Note on 2-rainbow domination and Roman domination in graphs

Yunjian Wu a,\textasteriskcentered, Huaming Xing b

a Department of Mathematics, Southeast University, Nanjing 211189, China

b School of Science, Tianjin University of Science and Technology, Tianjin, 300457, China

\textbf{Abstract}

A Roman dominating function of a graph \(G \) is a function \(f : V \rightarrow \{0,1,2\} \) such that every vertex with 0 has a neighbor with 2. The minimum of \(f(V(G)) = \sum_{v \in V} f(v) \) over all such functions is called the Roman domination number \(\gamma_R(G) \). A 2-rainbow dominating function of a graph \(G \) is a function \(g \) that assigns to each vertex a set of colors chosen from the set \{1, 2\}. The 2-rainbow domination number \(\gamma_2(G) \) is the minimum of \(w(g) = \sum_{v \in V} |g(v)| \) over all such functions. We prove \(\gamma_2(G) \leq \gamma_R(G) \) and obtain sharp lower and upper bounds for \(\gamma_2(G) + \frac{\gamma_R(G)}{2} \). Finally, we give a proof of the characterization of graphs with \(\gamma_2(G) = \gamma(R) + k \) for \(2 \leq k \leq \gamma(G) \).

\textcopyright 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we follow the notation of [1]. Specifically, let \(G = (V, E) \) be a graph with vertex set \(V \) and edge set \(E \). \(\delta(G) \) and \(\Delta(G) \) denote the minimum degree and maximum degree of \(G \), respectively. For any vertex \(v \in V \), the open neighborhood of \(v \) is the set \(N(v) = \{u \in V \mid uv \in E\} \) and the closed neighborhood is the set \(N[v] = N(v) \cup \{v\} \). For a set \(S \subseteq V \), the open neighborhood \(N(S) = \bigcup_{v \in S} N(v) \) and the closed neighborhood is \(N(S) = N(S) \cup S \). A set \(S \subseteq V \) is a dominating set of \(G \) if \(N[S] = V \). The domination number of \(G \), denoted by \(\gamma(G) \), is the minimum cardinality of a dominating set. A dominating set of cardinality \(\gamma(G) \) is called a \(\gamma \)-set of \(G \). The concept of domination in graphs, with its many variations, is now well studied in graph theory. A thorough study of domination appears in [2].

There is a variant of the domination number—Roman domination number, which is suggested by Stewart [3]. A Roman dominating function (RDF) on a graph \(G \) is a function \(f : V \rightarrow \{0,1,2\} \) satisfying the condition that every vertex \(u \) for which \(f(u) = 0 \) is adjacent to at least one vertex \(v \) for which \(f(v) = 2 \). The weight of \(f \) is \(f(V(G)) = \sum_{v \in V} f(v) \). The Roman domination number, denoted by \(\gamma_R(G) \), equals the minimum weight of an RDF of \(G \), and we say that a function \(f \) is a \(\gamma_R(G) \)-function if it is an RDF and \(f(V(G)) = \gamma_R(G) \). For a graph \(G \), let \(f : V \rightarrow \{0,1,2\} \), and let \((V_0, V_1, V_2) \) be the order partition of \(V \) induced by \(f \), where \(V_i = \{v \in V(G) \mid f(v) = i\} \) for \(i = 0, 1, 2 \). Note that there exists a 1–1 correspondence between the functions \(f : V \rightarrow \{0,1,2\} \) and the ordered partitions \((V_0, V_1, V_2) \) of \(V(G) \). Thus we will write \(f = (V_0, V_1, V_2) \).

Let \(g \) be a function that assigns to each vertex a set of colors chosen from the set \{1, \ldots, \(k \)}; that is, \(g : V(G) \rightarrow 2^V \). If for each vertex \(v \in V(G) \) such that \(g(v) = \emptyset \). We have

\[\bigcup_{u \in N(v)} g(u) = \{1, \ldots, k\}. \]
Then g is called a k-rainbow dominating function of G. The weight, $w(g)$, of a function g is defined as $w(g) = \sum_{v \in V} |g(v)|$. Given a graph G, the minimum weight of a k-rainbow dominating function is called the k-rainbow domination number of G, which we denote by $\gamma_k(G)$.

