COMMUNICATION

UNIMODULARITY AND CIRCLE GRAPHS*

André BOUCHET
Centre de Recherche en Informatique et Combinatoire, Université du Maine, 72017 Le Mans Cedex, France

Received 3 March 1987
Communicated by C. Benzaken

Abstract

A property of unimodularity is introduced for antisymmetric integral matrices. It is satisfied by the adjacency matrix of a circle graph provided with a Naji orientation [8]. In a further paper we shall interprete this result in terms of symmetric matroids introduced in [2]. In this communication we give a direct proof by means of techniques used in [1] for an algorithmic solution of the Gauss problem on self-intersecting curves in the plane.

Let $A=\left(A_{v w}: v, w \in V\right)$ be an antisymmetric integral matrix. For each $W \subseteq V$ we let $A[W]=\left(A_{v w}: v, w \in W\right)$. We are interested in the following property of unimodularity:

$$
\operatorname{det}(A[W]) \in\{-1,0,+1\}, \quad W \subseteq V
$$

Our graphs will be simple. An oriented graph is a simple graph where an initial end and a final end have been distinguished for every edge. The adjacency matrix of an oriented graph G is the antisymmetric $(0, \pm 1)$-matrix $A=\left(A_{v w}: v, w \in\right.$ $V(G)$) such that $A_{v w}=+1$ if and only if $v w$ is an edge oriented from v to w. The orientation of G is said to be unimodular if A satisfies Property (α).

Let m be a word such that each letter occurring in m occurs precisely twice. We say that m is a double occurrence word. An alternance of m is a nonordered pair $v^{\prime} v^{\prime \prime}$ of distinct letters such that we meet alternatively $\ldots v^{\prime} \ldots v^{\prime \prime} \ldots v^{\prime} \ldots v^{\prime \prime} \ldots$ when reading m. The alternance graph $G(m)$ is the simple graph whose vertices are the letters of m and whose edges are the alternances of m. From a geometric point of view, alternance graphs can be interpreted as intersection graphs of chords of a circle, and they are more widely known as circle graphs. These graphs are also related to stack sorting techniques in a paper by Even and Itai [4]. The reader will find in [6] a survey of some results on circle graphs. Naji [8] found recently a good characterization of circle graphs by means of particular orientations. These are precisely these orientations which we will consider.

[^0]

Fig. 1.

Let V be the set of letters of m, and let $V^{+}=\left\{v^{+}: v \in V\right\}$ and $V^{-}=$ $\left\{v^{-}: v \in V\right\}$ be disjoint copies of V. A separation of m is any word μ over $V^{+} \cup V^{-}$obtained by replacing in m the two occurrences of each letter v by v^{+} and v^{-}. If $v^{\prime} v^{\prime \prime}$ is an alternance of m, and $\ldots v^{\prime s^{\prime}} \ldots v^{11 s^{\prime \prime}} \ldots v^{\prime-s^{\prime}} \ldots v^{\prime \prime-s^{\prime \prime}} \ldots$ is the succession in μ of the letters belonging to $\left\{v^{\prime+}, v^{\prime-}, v^{\prime \prime+}, v^{\prime \prime}\right\}$, then the edge $v^{\prime} v^{\prime \prime}$ of $G(m)$ will be directed from v^{\prime} to $v^{\prime \prime}$ if $s^{\prime}=s^{\prime \prime}$, from $v^{\prime \prime}$ to v^{\prime} otherwise. Let $D(\mu)$ be the oriented graph so defined, and let $A(\mu)=\left(A_{v w}: v, w \in V\right)$ be the adjacency matrix of $D(\mu)$.

