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Abstract

Out of annotated programs proof carrying code systems construct and prove verification conditions
that guarantee a given safety policy. The annotations may come from various program analyzers
and must not be trusted as they need to be verified. A generic verification condition generator
can be utilized such that a combination of annotations is verified incrementally. New annotations
may be verified by using previously verified ones as trusted facts. We show how results from a
trusted type analyzer may be combined with untrusted interval analysis to automatically verify
that bytecode programs do not overflow. All trusted components are formalized and verified in
Isabelle/HOL.
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1 Introduction

Proof carrying code (PCC) enables a code producer to convince a code con-
sumer that a program is safe to execute. It associates to the program a
machine-checkable proof of its safety. The code consumer checks this proof
against a formula that guarantees safety of the program at hand. This formula
is constructed individually for each program by a verification condition gener-
ator (VCG). In the earlier PCC systems [10] the VCG is a highly engineered
component that tries to produce proof obligations that are easily prove- and
checkable. This comes at the price of having a complex component that is
difficult to understand and trust. A bug in the VCG can lead to provable
verification conditions for unsafe programs. Foundational proof carrying code
[3] remedies this by requiring the verification condition to directly express the
desired safety property in terms of the machine semantics. A VCG in form
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of a proof tactic may still be applied. In this case all the formula transfor-
mations it does are inside the logic and must be verified. This typically leads
to big proof objects. In addition verification conditions directly expressing
safety require higher order logics, which hampers automatic proof generation.
For some safety policies, such as type safety, correct instruction decoding,
program counter in range etc., this is yet feasible as proofs can be extracted
from sophisticated type systems [9]. A promising compromise between purely
foundational and classical PCC is the Open Verifier [6] architecture. While
verifying a powerful VCG as in [10] is a daunting task, it is possible to use a
minimal VCG as trusted core. It delegates more complicated transformations
to untrusted extensions that are obliged to certify their work. In [17] we follow
a similar idea, except that in our case extensions are verified and thus trusted.
We formalize a parameterized framework for a generic VCG in the theorem
prover Isabelle/HOL. The framework defines signatures and specifies require-
ments for functions used as parameters by the generic VCG. By defining these
parameters to a particular programming language, safety policy and safety
logic one obtains an instantiated VCG. If one verifies that the instantiated
parameters meet the framework’s requirements the correctness and soundness
proof for the generic VCG automatically carry over to the instantiated one.
In this paper we will instantiate a VCG that checks for arithmetic overflow
in Jinja bytecode programs. Jinja [8] is a downsized version of Java featuring
object creation, inheritance, dynamic method calls and exception handling.
As safety logic we use a first order expression language [16] deeply embedded
into Isabelle/HOL.

A general problem in program verification is to find invariants for loops.
Our VCG assumes that these are given in form of annotations in the code.
It is the task of the code producer to find them. For many safety proper-
ties inductive invariants can be generated automatically using static program
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analysis. The main contribution of this paper is to show how annotations can
be gained from interval analysis and type inferences done by a Java bytecode
verifier. In our previous papers annotations had to be added manually by the
code producer. Since one has to verify annotations as part of the verification
condition the analyzers must not be trusted. Any external tool whose results
can be transformed to annotations in our first order expression language may
be used. However, sometimes one knows that some analyzer can be trusted.
For example in the Jinja formalization we have a completely verified bytecode
verifier. Given a bytecode program it infers the types of registers and stack
elements for all program positions. In this paper we will show how one can
instantiate the generic VCG such that it combines trusted and untrusted infor-
mation. Our aim are verification conditions that oblige us to verify untrusted
parts and allow us to assume trusted facts. We call such verification condi-
tions incremental as they only have some value, if their assumptions hold for
a particular program. To check this, one has several possibilities. First, the
assumptions may arise from a trusted and efficient analyzer. In this case the
client can run this analyzer and hand the results over to the VCG as trusted
parts. Second, we may use an analyzer that emits a certificate for each result.
This is generally just another instance of PCC and could be handled by giv-
ing the analyzer’s results directly to the VCG as untrusted facts. Instead of
having one big VCG that combines the results of various untrusted sources,
we can employ multiple ones. In this case we can prove the results of different
analyzers in isolation.

