

ally maintained by Pax5.

With a candidate-gene approach, a number of positively

regulated Pax5 targets have been identified, including

many components of the pre-BCR and BCR and associ-

ated signaling molecules such as CD19, Blnk, CD79a, and

l5 (see Cobaleda et al. [2007] and Figure 1). As described

in the preceding section, Cd79a is a well-characterized

Pax5-regulated gene and exemplifies the combinatorial

nature of B cell-specific gene expression.

Very recent gene-profiling data indicate that Pax5 acti-

vates a similar number of genes in B cells as it represses

(A. Schebesta and M. Busslinger, personal communica-

tion, and S.L.N., unpublished data). The list of activated

genes includes genes that encode a number of transcrip-

tion factors important for various aspects of B cell differ-

entiation, including SpiB, Aiolos, Id3, Lef1, IRF4, and IRF8,

suggesting that Pax5 activity initiates a cascade that acts

to reinforce B cell commitment and subsequent B cell dif-

ferentiation (Figure 1). Interestingly, the genes for two fac-

tors E2A and EBF1 that, as outlined above, are crucial for

B cell specification and thought to act upstream of Pax5

are also upregulated by Pax5 (see Roessler et al. [2007]

and S.L.N., unpublished data). These data support the

model derived from the molecular dissection of Ebf1 gene

regulation and demonstrate that the transcriptional net-

work controlling B cell specification and commitment is

not a simple linear cascade but involves multiple combina-

torial inputs and feedback loops.

Orphan B Cell Transcription Factors
A number of transcription factors are known to be essen-

tial for development of pro-B lymphocytes, but their pre-

cise functions and essential target genes have not been

determined (Table 1). Moreover, how these factors fit into

the network of regulatory factors controlling B lymphopoi-

esis remains to be clarified. Lymphoid enhancer factor 1

(Lef1) is a high-mobility group (HMG)-box protein that ac-

tivates transcription in response to Wnt signaling, through

interactions with b-catenin, but it can also function as a re-

pressor or architectural protein in the absence of Wnt sig-

naling (Staal and Clevers, 2005). Embryonic and neonatal

mice lacking Lef1 have a 2-fold reduction in the number of

pro-B cells, and in vivo these cells proliferate less well than

wild-type pro-B cells (Reya et al., 2000). In vitro, Lef1�/�

pro-B lymphocytes proliferate in response to IL-7, but

not Wnt3a, indicating that Wnt signaling may be required

for expansion of pro-B lymphocytes; however, the essen-

tial targets of Lef1 in fetal-liver pro-B cells have not been

determined. Sox4 is another HMG-box transcription fac-

tor that is essential for B cell development. The Sox4 de-

ficiency results in embryonic lethality, and E13.5 fetal-liver

cells from Sox4�/� embryos fail to expand in IL-7-supple-

mented in vitro culture and produce few B lymphocyte

progenitors after transfer into irradiated adult recipients

(Schilham et al., 1996). Sox4 interacts with the PDZ-do-
722 Immunity 26, June 2007 ª2007 Elsevier Inc.
main protein syntenin, a protein associated with signaling

through IL-5Ra, suggesting that Sox4 might function di-

rectly in membrane-proximal signaling pathways (Geijsen

et al., 2001). Nonetheless, the signaling pathways in pro-B

lymphocytes leading to activation of Sox4 and essential

Sox4 target genes remain to be identified.

The zinc-finger transcription repressor Bcl11a (Evi9) has

also been implicated in early B lymphopoiesis, and muta-

tions leading to activation of this gene are found in B cell

lymphoma (Liu et al., 2003; Satterwhite et al., 2001).

Bcl11a is also required for proper T lymphopoiesis; how-

ever, it remains to be determined whether Bcl11a is re-

quired in multipotent progenitors or specifically in cells

committed to B and T cell differentiation. Another factor

that has recently been implicated in the early stages of B

cell development is the GA-binding protein (GABP). GABP

is a ubiquitously expressed Ets-family transcription factor

that consists of a and b subunits, which mediate DNA

binding and transcriptional activation, respectively (Shar-

rocks, 2001). GABP regulates the expression of the IL-7R

in T cells, whereas it is found to be dispensable for IL-7R

expression in B cells (Xue et al., 2004). The recent analysis

of mice homozygous for a gene-trapped gabpa allele that

results in hypomorphic expression shows impaired B cell

development characterized by a very low frequency of

clonogenic pro-B cells and a block in differentiation at the

pro-B cell stage (Xue et al., 2007). Gene-expression anal-

ysis revealed decreased expression of a number of B cell-

specific genes in gabpa mutants, suggesting a mechanism

by which GABP regulates B cell development.

Conclusions
The detailed analysis of the small number of key transcrip-

tion factors that coordinate B cell specification and com-

mitment has revealed that the transcriptional control of

early B cell development does not proceed in a linear fash-

ion. Rather, this process involves hierarchical forward

steps and feedback loops, with this handful of factors be-

ing used in multiple contexts and distinct combinations.

It has also demonstrated the surprising requirement for

continual reinforcement of the commitment process

throughout the life of a B cell. Although these studies

have facilitated the development of the cellular and molec-

ular model of B cell lineage specification and commitment

outlined here, many questions remain. For example, our

knowledge of the crucial target genes of PU.1, Ikaros,

and E2A required for promoting lymphoid specification

remains limited. In addition, despite being crucial to the

commitment process, little is known about the factors

that regulate Pax5 in B cells. Finally, the ‘‘orphan’’ B cell

factors, such as Sox4, need to be incorporated into the

model. Although resolving these questions will be essen-

tial for an understanding of the B cell-commitment pro-

cess, they also have important practical consequences

as revealed by the recent identification of most of these

transcriptional regulators as targets of mutation or dele-

tion in mouse and human acute lymphoblastic leukemia

(see Mullighan et al. [2007] and Table 1). These findings

demonstrate that the function of these essential B cell
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transcription factors needs to be carefully controlled to

avoid unwanted outcomes such as malignancy.
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