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A quantum Schwarzschild black hole is described, at the mini super spacetime level, by a non-singular 
wave packet composed of plane wave eigenstates of the momentum Dirac-conjugate to the mass operator. 
The entropy of the mass spectrum acquires then independent contributions from the average mass and 
the width. Hence, Bekenstein’s area entropy is formulated using the 〈mass2〉 average, leaving the 〈mass〉
average to set the Hawking temperature. The width function peaks at the Planck scale for an elementary 
(zero entropy, zero free energy) micro black hole of finite rms size, and decreases Doppler-like towards 
the classical limit.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
Bekenstein–Hawking black hole area entropy [1] constitutes a 
triple point in the phase of physical theories, connecting gravity, 
quantum mechanics, and statistical mechanics. However, despite
several illuminating derivations [2], the statistical roots of black 
hole entropy have not been fully revealed, not even at the level of 
discrete models [3]. There exist a few extreme black hole solutions 
[4], notably beyond general relativity, where one can apparently 
count micro states. But as far as the prototype Schwarzschild black 
hole is concerned, we still do not have the finest idea where these 
micro states are hiding, and how to enumerate them. A classi-
cal black hole is characterized by its event horizon, but once h̄
is switched on (to allow for a finite Hawking temperature and 
non-zero Bekenstein entropy), even the innocent looking question 
‘where is this horizon located’ lacks a decisive answer in the quan-
tum or even in the semi-classical level.

The quantum-mechanical Schwarzschild black hole is hereby 
described by a non-singular minimal uncertainty wave packet 
composed of plane wave eigenstates. We carry out our analysis 
at the mini super spacetime level [5] without relying on theories 
beyond general relativity such as string theory [6], the fuzzball 
proposal [7], or loop quantum gravity [8] (see [9] for a different 
approach). Treating the black hole as a subsystem (a field theory 
defined on a black hole background is expected to be in a thermal 
state), its Gaussian mass spectrum becomes temperature depen-
dent. We invoke Fowler prescription [10] for dealing with such 
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subsystems, and show that the associated statistical entropy ac-
quires independent contributions from the average mass as well 
as from the width, and consistently formulate Bekenstein’s area 
ansatz by means of the 〈mass2〉 average. While, as expected, the 
〈mass〉 average turns out to be inversely proportional to Hawk-
ing temperature, a novel temperature dependent width function 
makes its appearance. The width function is maximal at the re-
duced Planck mass for an elementary quantum-mechanical black 
hole of finite rms size, for which both the entropy and free en-
ergy vanish and are minimal, and decreases Doppler-like towards 
the classical limit.

Let our starting point be the most general static radially sym-
metric line element, expressed in the form

ds2 = − y(r)

2r
dt2 + 2r

x(r)
dr2 + r2(dθ2 + sin2 θ dφ2). (1)

The unfamiliar x, y representation has been carefully designed to 
avoid the appearance of explicit r-dependence in the constrained 
Hamiltonian formalism (see Ref. [11] for the canonically trans-
formed r-dependent Berry–Keating type [12] Hamiltonian). A ten-
able gauge pre-fixing option, namely defining a radial marker r
whose geometrical interpretation is x, y-independent, has been 
harmlessly exercised. This has to be contrasted with the forbid-
den gauge prefixing of the ‘lapse’ function (the coefficient of dr2 in 
this case), which kills the Hamiltonian constraint and introduces 
an unphysical degree of freedom (no gauge pre-fixing in Kuchar’s 
midi superspace approach [13]). The more so at the mini super-
spacetime level, where the general relativistic action 

∫
R√−g d4x

is integrated out over time and solid angle into the mini action ∫
L(x, x′, y, y′, r)dr.
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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A word of caution is in order: Throughout this paper we treat ∫
L(q, q′, r)dr in full mathematical analogy with 

∫
L(q, ̇q, t)dt . 

Technically, the t-evolution is traded for the r-evolution, both clas-
sically and quantum-mechanically, with the notions of Lagrangian 
and Hamiltonian being adapted accordingly. A similar technique 
has been introduced by York and Schmekel [14]. To sharpen the 
point, we clarify that our ‘Hamiltonian’ (to be identified with the 
momentum Dirac-conjugate [15] to the mass operator) has nothing 
to do with the physical mass of the black hole.