2 PCC Framework

Our generic VCG constructs formulas out of annotated control flow graphs.
The control flow of a program Π is determined by a parameter function succsF
which yields for each position p a list of successor positions paired with branch
conditions. The intuition is that (p ′,B) ∈ set (succsF Π p) means that p ′ is
directly accessible from p in situations where B holds. Formally, we write
Π,(p,m) |= B to say that a state (p,m), where p is the program counter and
m the memory, satisfies some formula B. The safety policy is expected in form
of a function sF from programs and positions to formulas, such that sF Π p
expresses the safety condition we expect for program Π when we reach p at
runtime. Analogously we write aF Π p for the annotation at position p. For
each node p with successor p ′ with branch condition B the VCG constructs
this proof obligation:

(sF Π p �
V

� aF Π p �
V

� B) �⇒� wpF Π p p ′ (sF Π p ′
�
V

� aF Π p ′)

The safety formula sF Π p conjoined with annotation and branch condition
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must imply the (weakest) precondition for the transition from p to p ′ and
a postcondition consisting of the annotation and safety formula at p ′. Note
that the marked connectives �

V
� and �⇒� are part of the safety logic, whereas

∧ and −→ are Isabelle/HOL’s logical connectives. In addition to these proof
obligations the VCG emits a safety constraint for initial states. States that
satisfy the formula initF Π must satisfy the safety formula and annotation of
the initial position ipc Π.

initF Π �⇒� (sF Π (ipc Π) �
V

� aF Π (ipc Π))

Our framework requires that initF Π is instantiated such that it covers all
initial states initS Π of a program Π. Note that initF Π yields a formula in the
safety logic and may abstract properties of concrete initial states modeled by
initS. The letters F and S in function names indicate whether they belong to
the formula or the semantical level. Apart from initS we use a state transition
relation effS Π to model the semantics of a program. We say a program is
safe with respect to some safety policy sF, i.e. isSafe sF Π, if and only if all
reachable states satisfy the safety policy.

isSafe sF Π = inv Π sF
where inv Π I = ∀ (p,m) ∈ ReachableS Π. Π,(p,m) |= I Π p
ReachableS Π = {(p,m) | ∃ (p0,m0) ∈ initS Π. ((p0,m0),(p,m))∈(effS Π)∗ }
The correctness theorem we have proven in Isabelle/HOL guarantees that
a program Π is safe and has valid annotations if one can prove the generic
verification condition for it.

theorem correct-vcg :
(VCGReqs . . . wf initF succsF wpF sF aF ∧ wf Π
∧ Π � vcg initF succsF wpF sF aF Π)
−→ (inv Π sF ∧ inv Π aF )

The predicate VCGReqs . . . wf initF succsF wpF aF sF indicates that the
parameter functions meet the requirements our framework demands. With
. . . we indicate that some parameters, such as �

V
�, �⇒�, initS and effS are

suppressed for better readability. With vcg initF succsF sF aF we denote
an instance of the generic VCG to particular setting of parameters. The
wellformedness predicate wf is meant to check simple syntactic constraints on
programs that help to simplify the definition of other parameter functions.
The PCC framework only demands that it checks for sufficient annotations
in programs. Our generic VCG requires at least one annotation per cycle in
the control flow graph. In this case it constructs formulas for non annotated
positions by pulling back the annotations of successor positions using wpF.
Details can be found in [17]. Additional checks can be added to wf, but
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one has to keep in mind that a code consumer is supposed to evaluate wf
efficiently. We do not go into the details of the requirements VCGReqs poses
onto the parameters. These can be found in [17] and in the Isabelle theories
[2]. Most requirements are easy to prove for a particular instantiation. The
hardest part is usually to verify that succsF and wpF are an abstraction of the
concrete semantics defined by effS and initS. That is, if the semantics effS Π
allows a transition from (p,m) to (p ′,m ′) then p ′ must be among the successors
statically predicted by succsF Π p and the corresponding branch condition
must hold for (p,m). In addition if (p,m) satisfies the precondition for some
postcondition Q, i.e. Π,(p,m) |= wpF Π p p ′ Q, then Q must be satisfied by
(p ′,m ′). If the resulting VCG shall be complete, that is safe programs yield
provable verification conditions, stronger requirements are necessary. The wpF
operator must then yield weakest(!) preconditions and succsF must give exact
control flow information. In our instantiation to Jinja, we have proven both
correctness and completeness of the VCG.

