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Let K ⊂ L be a commutative field extension. Given K -subspaces
A, B of L, we consider the subspace 〈AB〉 spanned by the product
set AB = {ab | a ∈ A, b ∈ B}. If dimK A = r and dimK B = s,
how small can the dimension of 〈AB〉 be? In this paper we give
a complete answer to this question in characteristic 0, and more
generally for separable extensions. The optimal lower bound on
dimK 〈AB〉 turns out, in this case, to be provided by the numeri-
cal function

κK ,L(r, s) = min
h

(�r/h� + �s/h� − 1
)
h,

where h runs over the set of K -dimensions of all finite-dimensional
intermediate fields K ⊂ H ⊂ L. This bound is closely related to one
appearing in additive number theory.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Let K ⊂ L be an extension of commutative fields. Let A, B ⊂ L be nonzero K -subspaces of L. We
denote by

〈AB〉

the K -subspace of L generated by the product set

AB = {ab | a ∈ A, b ∈ B}.
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Of course, if A, B are finite-dimensional, then so is 〈AB〉 which satisfies the easy estimates

max{dimK A,dimK B} � dimK 〈AB〉 � (dimK A)(dimK B).

The above lower bound is sharp in the very special circumstance A = B = H where H is an interme-
diate field extension K ⊂ H ⊂ L. But in general, if dimK A,dimK B are specified in advance, how small
can dimK 〈AB〉 be? In other words, given positive integers r, s � dimK L, we define

μK ,L(r, s) = min
{

dimK 〈AB〉},
where the minimum is taken over all K -subspaces A, B of L satisfying

dimK A = r, dimK B = s.

For example, one has μK ,L(h,h) = h whenever h = [H : K ] = dimK H is the degree of a finite-
dimensional intermediate field extension K ⊂ H ⊂ L.

Perhaps surprisingly, the combinatorial function μK ,L(r, s) can be explicitly determined for arbi-
trary r, s under mild hypotheses, as we do here. Our answer is provided by the following numerical
function. Define

κK ,L(r, s) = min
h

(�r/h� + �s/h� − 1
)
h,

where h = [H : K ] runs over the set of K -dimensions of all finite-dimensional intermediate fields
K ⊂ H ⊂ L.

For example, if [L : K ] is a prime number p, then the only admissible values for h = [H : K ] are 1
and p, whence κK ,L(r, s) = min{r + s − 1, p}. (See Example 5.2.) We shall prove the following result.

Theorem 1.1. Let K ⊂ L be a commutative field extension in which every algebraic element of L is separable
over K . Then, for all positive integers r, s � dimK L, we have

μK ,L(r, s) = κK ,L(r, s).

There are close links between this result and additive number theory, as explained in Section 2.
The proof of Theorem 1.1 is split between Sections 3 and 4. After some examples in Section 5, we
look more closely, in Section 6, at the case of finite Galois extensions. In Sections 7 and 8, we discuss
the separability hypothesis in Theorem 1.1.

2. Links with additive number theory

The question explored in this paper is analogous to a classical one in groups, namely that of
minimizing the cardinality of product sets AB where A, B run over all subsets of cardinality r, s in a
given group G . In multiplicative notation, this amounts to study the function

μG(r, s) = min
{|AB|: A, B ⊂ G, |A| = r, |B| = s

}
.

While unknown in general, this function has recently been fully determined in the abelian case. The
answer is expressed in terms of the numerical function κG(r, s) defined as follows. For any group G ,
let H(G) be the set of orders of finite subgroups of G , and set

κG(r, s) = min
h∈H(G)

(�r/h� + �s/h� − 1
)
h

for all positive integers r, s � |G|. Here is the result obtained in [1].
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Theorem 2.1. Let G be an arbitrary abelian group. Then, for all positive integers r, s � 1, we have μG(r, s) =
κG(r, s).