A rotation of a word $x_{1} x_{2} \ldots x_{r}$ is its transformation into any word $x_{i} x_{i+1} \ldots x_{r} x_{1} \ldots x_{i-1}$. We notice that $G(m)$ and $D(\mu)$ are invariant after rotations of m and μ. Since each element of $V^{+} \cup V^{-}$occurs precisely once in μ, we will identify μ to a cyclic permutation of $V^{+} \cup V^{-}$. Where α is the involution over $V^{+} \cup V^{-}$which exchanges each pair $\left\{v^{+}, v^{-}\right\}$, we let $\mu^{*}=\mu \circ \alpha$, the composition of the permutations μ and α. If μ^{*} is a cyclic permutation, we define $D\left(\mu^{*}\right)$ and $A\left(\mu^{*}\right)$ like $D(\mu)$ and $A(\mu)$. To each orbit P of μ^{*} we attach the integral column matrix $X(P)=\left(X_{v}: v \in V\right)$ defined by $X_{v}=+1$ if $v^{+} \in P$ and $v^{-} \notin P, X_{v}=-1$ if $v^{-} \in P$ and $v^{+} \notin P, X_{v}=0$ otherwise.

Example. For $m=a e b a d e c d b c$ and $\mu=a^{+} e^{+} b^{-} a^{-} d^{+} e^{-} c^{-} d^{-} b^{+} c^{+}$, Fig. 1 depicts $D(\mu)$. We have $\mu^{*}=\left(a^{+} d^{+} b^{+} a^{-} e^{+} c^{-}\right)\left(c^{+} d^{-} e^{-} b^{-}\right)$.

Property. An orbit P of μ^{*} satisfies $X(P)=0$ if and only if μ^{*} is a cyclic permutation.

Proof. $X(P)=0$ if and only if any pair $\left\{v^{+}, v^{-}\right\}$which intersects P is included in P, which implies that P is a union of orbits of α. Therefore P is also a union
of orbits of the composition $\mu^{*} \circ \alpha=\mu$. The result follows because μ is a cyclic permutation.

Theorem. If P is an orbit of μ^{*}, then $A(\mu) X(P)=0$. If μ^{*} is a cyclic permutation, then $A\left(\mu^{*}\right)=A(\mu)^{-1}$.

Proof. For each $v \in V$, we suppose that v^{+}is the column-matrix indexed over V whose components are null at the exception of the v-component equal to +1 , and we let $v^{-}=-v^{+}$. For each word $\mu^{\prime}=p_{1} p_{2} \ldots p_{s}$ which letters $p_{1}, p_{2}, \ldots, p_{s}$ in $V^{+} \cup V^{-}$, let $H\left(\mu^{\prime}\right)=\Sigma\left(p_{i}: 1 \leqslant i \leqslant s\right)$. So we have $H(\mu)=0$. Let us say that μ^{\prime} wraps above μ if p_{i+1} follows p_{i} in μ (after eventually rotating μ) for $1 \leqslant i \leqslant s-1$. Moreover we say that μ^{\prime} is closed if p_{1} follows p_{s} in μ. Clearly
(i) $H\left(\mu^{\prime}\right)=0$ if μ^{\prime} is wrapped above μ and is closed.

For each $v \in V$ we denote by $S\left(v^{+}\right)$and $S\left(v^{-}\right)$the subwords of μ such that, after eventually rotating $\mu, \mu=v^{+} S\left(v^{+}\right) v^{-} S\left(v^{-}\right)$.
(ii) $A(\mu) v^{+}=-H\left(S\left(v^{+}\right)\right)=H\left(S\left(v^{-}\right)\right)=-A(\mu) v^{-}, v \in V$.
(iii) $S(x) S(y)$ wraps above μ if and only if $x=\mu^{*}(y)$.

It is easy to verify (ii). To prove (iii) we notice that the letter which follows $S(x)$ in μ is equal to $\alpha(x)$, when the letter which precedes $S(y)$ is y. Therefore $S(x) S(y)$ wraps above μ if and only if $y \alpha(x)$ is a pair of successive letters in μ, which means $x=\mu^{*}(y)$.