3 Incremental Verification

Once the requirements are proven for a particular setting of parameters, some
of these parameters can be replaced by extended versions, without having to
redo the proofs. A safety policy sF may be replaced by another safety policy
sF ′ as no requirements depend on it.

lemma replace−sF :
VCGReqs . . . wf initF succsF wpF sF aF
−→ VCGReqs . . . wf initF succsF wpF sF ′ aF

In addition one can always replace the wellformedness checker wf with a
stronger version wf ′.

lemma upgrade−wf :
(∀ Π. wf ′ Π −→ wf Π) ∧ VCGReqs . . . wf initF succsF wpF sF aF
−→ VCGReqs . . . wf ′ initF succsF wpF sF aF

Invariants can be used to upgrade successor functions. For this purpose we use
a higher order functor upg, which upgrades a given successor function succsF
by conjoining an invariant I with its branch conditions.

succsF Π p = [(p1,B1),. . . ,(pk,Bk)] −→
(upg I succsF ) p = [(p1,B1 �

V
� I p), . . . , (pk,Bk �

V
� I p)]

lemma upgrade−succsF :
((wf Π −→ inv Π I ) ∧ VCGReqs . . . wf initF succsF wpF sF aF )
−→ VCGReqs . . . wf initF (upg I succsF ) wpF sF aF
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Now imagine we have two analyzers for some programming language and we
want to use both to verify some safety policy sF. Let aF 1 Π and aF 2 Π be
the annotations we gain from both analyzers.
A simple solution is to instantiate a PCC system with the conjunction of both
annotation sets. We take aF 12 = λ Π p. aF 1 Π p �

V
� aF 2 Π p and prove the

framework’s requirements VCGReqs . . . wf initF succsF wpF sF aF 12. Then
the code producer is obliged to give us a proof of Π � vcg initF succsF wpF sF
aF 12 Π, which would guarantee inv Π aF 12 as well as inv Π sF. This approach
is acceptable if neither analyzer is trustworthy. Otherwise, we repeat work as
both annotation sets have to be proven.
Alternatively, we can instantiate two VCGs and do the verification incremen-
tally. First we instantiate a VCG for a trivial safety policy that just enforces
that the annotations aF 1 Π hold. We show the requirements
VCGReqs . . . wf initF succsF wpF (λ Π p. �True�) aF 1 (1) and ask the
producer to prove Π � vcg initF succsF wpF (λ Π p. �True�) aF 1 Π (2). For
wellformed programs this gives us inv Π aF 1, and enables us to apply lemmas
upgrade−wf and upgrade−succsF to obtain another instantiation where
VCGReqs wf ′ initF (upg aF 1 succsF ) wpF sF aF 2 (3) holds. With wf ′

Π we employ a stronger wellformedness checker. It guarantees wf Π and en-
sures inv Π aF 1 by checking a proof for (2). If wf ′ accepts the program the
producer is asked to send a proof for Π � vcg initF (upg aF 1 succsF ) wpF sF
aF 2 Π (4), which guarantees the safety policy we are actually interested
in, i.e. inv Π sF, as well as inv Π aF 2. This approach is superior to the first,
if the second proof can make use of aF 1 Π, which now only appears on the
left hand side of implications.
If aF 1 Π comes from a trusted source, we have a third alternative. In this
case we get inv Π aF 1 either by assumption or because we have a correctness
proof of the analyzer, that is a proof of ∀ Π. wf ′ Π −→ inv Π aF . In both
cases the code producer can skip (2) and only has to prove (4). In this pa-
per we will apply the second option for the Jinja bytecode verifier, which is
proven correct in [8]. The types it infers for registers and stack elements can
be trusted and must not be verified again inside verification conditions. Other
example for trusted annotations are system invariants. These are properties
maintained by the Jinja Virtual Machine for any wellformed program. For
example, the Jinja virtual machine preallocates objects for system exceptions,
e.g. OutOfMemory, and always keeps these objects at specific positions in the
heap. This can be expressed as a safety logic formula and yields a system
invariant.
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4 PCC for Jinja Bytecode

