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The inherent anisotropy more or less exists in sand when preparing samples in laboratory or taking from
field. The purpose of this paper is to model cyclic behaviour of sand by means of a micromechanical
approach considering inherent anisotropy. The micromechanical stress–strain model developed in an
earlier study by Chang and Hicher (2005) is enhanced to account for the stress reversal on a contact plane
and the density state-dependent dilatancy. The enhanced model is first examined by simulating typical
drained and undrained cyclic tests in conventional triaxial conditions. The model is then used to simulate
drained cyclic triaxial tests under constant p0 on Toyoura sand with different initial void ratios and dif-
ferent levels of p0, and undrained triaxial tests on dense and loose Nevada sand. The applicability of
the present model is evaluated through comparisons between the predicted and the measured results.
The evolution of local stresses and local strains at inter-particle planes due to externally applied load
are discussed. All simulations have demonstrated that the proposed micromechanical approach is capa-
ble of modelling the cyclic behaviour of sand with inherent and induced anisotropy.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Cyclic behaviour of sand has been widely studied during last
decades, e.g., Ishihara et al. (1975), Matsuoka et al. (1985), Pradhan
et al. (1989), Arulmoli et al. (1992), Hyodo et al. (1994), Koseki
et al. (2000), Qadimi and Coop (2007), etc. In general, during
drained cyclic test, loose sand densifies and dense sand dilates;
during undrained cyclic test, loose sand liquefies, and dense sand
exhibits accumulated deformation.

The models that can describe cyclic behaviour of sand have
been developed mainly through the elasto-plastic approach, such
as Dafalias and Herrmann (1982), Bardet (1985), Balendran and
Nemat-Nasser (1993), Manzari and Dafalias (1997), Oka et al.
(1999), Park and Desai (2000), Wan and Guo (2001), Setouchi
et al. (2005), López-Querol and Blázquez (2006), Yu et al. (2007),
Anandarajah (2008), etc.

Although cyclic behaviour of sand have been extensively stud-
ied using elasto-plastic models for a soil element, two aspects of
the soil behaviour have rarely been investigated in the literature:
(1) the slip mechanism at inter-particle contact level has not been
explicitly considered in the model. This consideration is useful for
ll rights reserved.

.
.yin@ec-nantes.fr (Z.-Y. Yin),
@ec-nantes.fr (P.-Y. Hicher).
modelling soil under more complex stress such as cyclic loading,
and (2) the effect of inherent anisotropy on cyclic behaviour of
sand has rarely been discussed. Consideration of this effect is
imperative since sand is often anisotropic due to its geological for-
mation process.

In order to tackle theses two aspects, a micromechanics ap-
proach (e.g., Chang and Hicher, 2005) is a suitable way to be
adopted. In this approach, the deformation of an assembly can be
obtained by integrating the movement of the inter-particle con-
tacts in all orientations. The orientation-dependent properties of
soil can be explicitly represented, thus the inherent anisotropy
can be physically characterized in a more direct way.

In this paper, we extend the model of Chang and Hicher (2005)
to be capable of simulating soils under cyclic loading. We introduce
a formulation accounting for the stress reversal on inter-particle
plane and introducing a density-dependent dilatancy relation to
account for the effect due to cyclic densification. This newly devel-
oped model is capable of simulating behaviour from micro-level
(contact planes) to macro-level (assembly) including inherent
and induced anisotropy of sand under cyclic loading conditions.

In what follows, based on the model of Chang and Hicher (2005),
the newly introducing formulations for reverse loading and the
density state effect on the stress dilatancy relation are described
and demonstrated using cyclic test results of sand under both
drained and undrained conditions, with the effect of inherent
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cross-anisotropy. Then, a series of experimental results on Toyoura
sand and Nevada sand are used for further verification of this
approach. The evolution of local stresses and local strains at inter-
particle planes due to externally applied load are also discussed.
The overall applicability of the present model is evaluated based
on the comparison of measured and predicted results.

2. Enhanced model for cyclic behaviour of sand

Chang and Hicher (2005) have developed a micromechanics-
based model, which has been applied to monotonic triaxial tests
on sand specimens under both drained and undrained conditions.
For cyclic load conditions, modified formulations for reverse load-
ing on a contact plane are required that incorporate the effect of
cyclic densification. In this section, we present the modified formu-
lations of the model. Basic formulations of the model by Chang and
Hicher (2005) are summarized in Appendix A.

2.1. Modification for reverse loading

Upon shear reversal, the direction of sliding on each inter-par-
ticle plane is reversed. At the moment of shear reversal, the plastic
displacements dpR

s ; dpR
t , and the forces f R

n ; f R
s ; f R

t (see Fig. 1 for local
coordinate system n–s–t), are regarded as reversal state variables
of the contacts. The reversal state has a significant influence on
the subsequent sliding behaviour. Thus, we take account of the
reversal state variables in the hardening equation and the dilat-
ancy equation as follows:
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Note that these two equations carry the same form as the previous
equations (Eqs. (A6) and (A8)). The only difference is the superscript
(*) marked on the plastic shear displacement dp�

r , the mobilized
force ratios (fs/fn)*, (ft/fn)*, the mobilized friction angle /�m and the
peak friction angle /�p, which are defined below to include the effect
of the reversal state variables:
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A schematic explanation of the effects of reverse state is shown in
Fig. 2. According to Fig. 2, the effect of stress reversal at a contact
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et al., 1989).
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plane is considered by the modification of tan/p to tan /�p in
hardening equation (Eq. (5)). Here, the two terms (fs/fn)/tan/m

and (ft/fn)/tan/m in Eq. (A8) are modified to ðfs=fnÞ�= tan /�m and
ðft=fnÞ�= tan /�m in Eq. (2) to account for the effect of stress reversal
for plastic flow rule.
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Eq. (2) indicates that the amount of dilatancy is different upon
shear reversal. This concept is similar to that proposed by Balen-
dran and Nemat-Nasser (1993) and Wan and Guo (2001). Eq. (1)
suggests that the same form of hardening rule can be used for both
loading and unloading conditions, but requires some scaling pro-
cess on the value of tan/p. This concept is similar to that used in
Masing’s rule and in bounding surface plasticity (Dafalias and
Herrmann, 1982).