For instance, this contains the well-known Cauchy–Davenport theorem for cyclic groups G of prime
order p, namely μG(r, s) = min{r + s − 1, p} for all 1 � r, s � p. See [3] for a survey of recent results
on μG(r, s).

The function κG(r, s) appears in various guises and contexts, for instance as the Hopf–Stiefel func-
tion r ◦ s in algebraic topology or in the theory of quadratic forms. See [2] for a survey on this
ubiquitous function.

The reader will notice the close resemblance between Theorems 1.1 and 2.1. The methods of proof
are also quite similar. In order to prove that the kappa-function is a lower bound, the key tools are
a theorem of Kneser for abelian groups [7], and a linear version of it for separable extensions [6].
Regarding the optimality of the bound, the key tool is the small sumsets property, amounting to the
inequality μG(r, s) � r + s − 1 for abelian groups [1]. The analogous estimate for field extensions
K ⊂ L, namely μK ,L(r, s) � r + s − 1, plays the same role and will be shown to hold in full generality.

In Section 6, we shall see that both versions of the kappa-function, namely κG for a group G and
κK ,L for a field extension K ⊂ L, actually coincide for finite Galois extensions with abelian Galois
group G .

For general background on commutative field extensions and on additive number theory, we refer
to [8] and [9], respectively.

3. Proof that κK ,L is a lower bound

We now go back to the field extension setting. In order to prove inequality μK ,L(r, s) � κK ,L(r, s)
of Theorem 1.1, we shall need the following linear version [6] of a famous theorem of Kneser [7] in
additive number theory.

Theorem 3.1 (Hou, Leung and Xiang). Let K ⊂ L be a commutative field extension in which every algebraic
element of L is separable over K . Let A, B ⊂ L be nonzero finite-dimensional K -subspaces of L. Let H be the
stabilizer of 〈AB〉. Then

dimK 〈AB〉 � dimK A + dimK B − dimK H .

The separability hypothesis of the above theorem is discussed in Section 8.

Proof of inequality μK ,L(r, s) ��� κ K ,L(r, s) of Theorem 1.1. Let A, B ⊂ L be K -subspaces of L with
dimK A = r, dimK B = s. We must prove that dimK 〈AB〉 � κK ,L(r, s). As in Theorem 3.1, let H be the
stabilizer of the subspace 〈AB〉, i.e.

H = {
x ∈ L

∣∣ x〈AB〉 ⊂ 〈AB〉}.
Then of course, H is a subfield of L containing K , and we have

H〈AB〉 = 〈AB〉.

We shall apply Theorem 3.1 to the pair 〈H A〉, 〈H B〉 of K -subspaces of L. The first observation is that
this pair has the same product as the pair A, B:

〈〈H A〉〈H B〉〉 = 〈H AB〉 = 〈AB〉.

In particular, the stabilizer of the product is still H . By Theorem 3.1, we obtain

dimK 〈AB〉 � dimK 〈H A〉 + dimK 〈H B〉 − dimK H .
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Let g = dimK H . Factoring g in the above formula, we get

dimK 〈AB〉 �
(

dimK 〈H A〉
g

+ dimK 〈H B〉
g

− 1

)
g. (1)

Now, 〈H A〉 is an H-subspace of L, and therefore dimK 〈H A〉 is a multiple of dimK H = g . Moreover,
the integer (dimK 〈H A〉)/g is greater than or equal to (dimK A)/g = r/g . It follows that

dimK 〈H A〉
g

�
⌈

r

g

⌉
.

The same estimate holds with B, s replacing A, r, respectively. Plugging this information into inequal-
ity (1), we get

dimK 〈AB〉 �
(�r/g� + �s/g� − 1

)
g.