Jinja bytecode is a down-sized version of Java bytecode and covers essential
object oriented features: object creation, inheritance, dynamic method calls
and exceptions. In this paper, we only use the basic arithmetic and move
instructions. Our intervall analysis is not (yet) powerful enough to handle ob-
ject references and method calls. Programs with these features can be verified
in our PCC system, but require manual annotations. Fig. 2 shows a method
that adds all numbers from 1 to n. The two safety checks prevent arithmetic
overflow and enable our interval analyzer to generate a linear inductive invari-
ant.
Each method is executed in its own frame, which contains a program counter,
registers and an operand stack. Apart from that Jinja states contain a heap
mapping references to objects. Program positions are triples (C ,M ,pc), where
pc is the number of the current instruction in method M of class C. Registers
and stack contain booleans, e.g. Bool True, integers, e.g. Intg 5, references,
e.g. Addr 3, null pointers, e.g. Null or dummy elements, e.g. Unit.

datatype val = Bool bool | Intg int | Addr addr | Null | Unit

Each value has a type associated with it:

datatype ty = Boolean | Integer | Class cname | NT | Void

Jinja programs are started in position (Start ,main,0 ), with one method frame
that contains an empty operand stack and uninitialized registers. The seman-
tics of a Jinja program Π is defined by initS Π, the set of its intial states, and
effS Π, a relation mapping each state to its direct successors. We skip the
formal definitions, as the instructions used here are simple enough: Push val
pushes a constant value onto the operand stack. Store n removes the topmost
stack value and stores it in register n. Load n copies the content of register n
onto the stack. IfIntLeq t jumps t instructions forward (backward if t is neg-
ative) if the upper stack value is less than or equal to the lower one and erases
both. IAdd pops the two upper values and replaces them with their sum.
Finally, Goto t jumps t instructions forward and Return terminates a method
handing the topmost stack element over to the caller. To write annotations
and to specify a safety policy we have to instantiate a safety logic. An easy
way to do so would be to use the logic of the theorem prover Isabelle/HOL
as safety logic by defining formulas semantically as predicates on Jinja states.
We have used this shallow embedding technique in other instantiations [15],
but decided to use a deeply embedded first order expression language here.
A shallow embedding eases the definition and verification of a wpF func-
tion significantly, but makes the definition of a precise control flow function
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Load n push input
Push Intg 65536 push bound
IfIntLeq 20 safety check
Push Intg 0 initialize Rg k
Store k
Push Intg 0 initialize Rg r
Store r

lp: Load k
Load n
IfIntLeq 13 if n ≤ k goto ex;
Load r else {
Push Intg 2147385346
IfIntLeq 10 safety check
Load k
Push Intg 1
IAdd
Store k k := k+1
Load k
Load r
IAdd
Store r r := r+k
Goto −14 goto lp: }

ex: Load r
Return

Fig. 2. Example Program

harder. In the deep embedding succsF can extract information, such as types
or jump targets, from structural analysis of annotations. This helps to limit
the branches succsF yields for dynamic method invocations and exceptions.
Moreover, the limitation to first order simplifies the proofs of the resulting
verification conditions and allows us to use other tools than Isabelle/HOL for
this purpose. The expression language we use is designed to adequately model
Jinja states and can express weakest preconditions for all Jinja instructions
[16]. In this paper we only need a small fragment of it:

datatype expr = Cn val | Rg nat | St nat | Ty expr ty | expr op expr | . . .
op = �+� | �−� | �∗� | �=� | ��� | �

∧
� | �⇒�

We have expressions for constants, register and stack access, type checking as
well as arithmetic and logical operations. When evaluated on a Jinja state
all these expressions yield a Jinja value. The formal definition of eval ::prog
⇒ state ⇒ expr ⇒ val is in [16]. Here it is only important to know that
expressions are considered valid formulas if they evaluate to Bool True.

Π,s |= F ≡ (eval Π s F = Bool True)

To define the provability judgment � one usually gives a calculus of intro-
duction and elimination rules. However, if we want to do the proofs in Isa-
belle/HOL we can also define provability semantically.