2.2. Modification for dilatancy equation with density state-
dependency

Pradhan et al. (1989) carried out drained constant-p0 tests under
cyclic loading on Toyoura sand for various values of p0 and various
soil densities. Fig. 3 shows the curves of stress dilatancy, plotted on
a plane of strain ratio dep

v=dep
d (contraction in positive) versus stress

ratio g = q/p0, for the virgin loading on specimens of Toyoura sand
with two different densities (e0.3 = 0.845 and e0.3 = 0.653 where e0.3

is the void ratio under isotropic compression with p0 = 30 kPa). The
results demonstrate that the dilatancy curves are two different
lines for dense and loose sands. Comparing to loose sand, the dense
sand have a lower value of stress ratio g when dep

v=dep
d ¼ 0, which

implies having a lower value of phase transformation angle /0.
In Fig. 4, the dilatancy curves are also plotted for several cycles

using the same experimental measurements by Pradhan et al.
(1989) for loose sand under four different mean stress p0. It can
be observed from Fig. 4 that, the dilatancy curves are unconnected
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for loading stages and unloading stages during the cyclic load. Fur-
thermore, in either loading or unloading stages, the dilatancy
curves are also different for each cycle of load; tan/0 decreases
with cyclic densification. Therefore, even for the same sand, the
dilatancy curves are affected by both the loading direction and
the cyclic densification.

These experimental observations are for a soil element. Unfor-
tunately, no dilatancy measurements at inter-particle level are
available at present time. Nevertheless, these observations suggest
that at inter-particle level, the effect of density state on the stress
dilatancy should be taken into account in addition to the effect of
residual state. Eq. (2) is thus modified as follows:

ddp
n

ddp
r

¼ D tan /0 � tan /�m
� �

exp h
e
ec
� 1

� �	 

ð6Þ

where h is material constant for the effect of density state on the
stress dilatancy.

The local phase transformation line tan/0 depends not only on
the internal friction angle /l, but also on the density state. Jefferies
(1993) proposed a state parameter (e � ec) dependent phase trans-
formation line. Here, we use the density state of packing proposed
by Biarez and Hicher (1994):

tan /0 ¼
ec

e

� ��m
tan /l ð7Þ

This relationship allows a dense packing to dilate at earlier stage of
shear loading.

2.3. Parametric study

The newly introduced dilatancy equation for the model is
examined by predicting a typical drained cyclic triaxial test on
loose sand (e0 = 0.86) under r0r ¼ 100 kPa with a constant axial
strain amplitude ±1.5%. The parameters used for the parametric
Table 1
Values of parameters for very Toyoura sand and Nevada sand.

Parameters Global parameters Inter-particle

k eref n D h

Toyoura sand 0.019 0.934 0.7 1 5
Nevada sand 0.015 0.79 0.7 2 5

a Average value.
study are based on typical results from Toyoura sand (see Table
1, details in Section 4.1.1).

To highlight the effect of cyclic densification, comparisons were
made for the effect of parameter D, and the effect of parameter h.
Fig. 6(a)–(c) shows the predicted behaviour of drained cyclic test
(D = 1, and h = 0). Fig. 6(c) and (d) shows the evolution of stress
dilatancy for D = 0.5, 1, and 1.2 under h = 0, and Fig. 6(e)–(f) for
h = 5 and 10 under D = 1. The comparisons demonstrate that the
parameter D controls the amount of dilatancy in monotonic load-
ing, while the parameter h controls the accumulated dilatancy dur-
ing cyclic loading due to densification.

To present the coupling effect of parameters D and h, two sets of
dilatancy constants were used: (i) D = 1 and h = 0; (ii) D = 1.354
and h = 5. Since these two sets of parameters would give exactly
the same dilatancy in the beginning of virgin loading (see Eq. (6)
with confining stress = 100 kPa, e = 0.86 and ec = 0.915), thus, the
predicted difference would show the effect of cyclic densification.
Fig. 6(a) and (g) shows the response of stress ratio versus axial
strain, which indicate that the effect of cyclic densification is not
important for predicted shear strain. Fig. 6(b) and (h) shows the re-
sponse of volumetric strain versus axial strain; the volumetric
strains for the cases with h = 5 and 0 are very different due to
the cyclic densification effect. The evolution of stress dilatancy
for the case with h = 5 (see Fig. 6i) by the enhanced model, com-
pared to that for the case with h = 0 (see Fig. 6c), captured the
experimentally measured trend of stress dilatancy during cyclic
loading (see Fig. 4).

3. Effect of inherent anisotropy

As a result of the deposition process and the elongated particle
shape, sand usually exhibits horizontal bedding planes, which are
the sources of inherent anisotropy. The inherent anisotropy usually
affects on two material constants, namely (1) contact stiffness kn0,
and (2) friction angle /l. To highlight these effects, soil behaviour
for two typical loading conditions was generated: one is as pre-
sented in the previous section under drained condition, and the
other is undrained cyclic test on loose sand (e0 = 0.86) under
r0r ¼ 100 kPa with a constant deviatoric stress amplitude (from
15 kPa to �10 kPa). The parameters of Toyoura sand in Table 1
were used for the investigation.