For a pair of graphs G and H, the Cartesian product $G \square H$ of G and H is the graph with vertex set $V(G) \times V(H)$ and where two vertices are adjacent if and only if they are equal in one coordinate and adjacent in the other. Rainbow domination of a graph G coincides with the ordinary domination of the Cartesian product of G with the complete graph, in particular $\gamma_k(G) = \gamma(G \square K_k)$ for any graph G [4]. In the language of domination of Cartesian products, Hartnell and Rall obtained several observations about rainbow domination, for instance, $\min\{|V(G)|, \gamma(G) + k - 2\} \leq \gamma_k(G) \leq k\gamma(G)$, for any $k \geq 2$ and any graph G [5]. The attempt in [5] to characterize graphs with $\gamma(G) = \gamma_2(G)$ was inspired by the following famous open problem [6].

Vizing’s conjecture. For any graphs G and H, $\gamma(G)\gamma(H) \leq \gamma(G \square H)$.

Brešar and Šumenjak [7] showed that the problem of deciding if a graph has a 2-rainbow dominating function of a given weight is NP-complete even when restricted to bipartite graphs or chordal graphs. Some exact values of 2-rainbow domination number of several classes of graphs are found in [7,8]. Wu [9] presents some general bounds on the 2-rainbow domination number of a graph that are expressed in terms of the order and domination number of a graph.

2. Main results

For Roman domination, Cockayne et al. [10] showed the following inequality.

Proposition 1 (Cockayne et al. [10]). For any graph G, $\gamma(G) \leq \gamma_k(G) \leq 2\gamma(G)$.

In fact, we can insert the parameter $\gamma_2(G)$ into the above inequality.

Proposition 2. Let G be a graph. Then

$$\gamma(G) \leq \gamma_2(G) \leq \gamma_k(G) \leq 2\gamma(G).$$

Proof. We only need to show $\gamma_2(G) \leq \gamma_k(G)$. Suppose $f = (V_0, V_1, V_2)$ is an RDF of G. Then $V_0 \subseteq N(V_2)$. Now we set

$$g(v) = \begin{cases} \emptyset & v \in V_0, \\ \{1\} \text{ or } \{2\} & v \in V_1, \\ \{1, 2\} & v \in V_2. \end{cases}$$

It is clear that this is a 2-rainbow dominating function of G. Then $\gamma_2(G) \leq w(g) = |V_1| + 2|V_2| = \gamma_k(G)$. □

The corona HoK_1 of a graph H is obtained by attaching one pendent edge at each vertex of H. Let \mathcal{F} be the family of graphs obtained from a connected graph H by identifying each vertex of H with the central vertex of a path P_3 or with an internal vertex of a path P_4 where the $V(H)$ paths are vertex-disjoint. \mathcal{F} is the family of graphs of \mathcal{F} such that each vertex of H is identified with an internal vertex of a path P_4. Favaron, Karami, Khoeilar and Sheikholeslami [11] obtained the following result:

Theorem 1 (Favaron et al. [11]). For any connected graph G of order $n \geq 3$, then $\gamma_k(G) + \frac{\gamma(G)}{2} \leq n$ with equality if and only if G is $C_4, C_5, C_4\circ K_1$ or G belongs to \mathcal{F}.

Let now G be a graph of \mathcal{F} composed of k_1 paths P_3 and k_2 paths P_5. Then $\gamma_2(G) = 2k_1 + 2k_2, \gamma_2(G) = 3k_1 + 3k_2$. With Proposition 2, the following corollary is obtained.

Corollary 1. For any connected graph G of order $n \geq 3$, then $\gamma_2(G) + \frac{\gamma(G)}{2} \leq n$ with equality if and only if G is $C_4\circ K_1$ or G belongs to \mathcal{F}. If $\gamma_2(G) = 1$, then G is a trivial graph, i.e., all graphs G of order at least two with $\gamma_2(G) \geq 2$.

Proposition 3. Let G be a graph of order $|V(G)| = n \geq 2$. Then $\gamma_2(G) = 2$ if and only if $K_{1,n-1}$ or $K_{2,n-2}$ is a spanning subgraph of G.

Proof. If $K_{1,n-1}$ or $K_{2,n-2}$ is a spanning subgraph of G, then it holds. Conversely, $\gamma(G) \leq 2$ since $\gamma(G) \leq \gamma_2(G)$. If G is an edge uv, then it holds. So assume $|V(G)| \geq 3$. Suppose f is a 2-rainbow dominating function with weight 2. If there is only one vertex with color $\{1, 2\}$ and all the other vertices with empty set, then $\gamma(G) = 1$, i.e., $K_{1,n-1}$ is a spanning subgraph of G. Otherwise, there exist two vertices u and v with colors 1 and 2, respectively. Since f is a 2-rainbow dominating function, then for each vertex $t \in V(G) - \{u, v\}, \{u, v\} \subseteq N_G(t)$. Hence $K_{2,n-2}$ is a spanning subgraph of G. □

Let v be a vertex in G with maximum degree $\Delta(G)$. If we set

$$f(v) = \begin{cases} \emptyset & u \in N(v), \\ \{1\} \text{ or } \{2\} & u \in V(G) - N[v], \\ \{1, 2\} & u = v. \end{cases}$$

Then f is 2-rainbow dominating function of G. So the following proposition holds.
Proposition 4. If G is a graph of order n, then $\gamma_2(G) \leq n - \Delta(G) + 1$.