Π � F ≡ ∀ s∈ ReachableS Π. Π,s |= F

We decided for this option, as it trivializes the correctness and completeness
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requirement for the safety logic. Formulas are considered provable if we can
prove in Isabelle/HOL that they hold for all reachable states. Using these
expressions, we instantiate a safety policy that prohibits arithmetic overflow.
We simply check that each addition yields a result that is below MAXINT,
which is 2147483647 for Java.

safeF Π p = if (cmd Π p = IAdd) then St 0 �+� St 1 ��� MAXINT else �True�

The instantiation work lies in defining the successor function succsF and a
weakest precondition operator wpF and proving that they meet the require-
ments the framework poses on them. The first order expression language is
designed to be expressive enough to define a complete wpF, that is a func-
tion that exactly reflects the semantics effS at the level of formulas. The wpF
operation is defined via substitutions on formulas [16]. We do not show its def-
inition as the principle it follows is straightforward. Whenever an instruction
changes the value of some subexpression, we substitute it with an expression
that compensates this effect. For example in case of IAdd we substitute each
occurrence of St 0 in the postcondition with St 0 �+� St 1. All the requirements
for wpF follow easily from this lemma we have been able to prove:

wf Π ∧ (p,m) ∈ ReachableS Π ∧ ((p,m),(p ′,m ′)) ∈ (effS Π)
−→ eval Π (p,m) (wpF Π p p ′ Q) = eval Π (p ′,m ′) Q

It says that evaluating the postcondition in the successor state amounts to
evaluating the weakest precondition in the current state.

5 Program analysis

Since we are interested in supporting verification in different safety policies
we use a general purpose static analyzer. It is an implementation of a generic
abstract interpretation framework as presented in [7]. It transforms programs
into a control flow graph representation, where the edge labels reflect the origi-
nal commands and conditions . These labels have to be accurately interpreted
by each abstract domain implementation and give raise to the abstract seman-
tics in form of abstract transfer functions of type D → D, D is an abstract
domain. Replacing the labels in the control flow graph by the corresponding
abstract transfer functions leads to the representation of the abstract seman-
tics equation system. Any adequate iterative solver can solve it and provide
a post-fixpoint as a safe approximation for it, provided the convergence is
guaranteed.
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Load i st 0 := rg i

Push v st 0 := v

IfFalse n st 0 = ff ; st 0 = tt

Pop Nop ”pop”

Fig. 3. Encoding bytecode instructions in labels

5.1 Adjustment of the analyzer to bytecode

The main challenge in analyzing bytecode programs, is that the instructions
have implicit parameters given by the functionality for the virtual machine.
Furthermore stack manipulations blur the dependency of the effects in terms
of the registers. In contrast to other methods [13] we do not translate the
bytecode program into an intermediate language, but implement domains that
encode an abstraction of the virtual machine. This decision was due to our bad
experience with an intermediate language. The only drawback we have to put
up with is that the resulting implementations are only useful for bytecode-like
languages.

The first step we have to mention is the encoding of the bytecode instruc-
tions into the labeling language. Some encodings are given in Fig.3. Any
abstract domain implementation has to interpret the labels accurately in the
sense of this transformation. For example when interpreting Push v, encoded
by st 0 := v, the abstract transfer function should take into account that the
abstraction of the stack has to mimic the behavior of the stack on the virtual
machine. A label x := e can encode any assignment of the expression e to
the variable x. But interpreting an assignment may differ from domain to an
other. For example interpreting st 0 := v for a bytecode language dose not
simply consist in storing the value v in the variable st 0 but should rather
reflect the fact that the stack elements move down. The main reason for this
is that we leave the labeling language common to all domain implementations
and use it to encode different imperative or bytecode languages. For readabil-
ity we note variables and expressions in a near notation to the JVM, where
st i and rg j refer to the ith stack position and to the jth register. Conditional
jumps must have two successors, where the condition evaluates to tt or to ff.
This is in Fig.3 reflected by the two labels assigned to the successor edges in
the case of IfFalse n.
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es ::= x ∈ regs|v ∈ V|es bin es|un es

Fig. 4. Stack expressions

rg i := st 0 λ(a, e :: es).(a[i �→ eval a e], map(λe.e[a[i]/rg i]) es)

st 0 := v λ(a, es).(a, ev :: es)

st 0 := st 0 + st 1 λ(a, e1 :: e2 :: es).(a, (e1 + e2) :: es)

Fig. 5. Some transfer functions for :=

5.2 Interval analysis for the bytecode

We implemented interval analysis as a result of lifting the lattice of intervals, a
special case of some values lattice V, to the lattice V → V, where V represents
the set of variables we are interested in. This transformation is done by a
functor which has minimal assumptions on the implementation of the lattice
of values, whence the techniques we present are applicable to all such liftings.
Lattices for values have to approximate values of the programming language
by abstract values (V). This is ensured by a function α : val → V. They also
have to provide an arithmetic and a logic in order to reflect the operations
+, ∗,−,≤, >, =, etc . . . . For intervals we use a standard arithmetic, widening
and narrowing as described in [11]. We abstract numerical constants c by the
interval [c, c]. We used the intervals [0, 0], [1, 1] and [0, 1] to represent ff, tt,
and the unknown truth value.