3.1. Effect of inherent anisotropy of stiffness

For cross-anisotropy of normal elastic stiffness kn0 with three
different values in principal axes k11

n0; k22
n0 and k33

n0, a second-order
tensor form can be written as:

kij
n0

h i
¼

k11
n0 0 0

0 k22
n0 0

0 0 k33
n0

2
664

3
775 ¼ kave

n0

1þ a0 0 0
0 1� a0

2 0
0 0 1� a0

2

2
64

3
75 ð8Þ

where kave
n0 ¼ k11

n0 þ k22
n0 þ k33

n0

� �.
3. The orientation distribution of

the normal elastic stiffness for a cross-anisotropic case is (Chang
and Misra, 1990):
parameters

/0l ð
�Þ n kn0 (MPa) krR kpR

31a 0.5 12.5a 0.5 0.15
32.3 0.5 9.8a 0.5 0.3
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kn0ðhÞ ¼ kave
n0 1þ a0

4
ð3 cos 2hþ 1Þ

� �
ð9Þ
where the angle h is defined in Fig. 1 in a spherical coordinate. In
this cross-anisotropic case, the orientation distribution is symmet-
rical about its major axis that coincides with z-direction (the verti-
cal direction).

Since the elastic shear stiffness kr (by krR) and plastic stiffness kp

(by kpR) are dependent on normal elastic stiffness kn (Eqs. (A3) and
(A7)). Thus, the inherent anisotropy also includes both elastic and
plastic shear stiffness.

In order to investigate the effect of inherent anisotropy of stiff-
ness on the cyclic behaviour, we assume kave

n0 ¼ 12:5 N=mm and the
anisotropic constant a0 = 0.8 (or the three principal values for
kn0 : k11

n0 ¼ 22:5 N=mm; k22
n0 ¼ k33

n0 ¼ 7:5 N=mm with horizontal bed-
ding plane). The orientation distribution of the normal elastic stiff-
ness is obtained by Eq. (9), as shown in Fig. 7 (in spherical
coordinate as Fig. 1).

Fig. 8 shows the comparison between simulated results with
isotropic stiffness and those with inherent anisotropic stiffness
for drained and undrained cyclic behaviours. For loading stages,
the inherent anisotropic stiffness (stiffer in vertical direction
shown in Fig. 7) gives stiffer slope of the curves of stress ratio ver-
sus axial strain than that of isotropic stiffness (see Fig. 8a). For
unloading stages, very little difference exists between two cases.
Similar phenomenon is also obtained for volumetric strains (see
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Fig. 8b): less volumetric strains occur during loading stages agree-
ing with stiffer slope of stress–strain curves. For the stress dilat-
ancy, the inherent anisotropic stiffness gives a little higher
transformation angle than that of isotropic case for loading stages
and smaller transformation angle for unloading stages (see Fig. 8c).

As expected, the assumed anisotropic contact stiffness leads to
the modulus of vertical direction larger than that of horizontal
direction, i.e., Ev/Eh > 1, as shown by Hicher and Chang (2006). As
a result, for undrained response, less excess pore pressure occurs
during loading stages and inversely during unloading stages (see
Fig. 8d). This is also in agreement with the results obtained by
Dakoulas and Yu (1995). Fig. 8(e) shows the stress–strain response
during undrained cyclic loading. The large strain occurs starting
from the ninth cycle for the case of isotropic stiffness and from
the 11th cycle for the anisotropic case. In general, the slope of
stress–strain curves during loading stages for anisotropic case is
stiffer than that of isotropic case, as shown for drained cyclic test
in Fig. 8a.
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Fig. 12. p0-Constant drained cyclic test on loose Toyoura sand (e0 = 0.845).
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Fig. 13. p0-Constant drained cyclic test on dense Toyoura sand (e0 = 0.653).
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3.2. Effect of inherent anisotropy of friction angle

Similar to normal elastic stiffness, the cross-anisotropy of fric-
tion angle / can be described in a form similar to Eq. (8). We as-
sume /ave = 31� and the anisotropic constant a0 = �0.6 (or the
three principal values for /: /11 = 12.4�, /22 = /33 = 40.3� for hori-
zontal bedding plane). The orientation distribution of the friction
angle is obtained by



-1.5

-0.5

0.5

1.5

-4 -2 0 2 4

d (%)

q/
p'

p'=24.5 kPa

(a-1)

Experiment
e0.3 = 0.835

-4 -2 0 2 4

d (%)

p'=49 kPa

(b-1)

Experiment
e0.3 = 0.865

-4 -2 0 2 4

d (%)

p'=98 kPa

(c-1)

Experiment
e0.3 = 0.832

-4 -2 0 2 4

d (%)

p'=147 kPa

(d-1)

Experiment
e0.3 = 0.839

-1.5

-0.5

0.5

1.5

-4 -2 0 2 4
d (%)

q/
p'

p'=24.5 kPa

(a-2)

Simulation

-4 -2 0 2 4
d (%)

p'=49 kPa

(b-2)

Simulation

-4 -2 0 2 4
d (%)

p'=98 kPa

(c-2)

Simulation

-4 -2 0 2 4
d (%)

p'=147 kPa

(d-2)

Simulation

-1.5

-0.5

0.5

1.5

-4 -2 0 2 4
 = q/p'

d 
= 

d
vp /d

dp

p'=24.5 kPa

(a-3)

Experiment
e0.3 = 0.835

loading

unloading

-4 -2 0 2 4
 = q/p'

p'=49 kPa

(b-3)

Experiment
e0.3 = 0.865

loading

unloading

-4 -2 0 2 4
 = q/p'

p'=98 kPa

(c-3)

Experiment
e0.3 = 0.832

loading

unloading

-4 -2 0 2 4

 = q/p'

p'=147 kPa

(d-3)

Experiment
e0.3 = 0.839

loading

unloading

-1.5

-0.5

0.5

1.5

-4 -2 0 2 4
 = q/p'

d 
= 

d
vp /d

dp

p'=24.5 kPa

(a-4)

Simulation

loading

unloading

-4 -2 0 2 4
 = q/p'

p'=49 kPa

(b-4)

Simulation

loading

unloading

-4 -2 0 2 4
 = q/p'

p'=98 kPa

(c-4)

Simulation

loading

unloading

-4 -2 0 2 4
 = q/p'

p'=147 kPa

(d-4)

Simulation

loading

unloading
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Z.-Y. Yin et al. / International Journal of Solids and Structures 47 (2010) 1933–1951 1941
/lðh; bÞ ¼ /ave
l 1þ a0