Up to a total derivative and an overall absorbable factor, the 
mini super-spacetime Lagrangian takes the form

L
(
x, x′, y, y′) =

(
3x′

4
− 2

)√
y

x
− y′

4

√
x

y
. (2)

Being linear in the ‘velocities’, it gives rise to two primary second 
class constraints, namely

φy = p y + 1

4

√
x

y
≈ 0, φx = px − 3

4

√
y

x
≈ 0, (3)

whose Poisson brackets do not vanish {φy, φx} = 1
2
√

xy . Following 
Dirac prescription [15], we are then driven from the naive Hamil-
tonian H = pxx′ + p y y′ −L = 2

√
y/x to the total Hamiltonian

HT = 2

√
y

x
+ 2

y

x
φy + 2φx. (4)

One can verify that the corresponding classical solution is (and is 
nothing but) the Schwarzschild solution

y(r)

2ω2r
= x(r)

2r
= 1 − 2m

r
, (5)

with no restrictions on the sign of the integration parameters m
and ω. Along the classical trajectories the Hamiltonian takes the 
value H = 2ω, telling us that the H is not the total physical mass 
of the system.

To quantize the system it becomes crucial to calculate the Dirac 
brackets, and here one finds first of all

{x, y}D = 2
√

xy �= 0 (6)

Counter-intuitively, and potentially with far reaching consequences, 
two metric components do not Dirac-commute. Moreover, the rela-
tion {x, 12H}D = 1 paves then the way for the quantum-mechanical
commutation relations [x, 12H] = ih̄. H is then faithfully repre-
sented by

H = −2ih̄
∂

∂x
. (7)

By the same token, in accord with Eq. (6), the other metric com-
ponent y is represented by y = 1

4HxH.
φx,y are second class constraints, so φxψ = φyψ = 0 are auto-

matically fulfilled. Denoting by 2ω the eigenvalues of H, the cor-
responding eigenstates are simple plane waves. Their full r-‘evolu-
tion’ is given by

ψω(x, r) = 1√
4π

e
i
h̄ ω(x−2r). (8)

They are not localized and form a δ-normalizable set. The most 
general solution is of the form ψ(x −2r). We are however after the 
‘most classical’ wave packet defined by the minimal uncertainty 
relation 	x	H = h̄, namely

ψ(x, r) = e
− (x−2r+4m)2

64σ2

1
4
√ , (9)
2(2π) σ
for which the classical Schwarzschild solution (5) is both the aver-
age as well as the most probable configuration. We thus expect 
the wave packet Eq. (9) to capture all semi-classical essence of 
black hole thermodynamics. We have limited ourselves in this pa-
per to the ’most classical’ black hole wave packet simply because 
Bekenstein–Hawking thermodynamics is formulated in the back-
ground of a classical event horizon. One can even construct an 
orthonormal tower of non-minimal uncertainty wave packets [11], 
to be regarded a prediction of the mini super-spacetime approach 
(to be discuss elsewhere), none of which sharing the Schwarzschild 
configuration as the most probable. Eq. (9) is a superposition of 
plane waves. Its Fourier transform is given by

ψ̃(H) = 2
√

σ

(2π)
1
4

e−4σ 2H2
e2imH. (10)

We identify the mass operator as M = 1
4 (2r − x) (in the 

H-language it reads M = − 1
2 ih̄ ∂

∂H ). For the Gaussian wave packet
(9) it means

〈M〉 = m,
〈
M2〉 = m2 + σ 2. (11)

The black wave packet probability density ψ†ψ can be directly 
translated into a statistical mechanics normalized mass spectrum

ρ(M;m,σ ) = e
− (M−m)2

2σ2

√
2πσ

. (12)

While a non-negative average mass m ≥ 0 (the classical choice) is 
soon to be dictated on thermodynamical grounds, the mass dis-
tribution must cover, for the sake of quantum completeness, the 
entire range −∞ < M < ∞. However, the probability to have nega-
tive masses drops like ∼ exp(−m2/2σ 2) towards the classical limit.

At this stage, one may wonder where is the black hole hori-
zon actually located? As far as our wave packet is concerned, there 
is nothing special going on in the neighbourhood of r = 2Gm/c2

(and actually also not near the origin). Supported by Eq. (6), this 
suggests that a sharp horizon is merely a classical gravitational 
concept. However, one may still effectively interpret Eq. (12) as 
the quantum-mechanical profile of the horizon, with a probabil-
ity density ρ(M; m, σ) to find it at radius 2GM/c2. In some sense, 
this reminds us of the fuzzball proposal [7] where the black hole 
arises from coarse graining over horizon-free non-singular geome-
tries. See [16] for horizon wave packets, and [14,17] for horizon 
fluctuations.