Finally, given that g is the dimension of an intermediate field K ⊂ H ⊂ L, we have

(�r/g� + �s/g� − 1
)

g � κK ,L(r, s),

by definition of this kappa-function. It follows that dimK 〈AB〉 � κK ,L(r, s). We have now shown, as
claimed, that

μK ,L(r, s) � κK ,L(r, s)

for all positive integers r, s � dimK L. �
4. Optimality

It remains to prove inequality μK ,L(r, s) � κK ,L(r, s) of Theorem 1.1. This is a construction problem.
Given positive integers r, s � dimK L, we must exhibit a pair of K -subspaces A, B ⊂ L with dimK A = r,
dimK B = s and dimK 〈AB〉 � κK ,L(r, s). We start with a lemma on simple extensions.

Lemma 4.1. Let H ⊂ L be a commutative field extension, let α ∈ L and set M = H(α). Then, for all positive
integers r, s � dimH M, we have

μH,M(r, s) � r + s − 1.

Proof. Assume first that α is transcendental over H . Given integers r, s � 1, let A = 〈1,α, . . . ,αr−1〉
be the H-subspace of M spanned by the first r powers of α, and similarly let B = 〈1,α, . . . ,αs−1〉.
Then dimH A = r, dimH B = s and dimH 〈AB〉 = dimH 〈1,α, . . . ,αr+s−2〉 = r + s − 1.

Assume now that α is algebraic over H , of degree [M : H] = m. In particular, the set {1,α, . . . ,

αm−1} is an H-basis of M . Given positive integers r, s � m, let A = 〈1,α, . . . ,αr−1〉 and B =
〈1,α, . . . ,αs−1〉 as above. Then dimH A = r, dimH B = s, and dimH 〈AB〉 � r + s − 1 since 〈AB〉 is
spanned by the set {αi}0�i�r+s−2.

In either case, our explicit pair of subspaces A, B yields the desired estimate μH,M(r, s) �
r + s − 1. �

As a side remark, note that the above formula remains valid if either r = 0 or s = 0, but not if both
r = s = 0. Using the Primitive Element Theorem for separable extensions, here is a consequence that
we shall need.
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Proposition 4.2. Let H ⊂ L be a commutative field extension which is separable or contains a transcendental
element. Then, for all positive integers r, s � dimH L, we have

μH,L(r, s) � r + s − 1.

Proof. If L contains a transcendental element α, we are done by the lemma above. (Indeed, with
M = H(α) we have μH,L(r, s) � μH,M(r, s) � r + s − 1.) Assume now that L is algebraic and separa-
ble over H . Given positive integers r, s � dimH L, let U ⊂ L be any linearly independent set of size
max{r, s}. Set L0 = H(U ), the subfield of L generated by U over H . It follows from the present as-
sumptions on L, that L0 is a finite and separable extension of H , with [L0 : H] = m � max{r, s}. By the
Primitive Element Theorem, there exists an element α ∈ L0 such that L0 = H(α). We now conclude
with Lemma 4.1. �

The above result is in fact valid without any separability hypothesis, as shown in Section 7 with
a little longer argument. However, the present version is sufficient to help us conclude the proof of
Theorem 1.1.

Proof of inequality μK ,L(r, s) ��� κ K ,L(r, s). Let r, s be positive integers not exceeding [L : K ]. Let
h0 = [H : K ] be the K -dimension of a finite-dimensional intermediate field extension K ⊂ H ⊂ L for
which κK ,L(r, s) attains its value, i.e. such that

κK ,L(r, s) = (�r/h0� + �s/h0� − 1
)
h0.

(Note that such an h0 exists and cannot exceed r + s − 1 since, using h = 1 in the definition of κK ,L ,
we have κK ,L(r, s) � r + s − 1.) Set r0 = �r/h0�, s0 = �s/h0�. Of course �r/h0�, �s/h0� � [L : K ]/h0 =
[L : H]. From the hypotheses on the extension L over K , it follows that L, as an extension over H , is
either separable or else contains a transcendental element. By Proposition 4.2, we have μH,L(r0, s0) �
r0 + s0 − 1. Thus there exist H-subspaces A0, B0 ⊂ L such that

dimH A0 = r0,

dimH B0 = s0,

dimH 〈A0 B0〉 � r0 + s0 − 1.