4
ð3 cos 2hþ 1Þ

� �
ð10Þ
and is shown in Fig. 9 (in spherical coordinate as Fig. 1).
Fig. 10 shows the comparison between the simulated results

with isotropic friction angle and those with inherent anisotropic
friction angle for drained and undrained cyclic behaviours. For
unloading stages, the inherent anisotropic friction angle (larger
in horizontal direction shown in Fig. 9) gives smaller strength than
that of isotropic case (see Fig. 10a). For loading stages, very little
difference exists between the isotropic and anisotropic cases. The
volumetric strains (see Fig. 10b) are significantly influenced by
the anisotropic friction angle. This is due to the amount of stress
dilatancy affected by the friction angle (see Fig. 10c). Since the
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stress dilatancy is formulated by Eq. (2) for local contact planes,
and each contact plane has a different value of tan/0 (see Fig. 9),
the overall dilatancy of soil element is affected by the orienta-
tion-dependent property.

The inherent anisotropic friction angle also shows effects on the
effective stress path (see Fig. 10d) and the stress–strain response
(Fig. 10e) during undrained cyclic loading. The large deviatoric
strain occurs starting from the ninth cycle for the case of isotropic
friction angle and from the 10th cycle for the anisotropic case. In
general, the deviatoric strains during cycles for anisotropic case oc-
cur with a trend of larger value in unloading than that for isotropic
case (see Fig. 10e). This is due to the smaller strength in extension
for a0 = �0.6 than that for a0 = 0.
4. Experimental validation

4.1. Drained cyclic behaviour of Toyoura sand

4.1.1. Calibration of model parameters
Toyoura sand has a maximum void ratio of 0.977, a minimum

void ratio of 0.597, and a specific gravity of 2.65. The mean size
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of the particle for the sand is d = 0.17 mm. All values of parameters
were determined as follows:

(1) The inter-particle elastic constant kn0 was obtained to be
12.5 N/mm and n = 0.5 from isotropic compression test
(see Fig. 5). The parameter for inherent anisotropic
stiffness a0 can be obtained from isotropic compression
test providing vertical and horizontal strains. Due to lack
of data, a0 = 0.6 was assumed (for horizontal bedding
planes) based on observations on shear modulus in com-
pression and extension conditions by Pradhan et al.
(1989).
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(2) The parameters for critical state line were obtained from test
results by Verdugo and Ishihara (1996): eref = 0.934, k =
0.019, and n = 0.7 (see Fig. 5).

(3) kpR = 0.15 was determined from the stress–strain curve of
first loading stage.

(4) The internal friction angle /l = 31� with its anisotropic
parameter a0 = �0.3 (for horizontal bedding planes) was
obtained by simulating stress–strain curves for all three
stages (see Fig. 11a).

(5) The dilatancy parameters D = 1 and h = 5 were determined
from curve fitting the evolution of stress dilatancy for all
three stages (see Fig. 11b) according to parametric study
(see Fig. 6).

The set of parameters for Toyoura sand is presented in Table 1,
which is then used to predict other drained cyclic tests on the same
material.
4.1.2. Simulations for drained cyclic tests
Fig. 12 shows comparisons between experiments and predic-

tions for the drained cyclic triaxial test on loose Toyoura sand with
void ratio e0.3 = 0.845 under constant p0 = 98 kPa. Fig. 13 shows
comparisons for a dense Toyoura sand with void ratio e0.3 = 0.653
under constant p0 = 98 kPa. Good agreement was achieved between
experimental data and simulations. The over-prediction for the
volumetric strain at the third cycle is maybe caused by sample
variations since the values of parameters used for predicting this
test are determined from a different test. The enhanced model well
captured the trend: at small strain amplitude, loose sand densifies
and dense sand dilates.

Fig. 14 shows comparisons between experiments and predic-
tions for four drained cyclic triaxial tests on loose Toyoura sand
with void ratio e0.3 = 0.832–0.865 under four different confining
pressure p0 = 24.5, 49, 98, 147 kPa. Simulations agrees with exper-
imental data for both curves of stress ratio versus deviatoric strain
and the evolution of dilatancy ratio d ¼ dep

v=dep
d

� �
versus stress ra-

tio during cyclic loading. The effect of mean effective stress p0 on
drained cyclic behaviour was well captured by the enhanced
model.
4.1.3. Local stress–strain behaviour
In this section, we investigate the predicted local stress–strain

behaviour for contact planes. Since the applied loading is axi-sym-
metric about x-axis, the orientation of a given contact plane can be
represented by inclined angle, h, which is measured between the
branch vector and the x-axis of the coordinate system as shown
in Fig. 1. Seven contact planes were selected for this investigation
with inclined angles h = 0�, 18�, 28�, 45�, 55�, 72� and 90� (h = 0�
corresponds to a horizontal contact plane), as shown, respectively,
in the x–z-plane on Fig. 1. The test with loading, unloading and
reloading (see Fig. 11) was selected to investigate the local behav-
iour of contact planes.
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In order to obtain a more direct comparison between the local
behaviour and the overall stress–strain behaviour, in the following
discussions, we use the variables of local strain and local stress as
normalized inter-particle force and inter-particle displacement.
For this purpose, we define a local normal stress ra ¼ f a

n Nl=3V
and a local shear stress sa ¼ f a

r Nl=3V , where lis branch length
and N/V is the total number of contact per unit volume. The corre-
sponding local normal strain is defined as ea ¼ da

n=l and a local
shear strain is defined as ca ¼ da

r =l. With these definitions, applying
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The local stress paths for the seven selected contact orientations
are plotted in Fig. 15(a). The local stress paths for all contact planes
are different each other. The 28� contact planes reach the internal
friction line in extension (see Fig. 15d, / = 24�); the 55� contact
planes reach the internal friction line in compression (see
Fig. 15e, / = 31�). For the 0� and 90� contact planes, shear stress
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is null. Different internal friction angles for different planes are due
to inherent anisotropy of friction angle.