Treating the quantum-mechanical black hole as a subsystem (a 
field theory defined on a black hole background is expected to be 
in a thermal state whose temperature at infinity is the Hawking 
temperature), its Gaussian mass spectrum is temperature depen-
dent. Following Fowler prescription for dealing with such a case, 
the naive partition function must be modified according to

Z(β) =
∑

n

ρne−β Fn(β), (13)

with the Boltzmann factor being traded for the Gibbs–Helmholtz 
factor. The Helmholtz free energy function F obeys the Gibbs–
Helmholtz equation

F + β
∂ F

∂β
= E(β) ⇒ β F (β) =

β∫
β0

E(b)db, (14)

with β0 to be fixed on physical grounds. To proceed, it is con-
venient to discretize the problem by dividing the normal mass 
distribution ρ(M; m, σ) into N equal probability and temperature 
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Fig. 1. The black hole wave packet mass spectrum is plotted as a function of the 
inverse Hawking temperature β . The average mass m is linear in β . The width σ
peaks at σ0 and decreases Doppler-like towards the classical limit (where the prob-
ability of the negative masses is practically negligible).

independent sections, each of which representing a wide energy 
level, such that

Mn+1∫
Mn

ρ(M;m,σ )dM = 1

N
. (15)

This equation is formally solved by invoking the inverse error func-
tion erf −1 x, that is

Mn(β) = m(β) − √
2σ(β)erf −1

(
1 − 2n

N

)
, (16)

for n = 1, ..., N −1. The normal mass spectrum is depicted in Fig. 1. 
A straightforward solution of the differential Gibbs–Helmholtz 
equation (14), with Mn(β) serving as the source term, reveals the 
Helmholtz free energy associated with the n-th mass level

β Fn =
β∫

β0

m(b)db − √
2 erf −1

(
1 − 2n

N

) β∫
β0

σ(b)db, (17)

which we can now substitute into the partition function Z(β) =
1
N

∑N
n=1 e−β Fn(β) . Let N → ∞, define a continuous integration vari-

able ξ = n
N , and use the integration formula 

∫ 1
0 e

√
2λ erf −1(1−2ξ) dξ =

e
1
2 λ2

to arrive at

Z(β) = exp

(
−

β∫
β0

m(b)db + 1

2

( β∫
β0

σ(b)db

)2)
. (18)

The entropy S = (1 − β ∂
∂β

) log Z can now be calculated, and turns 
out to be the sum of two separate contributions

S(β) = Sm(β) + Sσ (β) (19)

Sm(β) = βm(β) −
β∫

β0

m(b)db, (20a)

Sσ (β) = −βσ(β)

β∫
β0

σ(b)db + 1

2

( β∫
β0

σ(b)db

)2

. (20b)

The associated internal energy exhibits a similar structure, and is 
given by
U (β) = m(β) − σ(β)

β∫
β0

σ(b)db, (21)

closing on the first law S ′(β) = βU ′(β).
At this stage, m(β) and σ(β) are two yet unspecified indepen-

dent functions of β . The connection with black hole physics re-
quires some input beyond the mini super-spacetime model. This is 
hereby established by invoking the Bekenstein area entropy ansatz

S = 〈M2〉
2η2

+ cS (22)

quantum-mechanically adjusted however by trading the classical 
〈M〉2 = m2 for 〈M2〉 = m2 + σ 2. The constant η will be recognized 
as the reduced Planck mass

η =
√

h̄c

8πG
(23)

as soon as the contact with Hawking temperature is analytically 
established, and cS is a constant to be determined. Having the 
first law for a Gaussian mass distribution at our disposal, with 
its compelling m ↔ σ split Eqs. (19), (21), we can now proceed 
to calculate the independent functions m(β) and σ(β). The corre-
sponding non-linear integral–differential equations to solve are

Sm(β) = m2(β)

2η2
+ cm, Sσ (β) = σ 2(β)

2η2
+ cσ , (24)

with cm + cσ = cS .
The exact solution of the first equation is straightforward, and 

is noticeably β0, cS -independent, namely

m(β) = η2β, (25)

reassuring us that the reciprocal Hawking temperature β is pro-
portional, as expected (but non-trivial in the absence of a sharp 
horizon), to the necessarily positive average mass. The recovery of 
m(β) is a necessary stage preceding the σ(β) calculation. Fixing β0
will then determine cm = 1

2 η2β2
0 . The solution of the second equa-

tion is somewhat more complicated. Define f (β) ≡ ∫ β

β0
σ(b)db, so 

that σ(β) = f ′(β), and attempt to solve numerically

f ′(β) = −η2β f (β) + η
√(

1 + η2β2
)

f 2(β) − 2cσ , (26)

subject to f (β0) = 0. Before doing so, however, it is crucial to first 
fix the β0 parameter on physical grounds.