Dealing with the stack

The set of variables V we are interested in is composed by the registers regs and
the stack elements svars i.e. V = regs 
 svars. The key to a precise bytecode
analysis, is to keep track of what the values on the stack stand for. This is
of great use in the exploitation of the branching conditions, since these are
usually expressed in terms of stack elements. For this purpose we associate an
expression to each stack position, which is a safe description of the associated
value in terms of the registers. The syntax of stack expressions is given in
Fig.4. Since the shape of the stack changes along the program, we represent
it by a list. Hence the lattice of our insensitive liftings, and thus also interval
analysis, is LV = (regs → V) × (sexpr list).

Transfer functions

The transfer functions are strict in the sense if an expression evaluates to ⊥V,
the next abstract state is unreachable and hence will be ⊥LV. Since we analyze
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bcond (st 0 = ff) (a, e :: es) =
case e of

rg i bin rg j ⇒
let

vi = a[i] �V varncond bin a[j]
vj = a[j] �V varncond bin a[i]

in (a[i �→ vi; j �→ vj], es)
rg i bin e′ ⇒ (a[i �→ varncond bin (eval a e′)], es)
¬e′ ⇒ bcond (st 0 = tt)(a, e′ :: es)
⇒ (a, es)

Fig. 6. Treatment of one case of branching conditions

only well formed programs, the existence and the type correctness of the stack
elements at different program positions is guaranteed by the bytecode verifier.
Some of the transfer functions for the “assignments” are listed in Fig. 5. The
interesting case is when the label corresponds to a Store i instruction. The
associated abstract value to register i will change and hence for consistency all
stack expressions referring to register i have to be updated. Replacing every
occurrence of rg i in the expressions on the stack by the actual value vi of
register i updates these accurately. In the second line of Fig. 5 we associate to
a value in the labeling language v a sexpr expression ev = α(v). With eval a e
we perform a bottom-up evaluation of the expression e in the abstract state a
by simply looking up variables in a, abstracting constants by α, and otherwise
recurcively applying the operations defined by V. The transfer functions for
the branching conditions use the expressions on the stack in order to restrict
the next abstract state. We consider the case where the value on top of the
stack is supposed to be false in the next states. If the approximation of this
value is α(tt), then the next state will be unreachable, otherwise we restrict
the next state according to the function bcond shown in Fig.6. The interesting
case is when the boolean condition is of the form x bin b, where x ∈ regs. In
this case the lifting functor updates the abstract value vx associated to x by
vx�V varncond bin vb, where vb is the abstract value the expression b evaluates
to, and varncond is a function specific to each domain of values and gives a
best way to restrict an abstract value given a binary operator and the value
of the right hand side, where the binary condition is supposed not to hold.
Domains for values have also to provide a function varcond for the analogous
scenario, but where the binary condition is supposed to hold. bin is a binary
operator such that x bin y ⇔ ybin x holds. The other cases are similar.

M. Wildmoser et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 19–3430



Finally, every domain implementation has to make a function toAnnotation
available, which transforms a domain element to a formula in the safety logic
used for annotations. It implements the concretization function γ.

6 Bytecode Verification

The Jinja Bytecode Verifier infers the types for register and operand stack
values. Encoded into our safety logic these facts become expressions of the
form Ty (Rg 0 ) (Class Start) �

V
� . . . �

V
� Ty (St 0 ) Integer �

V
� . . . . Using

the type safety proof of [8] we can easily derive the following theorem, which
allows us to trust the Bytecode Verifier’s result.

wtP (bcv Π) Π −→ inv Π (conv-Ty (bcv Π))

When the Jinja type checker wtP accepts the types bcv Π, inferred by the
bytecode verifier, as a welltyping for a program Π, then we can convert these
types to formulas that hold at runtime. Following the schema from §3 we
upgrade succsF with these type constraints and strengthen the wellformedness
checker with wtP (bcv Π). That is, we verify VCGReqs . . . (λ Π. wf Π ∧ wtP
(bcv Π)) initF (upg (λ Π. conv-Ty (bcv Π)) succsF ) wpF sF aF, which gives
us a correct VCG for Jinja.