Fig. 15(b) and (c) shows curves of local normal strain versus
shear strain. Some contact planes show shear strain in positive
(18�, 28�) and some contact planes in negative (45�, 55�, 72�). Null
shear strain occurs for plane 0� and 90� since there is no shear
stress on these two contact planes. In general, all contact planes
behave contraction during three loading stages.

Fig. 15(d) and (e) shows curves of local stress ratio versus shear
strain. The accumulated strains in some plane orientations tends to
be positive (18�, 28�); some others tend to be negative (45�, 55�,
72�). The planes with largest movements are near the orientation

of 28� (close to p=4� /ave
l

.
2 ¼ 29:5�) during unloading, and near

the orientation of 55� (close to p=4þ /ave
l

.
2 ¼ 60:5�) during load-

ing. The figures also clearly indicate that every contact plane is
mobilized to a different degree of strain and in a different direction.

4.2. Undrained cyclic behaviour of Nevada sand

Arulmoli et al. (1992) performed undrained triaxial tests under
cyclic loading on Nevada sand with two different relative densities
(Dr = 60% and Dr = 40%). In this paper, both densities are selected
for analysis. To compare the effect of inherent anisotropy on un-
drained cyclic behaviour, both isotropy and inherent anisotropy
are considered in the predictions.

4.2.1. Model parameters
The mean size of the particle for Nevada sand is d = 0.15 mm.

Due to lack of results of isotropic compression test, the inter-par-
ticle elastic constant kn0 = 9.8 N/mm is assumed with exponent
n = 0.5, which is a typical value for sand (see Chang and Hicher,
2005). The value of krR is taken equal to 0.4. From the results of
critical state void ratios in Fig. 16(a), the parameters for the
critical state in the e–p0-plane were obtained: k = 0.015, eref = 0.79
and n = 0.7. The value of kpR = 0.3 was obtained from initial slope
of stress–strain curves of monotonic test (p0-constant test
shown in Fig. 16b). h = 5 and D = 2 were obtained from drained
cyclic tests. The set of parameters for Nevada sand is presented
in Table 1.

The two soil samples with different relative densities were iso-
tropically consolidated up to 80 kPa. Afterwards, both samples
were deviatorically and cyclically loaded in undrained condition.
In order to investigate the influence of inherent anisotropy, we
assign the following anisotropy of the elastic constant: k1

n0 ¼ 200
and k2

n0 ¼ k3
n0 ¼ 50 (or kave

n0 ¼ 100 and a0 = 1). Since the particle
shape of Nevada sand is relatively round, the friction angle is con-
a0 = 1

a0 = 0

End of consolidation
Ncycle=0

(a) (b) 

a0 = 

Ncycle=0

Fig. 20. Rose diagram for normal modulus
sidered inherently isotropic. The inherent anisotropic stiffness does
not seem to change the prediction for the monotonic p0-constant
test (see Fig. 16b).

4.2.2. Simulations for undrained cyclic tests
Fig. 17 shows comparisons between experiments and predic-

tions by the enhanced model considering inherent anisotropy
(marked as ‘‘simulation: a0 = 1”) and not considering inherent
anisotropy (marked as ‘‘simulation: a0 = 0”) for dense Nevada sand
(Dr = 60%). The consideration of inherent anisotropy improves the
model performance on stress path (Fig. 17a versus Fig. 17b). For
the evolution of deviatoric strain with number of cycles
(Fig. 17c), the model considering inherent anisotropy correctly pre-
dicted the trend. Whilst, the model with initial isotropy predicted
deviatoric strains depart from test data for number of cycles more
than 11. Fig. 17(d) shows the curves of deviatoric stress versus
deviatoric strain for two predictions. The evolution of stress–strain
during cyclic loading tends to follow two different directions for
the two cases, which is consistent with the evolution of deviatoric
strain with number of cycles shown in Fig. 17(c).

Fig. 18 shows comparisons for undrained cyclic test on loose
Nevada sand (Dr = 40%). In this case, both predictions with or with-
out inherent anisotropy captured the dynamic liquefaction of loose
sand under undrained condition. Different from the previous case
of dense sand, the consideration of inherent anisotropy improves
only the stress path. For the evolution of deviatoric strain versus
number of cycles, both predictions are in agreement with the trend
of experiment. The evolution of stress–strain during cyclic loading
(Fig. 18d) is slightly different between two cases, which is consis-
tent with Fig. 18(c).

4.2.3. Local stress–strain behaviour for undrained cyclic tests
In this section, we investigate the predicted local stress–strain

behaviour for selected contact planes with inclined angles h = 0�,
18�, 28�, 45�, 55�, 72� and 90�. The local behaviour of contact
planes discussed here includes cyclic tests on both dense and loose
samples. In order to study the evolution of local stresses and
strains, we have, in each test, selected three load steps (see Figs.
17(a) and (b) and 18(a)), which are marked by hollow circles to
indicate: initial step, end step of first load cycle and the step when
stress path reaching internal friction line. For dense and loose sand,
plots are made for local stress–strain curves and Rose diagram of
anisotropic properties.

4.2.3.1. Local stress–strain behaviour for dense sand. The simulated
cyclic test results are plotted in Fig. 19 for the case of inherent
a0 = 1

0

.5

(c)

a0 = 1

a0 = 0

Ncycle=15

of selected steps during cyclic loading.
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Fig. 21. Local behaviour on seven different inter-particle planes for undrained triaxial test under cyclic loading on Nevada sand with relative density of 40%.
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anisotropy (marked as ‘‘a0 = 1”) and for the case of isotropy
(marked as ‘‘a0 = 0”).

The local stress paths for the seven selected contact orientations
are plotted in Fig. 19(a-1)–(e-1). For both cases, only the 18� and
28� contact planes reach the internal friction line in positive shear;
only the 55� and 72� contact planes reach the internal friction line
in negative shear; the 45� contact plane reaches the internal fric-
tion line in both positive and negative shear. For the 0�
(Fig. 19(a-1)) and 90� (Fig. 19(e-1)) contact planes, shear stress is
null. The differences between inherent anisotropic and isotropic
cases for different planes are similar to that of global behaviours
in Fig. 17(a) and (b).