Fowler and Rushbrooke could not give a general rule for fixing 
β0. They say “The ambiguity has its counterpart in the use of the 
Gibbs Helmholtz equation to derive free energy from true energy. 
One needs to know, for instance, the entropy of the substance at 
some one particular temperature”. Under β0 → β0 + δβ0, the en-
tropy S(β) gets shifted by a β-dependent amount. In other words, 
the choice of β0 is a physical choice. And since it cannot be sen-
sitive to S → S + const, its roots must be at the S ′(β0) = β0U ′(β0)

level. The only tenable choice is β0 = 0; it is universal in the sense 
that

S(0) = S ′(0) = U (0) = 0, (27)

suggesting (to be implied later) that U ′(0) = η2 −σ 2
0 should vanish 

as well. In fact, there is even a simpler argument to support the 
β0 = 0 choice. Hawking temperature (25) tells us that choosing β0
means choosing a special average mass m0, but there is no such a 
special mass. The accompanying constants take then the values
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cm = 0, cσ = − σ 2
0

2η2
= cS . (28)

Unfortunately, Eq. (26) does not admit an exact analytic solu-
tion. It tells us, however, that σ(β) = f ′(β) is a monotonically 
decreasing function of β , solely parameterized by the maximal 
width σ0. As far as the small-ηβ region is concerned, we derive 
the asymptotic expansion

σ(β) = σ0

(
1 − 1

2
η2β2 + 3

8
η4β4 + ...

)
. (29)

Even the special case m = 0, which classically leads to a flat space-
time, is quantum-mechanically accompanied by a wave packet of 
non-vanishing width. Similarly for large-ηβ , we face

σ(β) = sσ0

2
√

ηβ

(
1 + 1

2s2ηβ
+ ...

)
, (30)

where s � 0.6185 has been fixed numerically. No log-terms [18]
at this stage. The Hawking temperature dependent width of macro 
black hole wave packets highly reminds us (but apparently with-
out any physics in common) of the Doppler broadening of spectral 
lines.

m and σ have been gradually elevated from being two in-
dependent parameters to two explicit functions of the Hawking 
temperature. Treating β as a parameter, one can express σ(m), 
and proceed to discuss the entropy and the internal energy. At 
the classical limit m � η there are no surprises, with the leading 
Bekenstein–Hawking formulas acquire only tiny corrections

S(m) = m2

2η2
− σ 2

0

2η2
+ s2σ 2

0

8ηm
+ ...

U (m) = m − s2σ 2
0

2η
+ ... (31)

At the quantum regime m ≤ η, on the other hand, we find our-
selves in an unfamiliar territory governed by

S(m) =
(

1 − σ 2
0

η2

)
m2

2η2
+ σ 2

0 m4

2η6
+ ...

U (m) =
(

1 − σ 2
0

η2

)
m + 2σ 2

0 m3

3η4
+ ... (32)

Regarding the value of σ0, several possibilities arise:

(i) If σ0 = 0, we recover the Bekenstein–Hawking black hole ther-
modynamics of Schwarzschild spacetime.

(ii) If σ0 > η, the entropy function develops a local maximum at 
m = 0. This in turn causes the small-m section of S(m) to 
be negative, and hence must be rejected on entropy positiv-
ity grounds.

(iii) If σ0 < η, the entropy S(m) exhibits an absolute minimum 
at m = 0. The minimal entropy is still proportional to S B H =
m2/2η2, but is suppressed now by a factor of 1 − σ 2

0 /η2.
(iv) If σ0 = η (accompanied by cS = − 1

2 ), the black hole entropy 
barely keeps its minimum at m = 0, and the internal energy 
gives up its linear small-m behavior.

The smallest size quantum-mechanical black hole wave packet 
comes with m = 0 and σ = σ0. We insist on attaching to it a min-
imal entropy, but do we have a physical reason which can single 
out one particular value for σ0 ≤ η? In fact, we do. Recall that 
U ′(0) = η2 −σ 2

0 , so σ0 = η can now complete the partial set of ini-
tial conditions (27) by supplementing the missing piece U ′(0) = 0. 
Carrying zero entropy, this micro black hole represents a single de-
gree of freedom, and in this respect can be regarded elementary. It 
is characterized by a finite root mean square mass mRMS = η (con-
sistent with the fact that Compton wavelength puts a limit on the 
minimum size of the region in which a mass can be localized), yet 
it is divergently hot, a feature which is supposed to play a crucial 
role at the final stage of black hole evaporation.

While a classical event horizon is apparently mandatory for 
formulating black hole thermodynamics, Bekenstein entropy will 
explode and Hawking temperature vanish if h̄ is switched off. It 
is thus relieving to learn that black hole thermodynamics can be 
consistently resumed when h̄ is switched on, causing inevitable 
horizon smoothening. The mass spectrum, which on quantum-
mechanical consistency grounds must contain negative masses, 
plays here a central role. While the average mass sets the recov-
ered Hawking temperature, a novel temperature dependent width 
function contributes to Bekenstein entropy. It peaks at the Planck 
mass for an elementary quantum black hole of finite rms size, and 
decreases Doppler like towards the classical limit.
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