Let ($x_{k} \ldots x_{2} x_{1}$) be the cyclic permutation induced over an orbit P of μ^{*}. Following (iii), the word $S\left(x_{1}\right) S\left(x_{2}\right) \ldots S\left(x_{k}\right)$ wraps above μ, and it is closed. Therefore

$$
\begin{align*}
0 & =H\left(S\left(x_{1}\right) S\left(x_{2}\right) \ldots S\left(x_{k}\right)\right) \quad \text { by }(\mathrm{i}) \tag{i}\\
& =H\left(S\left(x_{1}\right)\right)+H\left(S\left(x_{2}\right)\right)+\cdots+H\left(S\left(x_{k}\right)\right) \\
& =-A(\mu) x_{1}-A(\mu) x_{2}-\cdots-A(\mu) x_{k} \tag{ii}\\
& =-A(\mu) X(P),
\end{align*}
$$

which proves the first part of the theorem.
If μ^{*} is a cyclic permutation, let us consider some $v \in V$ and, after an eventual rotation, let $\mu^{*}=v^{+} x_{k} \ldots x_{2} x_{1} v^{-} M$, with letters $x_{1}, x_{2}, \ldots, x_{k} \in V^{+} \cup V^{-}$and a subword M. Following (iii) the word $S\left(v^{-}\right) S\left(x_{1}\right) S\left(x_{2}\right) \ldots S\left(x_{k}\right) S\left(v^{+}\right)$wraps above μ. Therefore the first letter of $S\left(x_{1}\right)$ is equal to v^{+}, and the last letter of $S\left(x_{k}\right)$ is also equal to v^{+}. Thus after removing either the first letter or the last letter of $S\left(x_{1}\right) S\left(x_{2}\right) \ldots S\left(x_{k}\right)$ we get a closed word wrapping above μ. Property (i) implies $v^{+}=H\left(S\left(x_{1}\right) S\left(x_{2}\right) \ldots S\left(x_{k}\right)\right)$, which implies as above $v^{+}=-A(\mu)\left(x_{1}+\right.$ $\left.x_{2}+\cdots+x_{k}\right)$. But $-\left(x_{1}+x_{2}+\cdots+x_{k}\right)$ is equal to the v-column of $A\left(\mu^{*}\right)$. Therefore $A(\mu) A\left(\mu^{*}\right)$ is the identity matrix.

Corollary 1 (Jaeger [5]). If G is an alternance graph whose adjacency matrix A considered over GF(2) has an inverse A^{-1}, then A^{-1} is the adjacency matrix of an alternance graph \boldsymbol{G}^{*}.

Proof. Use the second part of the theorem with matrices considered modulo 2, $G=G(m), G^{*}=G\left(m^{*}\right)$, where m^{*} is the double occurrence word whose separation is μ^{*}.

Corollary 2. The orientation of $D(\mu)$ is unimodular.

Proof. Each matrix $A[W]$ has an integral inverse when the inverse exists.

There are two basic problems on unimodular orientations: (P1) to recognize whether a given orientation of a simple graph G is unimodular; (P2) to recognize whether a simple graph G admits an unimodular orientation. Let us consider the case where G is bipartite with chromatic classes V^{\prime} and $V^{\prime \prime}$. If $A=\left(A_{v w}: v, w \in\right.$ $V(G)$) is the adjacency matrix of G provided with an orientation, and $B=\left(B_{v^{\prime} v^{\prime \prime}}: v^{\prime} \in V^{\prime}, v^{\prime \prime} \in V^{\prime \prime}\right)$, then it is easy to verify that the orientation of G is unimodular if and only if B is totally unimodular. Let $M\left(G, V^{\prime}\right)$ be the binary matroid with a base equal to V^{\prime} and the set of fundamental circuits $\left\{\left\{v^{\prime}\right\} \cup\right.$ $\left.\left\{v^{\prime \prime}: v^{\prime} v^{\prime \prime} \in E(G)\right\}: v^{\prime} \in V^{\prime}\right\}$ with respect to V^{\prime}. It is easy to verify that G can be provided with an unimodular orientation if and only if $M\left(G, V^{\prime}\right)$ is a regular matroid. Thus Problems (P1) and (P2) are well solved (Camion [3], Tutte [9]) when G is bipartite.