7 System Overview

7.1 Generating Verification Conditions

Fig. 7 shows the process of synthesizing the verification condition, which is
common to both consumer and producer. Java classfiles are converted into
Jinja ML representation by J2ML, a tool we implemented using Perl and
Jissa[1]. Jissa decodes binary classfiles to a textual assembly notation, which
Perl then transforms to a ML representation of Jinja bytecode. In ML we
have the interval analyzer as well as executable versions for the VCG and
the BCV available. The latter two are automatically generated from their
Isabelle/HOL formalizations, which we have verified. First, we run the in-
terval analysis to obtain invariants for loops. These are then given to the
VCG together with the program code. We have instantiated the VCG with
a successor function that internally uses the Bytecode Verifier to construct
branch conditions with type information for registers and stack. These are
helpful for proof construction as many of our Jinja specific proof rules have
type constraints. To construct proofs we consider two different techniques:
First one can employ a theorem prover. Although other first order provers
with proof objects and sufficient support for arithmetics could be employed,
we rather tend to use Isabelle/HOL for this purpose as well. It may not be
the best prover as it is built for interactive verification, but it enables us to
define the provability judgment semantically. The second technique is to use
a proof producing program analysis.
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Fig. 7. Generation of Verification Conditions for Jinja

7.2 Proof Construction with Isabelle

For the entry point of the loop (lp:) in Fig. 2 the interval analysis gives us this
expression:

Cn (Intg 0 ) ��� Rg r �
V

� Rg r ��� Cn (Intg 2147385346 ) �
V

� Cn (Intg 0 ) ���
Rg k �

V
� Rg k ��� Cn (Intg 65535 ) �

V
� Rg n ��� Cn (Intg 65535 )

If we use this annotation, we obtain a verification condition that is automati-
cally provable by Isabelle’s simplifier. The simplifier automatically translates
expressions in our first order language into HOL propositions using rewriting
rules for eval. For example, here is a rule that turns �+� into Isabelle’s +.

eval Π s (Ty e Integer) = Bool True ∧ eval Π s (Ty e ′ Integer) = Bool True
−→ eval Π s (e �+� e ′) = the-Intg (eval Π s e) + the-Intg (eval Π s e ′)

Note that this rule has type constraints as side conditions. These can auto-
matically be discharged with the type information put into branch conditions
by the BCV. After simplification the resulting HOL formulas can be given
to Isabelle’s decision procedures. For the example above linear arithmetics
suffices. If we remove the inner safety check from our example program, inter-
val analysis cannot find an inductive invariant any more, because it does not
know the relationship between Rg k and Rg n, i.e. 2 �∗� Rg n = (Rg k) �∗� (Rg
k �+� Cn Intg 1 ). However, if we manually add this relationship as invariant,
the program can be verified automatically, but now requires a fragment of
bounded arithmetics to find an upper bound for multiplication expressions.

7.3 Proof producing program analysis

After the analyzer reaches a post-fixpoint, it should return a proof that the
found annotations are correct, i.e. form valid Hoare triples. This would avoid
reverifying the annotations as in the former case, which needs the presence
of special decision procedures, e.g. bounded arithmetic if the programming
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language admits multiplication. We developed this technique independently
from [12] and have almost finished implementing it for interval analysis. More
details in [5]. This technique is attractive due to the short proofs we get.
Intuitively, since the analyzer infers these invariants, their correctness proofs
will rely on a small set of theorems, which express that the analyzer manipu-
lates domain elements correctly. Proof producing analysis gives raise to sound
yet incomplete efficient proof-producing decision procedures, which may be
helpful to verify the analyzed programs.

7.4 Proof Checking

Isabelle can record proof objects in LF style [4]. These can be transmitted
to the consumer side. There Isabelle’s proof checker finds out whether the
received proof fits the verification condition, which is computed as Fig. 7
shows. The proof checker is a relatively small and simple ML program, and
can thus be trusted without a machine checked proof.