Let \overline{G} be the complement of a graph G. We show the following result.

Theorem 2. If G is a graph with order $n \geq 3$, then

$$5 \leq \gamma_2(G) + \gamma_2(\overline{G}) \leq n + 2.$$

Moreover, the equalities can be obtained.

Proof. When G has at least three vertices, $\gamma_2(G) \geq 2$. By **Proposition 3**, the equality holds only when $\gamma(G) = 1$ or $\gamma(G) = 2$ and G has an independent dominating set $\{u, v\}$ and $\Delta(G) \leq |V(G)| - 2$. A graph and its complement can not both have dominating vertices, so if $\gamma(G) = 1$, then $\gamma_2(G) \geq 3$. Otherwise $\gamma(G) = 2$ and $|V(G)| \geq 4$, then \overline{G} contains at least two components and one of them is an edge. So $\gamma_2(G) \geq 4$. Thus the left equality holds if and only if G (resp. \overline{G}) has a dominating vertex and \overline{G} (resp. G) contains an isolated vertex x such that $\gamma_2(\overline{G} - x) = 2$ (resp. $\gamma_2(G - x) = 2$).

By **Proposition 4**, $\gamma_2(G) + \gamma_2(\overline{G}) \leq (n - \Delta(G) + 1) + (n - \Delta(\overline{G}) + 1) = n - \Delta(G) + \Delta(G) + 3 \leq n + 3$.

If $\gamma_2(G) + \gamma_2(\overline{G}) = n + 3$, then equality holds throughout the above calculation, and $\Delta(G) = \delta(G)$. Hence G is k-regular for some k. Without loss of generality assume that $k \leq (n - 1)/2$, since our argument is symmetric in G and \overline{G}. Since equality holds, $\gamma_2(G) = n - k + 1$ and $\gamma_2(\overline{G}) = k + 2$.

Let $v \in V(G)$. If some vertex u outside $N[v]$ in G has at least two neighbors outside $N[u]$, then set $f(v) = f(u) = \{1, 2\}$, for $s \in V(G) - N[v] \cup N[u]$, let $f(s) = \{1\}$ and other vertices with empty set. Then f is a 2-rainbow dominating function of G with weight at most $n - k$, a contradiction. Hence every vertex not in $N[v]$ has at least $k - 1$ neighbors in $N(v)$. A similar argument shows that each vertex in $N(v)$ has at most two neighbors outside $N[v]$.

Suppose m is the number of edges joining $N(v)$ and $V(G) - N[v]$, we thus have $(k - 1)(n - k - 1) \leq m \leq 2k$. For $k \geq 2$, then $n \leq k + 1 + 2k/(k - 1)$. Since $n \geq 2k + 1$, we have $k \leq 2k/(k - 1)$, which requires $2 \leq k \leq 3$. If $k = 2$, we have $n \leq k + 1 + 2k/(k - 1) = 7$, and also $n \geq 2k + 1 = 5$. However $\gamma_2(C_3) = 3$, $\gamma_2(C_6) = 2$, $\gamma_2(C_4) = 4$, and $\gamma_2(C_5) = \gamma_2(C_7) + \gamma_2(C_8) = 4$, which is a contradiction to $\gamma_2(G) = n - k + 1$. If $k = 3$, then $n = 7$. It is a contradiction to that G is 3-regular with even order. For $k = 1$, the only example is $(n/2)K_2, \gamma_2(G) + \gamma_2(\overline{G}) = n + 2$. For $k = 0$, the only example is $G = K_3$, where $\gamma_2(G) + \gamma_2(\overline{G}) = n + 2$. Then it implies equality does not hold. Hence $\gamma_2(G) + \gamma_2(\overline{G}) \leq n + 2$. □

Cockayne et al. [10] characterized the connected graphs G with γ_k-functions of weight $\gamma(G) + 1$ and $\gamma(G) + 2$.