Fig. 19(a-2)–(e-2) shows local normal stress–strain curves. For
both cases, some contact planes are in extension (0�, 18�, 28�,
90�) and some contact planes are in compression (45�, 55�). For
the 18�, 28� and 55� contact planes the inherent anisotropic case
has more deformations than those of inherent isotropic case. The
45� contact plane has almost the same deformation for both cases.
The 72� contact plane behaves compression for inherent aniso-
tropic case and behaves extension for isotropic case. To more
clearly describe the evolution of strains during cyclic loading, we
plot local normal strains versus number of cycles shown in
Fig. 19(a-3)–(e-3).

Fig. 19(a-4)–(e-4) shows local shear stress–strain curves. For
both cases, the accumulated strains in some plane orientations
tends to be in positive shear (18�, 28�); some others tend to be in
negative shear (55�, 72�). The inherent anisotropic case, when
compared with isotropic case, gives more shear strains in positive
side and less strains in negative side for all orientations. For 45�
contact plane, both cases show small strains but in different
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directions. The planes with largest movements are near the orien-
tation of 28� (close to p/4 � /l/2 = 29�) for both cases. Similar to
normal strains, we plot local shear strains versus number of cycles
shown in Fig. 19(a-5)–(e-5). These figures indicate that the accu-
mulated shear strains for all contact planes suddenly become large
when the number of cycles reaches to 11.

4.2.3.2. Orientation distributions of normal modulus kn for dense
sand. Orientation distributions are plotted in X–Z-coordinate sys-
tem as shown in Fig. 1. Fig. 20(a) gives the initial orientation distri-
butions of kn where the axes of anisotropy of the soil coincide to
those of the axes of loading stresses. The given inherent anisotropic
material (a0 = 1) has a long axis in the vertical direction and short
axis in the horizontal direction. The given isotropic material
(a0 = 0) has a circular shape implying isotropic distribution. During
the first loading (Ncycle = 0.5 in Fig. 20b), because of the contact
force-dependent property, the axis in the vertical direction be-
comes longer due to the increase of vertical stress for both cases.
For Ncycle = 15 in Fig. 20(c), kn for both cases becomes smaller
when stresses reduce as pore pressure build-up during undrained
cyclic loading. The long axis, for the isotropic case, is changed to
horizontal direction since the stress state is in extension for the se-
lected step. For the inherent anisotropic case, the long axis is still
kept but the ratio of long axis to short axis becomes smaller due
to the stress-dependency of kn.

In the present model, the forces on each plane are considered as
internal state variables, and their evolution can serve to model the
behaviour change on each individual plane, thus the results exhibit
naturally the stress-induced anisotropy.

4.2.3.3. Local stress–strain behaviour for loose sand. We plot the sim-
ulated cyclic test on loose sand in Fig. 21 for the case of inherent
anisotropy (marked as ‘‘a0 = 1”).

The local stress paths for the seven selected contact orientations
are plotted in Fig. 21(a)–(c) in three groups: (a) 0�, 18�, (b) 45�, 28�,
and (c) 55�, 72�, 90�. The 18�, 28� and 45� contact planes reach the
internal friction line in positive shear and tend to liquefy, while
others do not. Fig. 21(d)–(f) shows local normal stress–strain
curves. Some contact planes are in extension (0�, 18�, 72�, 90�)
and others are in compression (28�, 45�, 55�), similar to the previ-
ous case of dense sand. Fig. 21(g)–(i) shows local shear stress–
strain curves which indicates that every contact plane is mobilized
to a different degree. The planes with largest movements are near
the orientation of 28� (close to p/4 � /l/2 = 29�).

4.2.3.4. Orientation distributions of local stresses and strains for loose
sand. Fig. 22 shows the distributions of local stresses and strains at
contact planes of various orientations (in Rose diagram). It is
plotted for the end step of isotropic consolidation (see Ncycle = 0
in Fig. 13), and the subsequent two selected load steps:

(1) The distribution of normal stress r at the end of isotropic
consolidation has a circular shape (see the bold line in
Fig. 22a) which implies an isotopic distribution of normal
stress for all plane contacts. For the first loading, the normal
stress in vertical direction becomes larger and horizontal
direction becomes smaller. Then during the cyclic loading,
the pore pressure is developed thus the distribution shrinks
from step ‘‘Ncycle = 0.5” to step ‘‘Ncycle = 3” with the long
axis in the horizontal direction (i.e., more reduction of nor-
mal stress at the contact planes of vertical orientation).

(2) The distribution of shear stress s expands from 0 to step
‘‘Ncycle = 0.5” and then reduces to step ‘‘Ncycle = 3” with a
similar shape of distribution (Fig. 22b).

(3) The distribution of shear strain c in Fig. 22(c) shows that very
large strains have occurred at step ‘‘Ncycle = 3” for the con-
tact planes near the orientation of 28�, which agrees with
local stress–strain behaviour (Fig. 21h).

(4) The distribution of normal modulus kn in Fig. 22(d) shows
that the stiffness is kept anisotropic with long axis of vertical
direction even its values are changed with normal stress.
Due to stress-induced anisotropy, the ratio of long axis to
short axis becomes smaller for the selected step
‘‘Ncycle = 3”.

5. Conclusions and discussions

A new micromechanical stress–strain model has been extended
following the approach proposed by Chang and Hicher (2005). The
model takes into account the behaviour of stress reversal on a con-
tact plane and the effect of density state on dilatancy. This feature
is needed for the model in order to simulate experimental tests
subjected to cyclic loadings.

The model was first examined by a parametric study for typical
drained and undrained cyclic tests in conventional triaxial condi-
tions. The effects of dilatancy constants and inherent anisotropy
(for stiffness and for friction angle) were investigated.