8 Conclusion

Our generic VCG can be instantiated such that it makes use of trusted and
untrusted analysis results. It can be instrumented such that only the first need
to be verified. In this paper we employ an untrusted interval analyzer and a
trusted type analyzer (BCV) to verify automatically that Jinja programs do
not overflow. This is a major improvement to our previous work [17] [15]
[16], where we annotated programs manually. Our formalization of Jinja and
PCC is about 51k lines of Isabelle/HOL. It demonstrates that it is feasible
to have a fully verified trused code base for a PCC system. In the future
we try to extend on this work in various angles. More advanced program
analysis techniques are planned to be implemented. Jinja’s bytecode is going
to be extended towards the Verificard bytecode [14], which now almost covers
the entire Java bytecode. A downside of our generic verification conditions
is that they contain a lot of redundant and irrelevant information. We plan
to improve this by using optimizing postprocessing functions. In the Open
Verifier [6], untrusted extensions are used to abstract the exact results of the
core verifier. This is analogous, except that we rather try to employ verified
optimizers.

References

[1] Jissa website, http://www.quiss.org/jissa/. 2000.

M. Wildmoser et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 19–34 33

http://www.quiss.org/jissa/


[2] VeryPCC project website in Munich, http://isabelle.in.tum.de/verypcc/, 2003.

[3] A. W. Appel. Foundational proof-carrying code. In 16th Annual IEEE Symposium on Logic
in Computer Science (LICS ’01), pages 247–258, June 2001.

[4] S. Berghofer and T. Nipkow. Proof terms for simply typed higher order logic. In J. Harrison
and M. Aagaard, editors, Theorem Proving in Higher Order Logics, volume 1869 of Lect. Notes
in Comp. Sci., pages 38–52. Springer-Verlag, 2000.

[5] A. Chaieb. Proof-producing program analysis. Technical report, TU, München, Dec. 2004.

[6] B.-Y. E. Chang, A. Chlipala, G. C. Necula, and R. R. Schneck. The open verifier framework
for foundational verifiers. In In Proceedings of the ACM SIGPLAN Workshop on Types in
Language Design and Implementation (TLDI’05). ACM SIGPLAN Notices, 2005.

[7] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 269–282, San Antonio, Texas, 1979. ACM Press, New York,
NY.

[8] G. Klein and T. Nipkow. A machine-checked model for a Java-like language, virtual machine
and compiler. Research report, National ICT Australia, Sydney, 2004.

[9] G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F to typed assembly language.
In Proc. 25th ACM Symp. Principles of Programming Languages, pages 85–97. ACM Press,
1998.

[10] G. C. Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University, 1998.

[11] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer, 1999.

[12] S. Seo, H. Yang, and K. Yi. Automatic construction of hoare proofs from abstract
interpretation results. In The First Asian Symposium on Programming Languages and Systems,
LNCS Vol. 2895, pages 230–245, Beijing, 2003. Springer.

[13] R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot - a java
optimization framework. In Proceedings of CASCON 1999, pages 125–135, 1999.

[14] Verificard project website in Munich, http://isabelle.in.tum.de/verificard/, 2002.

[15] M. Wildmoser and T. Nipkow. Certifying machine code safety: Shallow versus deep embedding.
In Proc. 17th Int. Conf. on Theorem Proving in Higher Order Logics (TPHOLs 2004). Springer
Verlag, 2004. 16 pages.

[16] M. Wildmoser and T. Nipkow. Asserting bytecode safety. Proceedings of the 15th European
Symposium on Programming (ESOP05), 2005. to appear.

[17] M. Wildmoser, T. Nipkow, G. Klein, and S. Nanz. Prototyping proof carrying code. In Proc.
3rd IFIP Int. Conf. Theoretical Computer Science (TCS 2004), 2004.

M. Wildmoser et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 19–3434

http://isabelle.in.tum.de/verypcc/
http://isabelle.in.tum.de/verificard/

	Introduction
	PCC Framework
	Incremental Verification
	PCC for Jinja Bytecode
	Program analysis
	Adjustment of the analyzer to bytecode
	Interval analysis for the bytecode

	Bytecode Verification
	System Overview
	Generating Verification Conditions
	Proof Construction with Isabelle
	Proof producing program analysis
	Proof Checking

	Conclusion
	References