Problem (P2) is of special interest because Corollary 2 says that an alternance graph admits an unimodular orientation. It can be verified directly that every nonalternance graph of lowest order, 6 , does not satisfy this necessary condition. To see that the condition is not sufficient we can use the following theorem of de Fraysseix [5]: a bipartite graph G with a chromatic class V^{\prime} is an alternance graph if and only if the matroid $M\left(G, V^{\prime}\right)$ is graphic and cographic. Figs. 2 and 3 depict two bipartite graphs G_{2} and G_{3} where V^{\prime} is made of the circled vertices. We

Fig. 2.

Fig. 3.
verify that $M\left(G_{2}, V^{\prime}\right)$ is the Fano matroid. This matroid is not regular, so that both de Fraysseix theorem and our necessary condition imply that G_{2} is not an alternance graph. $M\left(G_{3}, V^{\prime}\right)$ is the cycle matroid of K_{5} (V^{\prime} corresponds in K_{5} to a tree made of the four edges incident to a same vertex). This matroid is regular but it is not a cographic matroid, so that G_{3} is not an alternance graph by de Fraysseix theorem when it admits an unimodular orientation.

The local complementation of a simple graph G at a vertex v is the operation which consists in replacing the subgraph induced on $\{w: v w \in E(G)\}$ by the complementary subgraph. A graph is locally equivalent to G if it is obtained through successive local complementations starting with G. If v is a letter of the double occurrence word m, and we decompose m as $A v B v C$ with suitable subwords A, B, C, and we replace the subword B by its mirror-image B^{\prime}, then the alternance graph of $m^{\prime}=A v B^{\prime} v C$ is the local complement of $G(m)$ at v. Therefore any graph locally equivalent to an alternance graph is also an alternance graph.

To see that G_{3} is not an alternance graph we can make local complementations at the vertices x, y, z, obtaining so a graph G_{3}^{\prime}. If we delete x, y, z of G_{3}^{\prime}, we get G_{2} which has no unimodular orientation. If a graph has an unimodular orientation, this holds also for every induced subgraphs. Therefore G_{3}^{\prime} has no unimodular orientation, and it cannot be a circle graph. This is also the case for G_{3} which is locally equivalent to G_{3}^{\prime}.

Conjecture. A graph G is an alternance graph if every graph locally equivalent to G has an unimodular orientation.

References

[1] A. Bouchet, Caractérisation des symboles croisés de genre nul, C. R. Acad. Sci. Paris 274 (1972) 724-727.
[2] A. Bouchet, Greedy algorithm and symmetric matroids, Math. Programming, to appear.
[3] P. Camion, Characterization of totally unimodular matrices, Proc. Amer. Math. Soc. 16 (1965) 1068-1073.
[4] S. Even and A. Itai, Queues, stacks and graphs, in: Theory of Machines and Computations (Academic Press, New York, 1971) 71-86.
[5] H. de Fraysseix, Local complementations and interlacement graphs, Discrete Math. 33 (1981) 29-35.
[6] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic Press, New York, 1980).
[7] F. Jaeger, On some aglebraic properties of graphs, in: Progress in Graph Theory, J.A. Bondy and U.S.R. Murty eds. (Academic Press, New York, 1984).
[8] W. Naji, Reconnaissance des graphes de cordes, Discrete Math. 54 (1985) 329-337.
[9] W. Tutte, Lectures in matroids, J. Res. Nat. Bur. Standards Sect. B 69 (1965) 1-47.

[^0]: * Partially supported by PRC Mathematique et Informatique.