The model applicability was then evaluated by comparing the
predictions and experimental results for two different sands: Toyo-
ura sand and Nevada sand. The predictions show good agreement
with experimental measurements on sand with different initial
void ratios and different level of p0. Inherent anisotropy of stiffness
and friction angle was found necessary to be considered. The mod-
el well captured the trend of drained cyclic behaviour.

Furthermore, in the predictions for undrained triaxial tests on
dense and loose Nevada sand under cyclic loading were made
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considering both isotropy and anisotropy of stiffness. Comparisons
also show that the inherent anisotropy of stiffness is necessary to
be considered for modelling the selected tests. The model well cap-
tured the accumulation of strains for dense sand and the liquefac-
tion for loose sand during cyclic loading.

The predicted behaviour of contact planes has been examined
for three stages: loading, unloading and reloading stages, for dense
sand and loose sand under drained and undrained cyclic loading.
For the case of drained triaxial test, we concentrated to investigate
the influence of the inherent anisotropy of friction angle on the
overall stress–strain behaviour. For undrained case, more attention
was paid on the effect of inherent anisotropy of stiffness and
stress-induced anisotropy. It has been shown from the Rose dia-
grams that the shape of contact stress distribution and normal
modulus changes throughout the triaxial test, which clearly indi-
cates the development of anisotropy induced by the externally ap-
plied load, since the properties on each contact plane are force-
dependent. For both drained and undrained cases, the local
stress–strain response on contact planes has shown that every con-
tact plane is mobilized to a different degree. A few active contact
planes contribute largely to the deformation of the assembly, while
most contact planes are inactive and have small movement. There-
fore, the local strains are highly non-uniform.

Model predictions for drained cyclic tests on Toyoura sand and
undrained cyclic tests on Nevada sand have demonstrated that the
present micromechanical approach is capable of modelling the
cyclic behaviour of sand with inherent and induced anisotropy.

Appendix A. Micromechanics-based model

The micromechanics-based model in this paper is extended
from the model for sand developed by Chang and Hicher (2005).

A.1. Inter-particle behaviour

A.1.1. Elastic stiffness
On each contact plane, an auxiliary local coordinate can be

established as shown in Fig. 1 where n, s, t are three orthogonal
unit vectors that form the local coordinate system. The vector n
is outward normal to the contact plane. Vectors s and t are on
the contact plane. The contact stiffness of a contact plane includes
normal stiffness, ka

n , and shear stiffness, ka
r . The elastic stiffness ten-

sor is defined by

f a
i ¼ kae

ij dae
j ðA1Þ

which can be related to the contact normal and shear stiffness

kae
ij ¼ ka

nna
i na

j þ ka
r sa

i sa
j þ tai ta

j

� �
ðA2Þ

The superscript a represents the term at the ath contact plane;
kae

ij and dae
ij represent the elastic stiffness tensor and elastic dis-

placement tensor at the ath contact plane. In the remaining section
for the inter-particle behaviour, the superscript a is neglected in or-
der to simplify the writing.

The value of the stiffness for two elastic spheres can be esti-
mated from Hertz–Mindlin’s formulation (1969). For sand grains,
a revised form was adopted (Chang et al., 1989), given by

kn ¼ kn0
fn

fref

� �n

; kr ¼ krRkn0
fn

fref

� �n

ðA3Þ

where fref is the reference value by fref ¼ 3V
Nl pat (pat is atmosphere

pressure equal to 101.3 kPa, N is the total number of contacts and
V is volume), fn is the contact force in normal direction. l is the
branch length between the two particles. kno, krR and n are material
constants. For two spherical particles, the branch length is same as
particle size l = d. Let n = 1/3, and given kn0 an appropriate function
of particle size and modulus, Eq. (A3) can be made equivalent to the
Hertz–Mindlin’s contact formulation (Hicher and Chang, 2006).

A.1.2. Plastic yield and hardening functions
The yield function is assumed to be of Mohr–Coulomb type, de-

fined in a contact force space (e.g., fn, fs, ft).

Fðfn; fr ;jÞ ¼
fr

fn
� j dp

r

� �
ðA4Þ

where j dP
r

� �
is a hardening/softening function. When dF > 0, it indi-

cates loading, otherwise unloading. Note that the shear force fr and
the rate of plastic sliding dP

r can be defined as

fr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
s þ f 2

t

q
and dp

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dp

s

� �2 þ dp
t

� �2
q

ðA5Þ

The hardening function is defined by a hyperbolic curve in j—dp
r -

plane, which involves two material constants: /p and kp0.

j ¼
kp0 tan /pd

p
r

tan /p þ kp0d
p
r

ðA6Þ

The value of j asymptotically approaches the apparent inter-parti-
cle friction angle tan/p. The initial slope of the hyperbolic curve, kp0

is proposed to relate fn and kn by a constant kpR:

kp0 ¼ kpRkn=fn ðA7Þ
A.1.3. Plastic flow rule
The elastic sliding behaviour between two particles does not

have a coupling effect (i.e., there is no shear-induced normal move-
ments). However, the plastic sliding often occurs along the tangen-
tial direction of the contact plane with an upward or downward
movement, thus the shear-induced dilation/contraction takes place.
The shear-induced dilatancy is a well-known phenomenon in sand
(see discussions in the work by Taylor (1948), Rowe (1962) and God-
dard and Bashir (1990)), and should be correctly modelled. The fol-
lowing flow rule was used in the model of Chang and Hicher (2005):

ddp
n

ddp
s

ddp
t

8><
>:

9>=
>; ¼ ddp

r

D tan /0 � 1
tan /m

fs
fn

� �2
� 1

tan /m

ft
fn

� �2
	 


1
tan /m

fs
fn

1
tan /m

ft
fn

8>>>><
>>>>:

9>>>>=
>>>>;

ðA8Þ

where

tan /m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fs

fn

� �2

þ ft

fn

� �2
s

ðA9Þ

Eq. (A8) leads to a dilatancy relation at a contact plane in a similar
form to that proposed by Taylor (1948)

ddp
n

ddp
r

¼ D tan /0 �
fr

fn

� �
ðA10Þ

where D is material constant for stress dilatancy, the material con-
stant /0 was considered equal to the inter-particle friction angle /l.
This equation can be derived by assuming that the dissipation work
for a contact plane due to both normal and shear plastic movements
fnddp

n þ frddp
r D

� �
is equal to the energy loss due to friction

fn tan /0ddp
r D

� �
at the contact. The dilatancy equation shown in Eq.