Proposition 5 (Cockayne et al. [10]). If G is a connected graph of order n, then $\gamma_k(G) = \gamma(G) + 1$ if and only if there is a vertex $v \in V(G)$ of degree $n - \gamma(G)$.

Proposition 6 (Cockayne et al. [10]). If G is a connected graph of order n, then $\gamma_k(G) = \gamma(G) + 2$ if and only if:

(a) G does not have a vertex $v \in V(G)$ of degree $n - \gamma(G)$;

(b) either G has a vertex of degree $n - \gamma(G) - 1$ or G has two vertices v and w such that $|N[v] \cup N[w]| = n - \gamma(G) + 2$.

Subsequently, Xing, Chen and Chen [12] gave a characterization of graphs for which $\gamma_k(G) = \gamma(G) + k$ for $2 \leq k \leq \gamma(G)$. However, their proof has a logical mistake. Here we give a correct proof.

Theorem 3 (Xing, Chen and Chen [12]). Let G be a connected graph of order n and the domination number $\gamma(G) \geq 2$. If k is an integer such that $2 \leq k \leq \gamma(G)$, then $\gamma_k(G) = \gamma(G) + k$ if and only if:

(a) for any integer s with $1 \leq s \leq k - 1$, G does not have a set U_t of $(1 \leq t \leq s)$ vertices such that $|\bigcup_{t \in U_t} N[v]| = n - \gamma(G) - s + 2t$;

(b) there exists an integer l with $1 \leq l \leq k$, and G has a set W_l of l vertices such that $|\bigcup_{v \in W_l} N[v]| = n - \gamma(G) - k + 2l$.

Proof. By induction. If $k = 2$ then it holds by **Proposition 6**. So we assume $\gamma(G) \geq k \geq 3$ and the theorem holds for all values less than k. Let $f = (V_0, V_1, V_2)$ be a $\gamma_k(G)$-function of weight $\gamma_k(G) = \gamma(G) + k$.

First we prove that condition (a) holds. Suppose the contrary, that is, there exist two integers s_0 and t_0 with $1 \leq t_0 \leq s_0 \leq k - 1$, and G has a set U_{t_0} of t_0 vertices such that $|\bigcup_{v \in U_{t_0}} N[v]| = n - \gamma(G) - s_0 + 2t_0$. By **Proposition 5**, $s_0 \geq 2$ and without loss of generality assume that for any integer s with $1 \leq s \leq s_0 - 1$, G does not have a set U_t of $(1 \leq t \leq s)$ vertices such that $|\bigcup_{v \in U_t} N[v]| = n - \gamma(G) - s + 2t$. Since G has a set U_{t_0} of t_0 $(1 \leq t_0 \leq s_0)$ vertices such that $|\bigcup_{v \in U_{t_0}} N[v]| = n - \gamma(G) - s_0 + 2t_0$, by the induction hypotheses, it follows that $\gamma_k(G) = \gamma(G) + s_0$. This contradicts the fact that $\gamma_k(G) = \gamma(G) + k$.

Next we prove that condition (b) holds. G is connected, so $|V_0| \geq 1$. Since $2|V_2| + |V_1| = \gamma(G) + k$, $|V_1| + |V_2| \geq \gamma(G)$, it follows that $|V_2| \leq k$. Assume that $|V_2| = 1 (1 \leq l \leq k)$. Then $|V_1| = \gamma(G) + k - 2l$. Let $W_l = V_2$. No edge joins V_1 and V_2 and $V_0 \subseteq N(V_2)$, so there exists a set W_l of $(1 \leq l \leq k)$ vertices such that $|\bigcup_{v \in W_l} N[v]| = n - |V_1| = n - (\gamma(G) + k - 2l) = n - \gamma(G) - k + 2l$. Hence, condition (b) holds.

Conversely, by induction hypotheses and condition (a), $\gamma_k(G) \geq \gamma(G) + k$. We define $V_0 = \bigcup_{v \in W_l} N[v] - W_l$, $V_1 = V(G) - \bigcup_{v \in W_l} N[v]$ and $V_2 = W_l$, then $f = (V_0, V_1, V_2)$ is an RDF with $f(V(G)) = 2|W_l| + |V(G)| - |\bigcup_{v \in W_l} N[v]| = \gamma(G) + k$, so $\gamma_k(G) \leq \gamma(G) + k$. Therefore, the equality $\gamma_k(G) = \gamma(G) + k$ holds. □
Acknowledgements

The authors are indebted to the anonymous referees for their constructive suggestions.

References