(A10) implies a non-associated plastic flow rule for sand.
In Eq. (A10), the tan/0 also represents the slope of the phase

transformation line, defined by Ishihara et al. (1975), at which
the plastic volumetric strain rate is zero; or represents ‘‘character-
istic state” as defined by Luong (1979).
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A.1.4. Elasto-plastic relationship
With the elastic and plastic behaviour described above, the final

incremental force–displacement relationship of the inter-particle
contact can be derived, given by

_f a
i ¼ ka

ij
_da

j ðA11Þ

Detailed expression of the elasto-plastic stiffness tensor can be
derived from yield function and flow rule (see Chang and Hicher,
2005), in which ka

ij , is functions of kn0, krR, kpR, tan/p, D and fr/fn.
The derivation is not included here.

A.2. Influence of density state

A.2.1. Density state variable
It is noted that assumptions are necessary to link the contact

behaviour to assembly behaviour. In this model, a static hypothesis
is used (see Section 2.1). Due to the assumption of static con-
straints, the interactions among particles have been neglected
and the system tends to be softer than true behaviour. To account
for the interactions among neighbouring particles, a density state
u = ec/e is introduced in reference to the void ratio at critical state.

Soil is said to be in critical state when it undergoes large shear
deformations at a constant volume and a constant stress state
(Schofield and Wroth, 1968). The void ratio corresponding to this
state is ec. A locus of critical states can be plotted in a three-dimen-
sional space consisting of deviatoric stress, mean stress, and void
ratio. The locus is called a critical state line (CSL). The projection
of CSL on the plane of mean stress and void ratio represents the
critical void ratio ec as a function of the mean stress, which can
be written as follows for sand:

ec ¼ eref � k
p0

pat

� �n

ðA12Þ

where n and k are two material constants, p0 is the mean effective
stress of the packing.

A.2.2. Effect of density state on the apparent friction angle (/p)
Resistance against sliding on a contact plane is dependent on

the degree of interlocking by neighbouring particles. The resistance
can be related to the state of packing void ratio e by (Biarez and Hi-
cher, 1994):

tan /p ¼
ec

e

� �m
tan /l ðA13Þ

where m is a material constant (Biarez and Hicher, 1994), which is
typically equal to 1. For dense packing, the apparent inter-particle
friction angle /p is greater than the internal friction angle /l. When
the packing structure dilates, the degree of interlocking and the
apparent frictional angle are reduced, which results in a strain-soft-
ening phenomenon. For loose packing, the apparent frictional angle
/p is smaller than the internal friction angle /l.

A.3. Overall stress–strain relationship

A.3.1. Macro–micro relationship
The stress–strain relationship for an assembly can be determined

from integrating the behaviour of inter-particle contacts in all orien-
tations. In the integration process, a micro–macro relationship is re-
quired. Using the static hypothesis, we obtain the relation between
the global strain and inter-particle displacement.

_uj;i ¼ A�1
ik

XN

a¼1

_da
j lak ðA14Þ
where the branch vector lak is defined as the vector joining the cen-
tres of two particles, and the fabric tensor is defined as

Aik ¼
XN

a¼1

lai lak ðA15Þ

The mean force on the contact plane of each orientation is

_f a
j ¼ _rijA

�1
ik lak V ðA16Þ

The stress increment can be obtained by the contact forces and
branch vectors for all contacts (Christofferson et al., 1981; Rothen-
burg and Selvadurai, 1981), as follows:

_rij ¼
1
V

XN

a¼1

_f a
j lai ðA17Þ

Apply Eq. (A17) to the stress in Eq. (A16), it can be observed that Eq.
(A16) is satisfied automatically.
A.3.2. Stress–strain relationship
Using Eqs. (A14), (A11), and (A16), the following relationship

between stress increment and strain increment can be obtained:

_ui;j ¼ Cijmp _rmp; where Cijmp ¼ A�1
ik A�1

mnV
XN

a¼1

kep
jp

� ��1
lak lan ðA18Þ

When the contact number N is sufficiently large in an isotropic
packing, the summation of flexibility tensor in Eq. (A18) and the
summation of fabric tensor in Eq. (A15) can be written in integral
form, given by

Cijmp ¼ A�1
ik A�1

mn
NV
2p

Z p=2

0

Z 2p

0
kep

jp ðh;bÞ
�1lkðh; bÞlnðh;bÞ sin hdhdb

ðA19Þ

and

Aik ¼
N

2p

Z p=2

0

Z 2p

0
liðh;bÞlkðh;bÞ sin hdhdb ðA20Þ

The integration of Eqs. (A19) and (A20) in a spherical coordinate can
be carried out numerically using Gauss integration points over the
surface of the sphere.

The total number of contacts per unit volume changes during
the deformation. Using the experimental data by Oda (1977) for
three mixtures of spheres, the total number of contact per unit vol-
ume can be approximately related to the void ratio by the follow-
ing expression by Hicher and Chang (2006):

N
V
¼ N

V

� �
0

ð1þ e0Þe0

ð1þ eÞe ðA21Þ

This equation is used to account for the evolution of contact number
per unit volume. The initial contact number per unit volume can be
obtained by

N
V

� �
0
¼ 3Cn

pd3ð1þ e0Þ
ðA22Þ

where d is the mean particle size and Cn is the average co-ordination
number, which can be approximated for the range of e = 0.38–0.87
by (see Chang and Misra, 1990)

Cn ¼ 13:28� 8e0: ðA23Þ
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