Now, viewed as K -subspaces of L, their dimensions are multiplied by h0. Thus, we have

dimK A0 = r0h0,

dimK B0 = s0h0,

dimK 〈A0 B0〉 � (r0 + s0 − 1)h0 = κK ,L(r, s).

Therefore μK ,L(r0h0, s0h0) � κK ,L(r, s). Now r � r0h0, s � s0h0, and clearly the function μK ,L(r, s) is
nondecreasing in each variable. It follows that

μK ,L(r, s) � μK ,L(r0h0, s0h0) � κK ,L(r, s),

as claimed. The proof of Theorem 1.1 is now complete. �
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5. Examples

We now give three examples illustrating Theorem 1.1.

Example 5.1 (Transcendental extensions). Assume that L is a purely transcendental extension of K . In
that case, the unique finite-dimensional intermediate extension K ⊂ H ⊂ L is H = K itself. It follows
that κK ,L(r, s) = r + s − 1 and thus, by Theorem 1.1, we have

μK ,L(r, s) = r + s − 1

for all positive integers r, s. (See also Theorem 6.3 and the remark following it in [4].)

Example 5.2 (A linear version of the Cauchy–Davenport theorem). Let K ⊂ L be a commutative field ex-
tension of prime degree [L : K ] = p. Then, for all 1 � r, s � p, we have

μK ,L(r, s) = min{r + s − 1, p}. (2)

(Compare with the original Cauchy–Davenport theorem in Section 2.) Indeed, assume first that
char(K ) is distinct from p. Then the extension is separable and thus, Theorem 1.1 applies and gives
μK ,L(r, s) = κK ,L(r, s). But since the only intermediate fields K ⊂ H ⊂ L are H = K and H = L, we
have κK ,L(r, s) = min{r + s − 1, p} by definition of this function.

If char(K ) = p, the extension is not necessarily separable, but formula (2) remains valid. This
was pointed out by the anonymous referee, to whom we are most grateful. The reason is that the
extension, being of prime degree, is simple. Now, the conclusion of Theorem 3.1 does hold for simple
extensions, as follows from Theorem 2.1 in [5, p. 217]. This, combined with our Lemma 4.1, implies
that Theorem 1.1, and hence formula (2), indeed hold in the present case.

Example 5.3 (An extension of degree 16). Consider the extension Q ⊂ Q(
16
√

2 ). This is a separable exten-
sion of degree 16, obviously containing intermediate extensions of degree 2, 4 and 8. It follows that,
for all 1 � r, s � 16, we have

μ
Q,Q(

16√2 )
(r, s) = κ

Q,Q(
16√2 )

(r, s) = min
h|16

(�r/h� + �s/h� − 1
)
h.

This is exactly, in this range, the classical Hopf–Stiefel function r ◦ s [2]. We now tabulate this
function in order to sense its quite complicated behavior. The value of r ◦ s is the coefficient in row r
and column s of the matrix below:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 2 4 4 6 6 8 8 10 10 12 12 14 14 16 16
3 4 4 4 7 8 8 8 11 12 12 12 15 16 16 16
4 4 4 4 8 8 8 8 12 12 12 12 16 16 16 16
5 6 7 8 8 8 8 8 13 14 15 16 16 16 16 16
6 6 8 8 8 8 8 8 14 14 16 16 16 16 16 16
7 8 8 8 8 8 8 8 15 16 16 16 16 16 16 16
8 8 8 8 8 8 8 8 16 16 16 16 16 16 16 16
9 10 11 12 13 14 15 16 16 16 16 16 16 16 16 16

10 10 12 12 14 14 16 16 16 16 16 16 16 16 16 16
11 12 12 12 15 16 16 16 16 16 16 16 16 16 16 16
12 12 12 12 16 16 16 16 16 16 16 16 16 16 16 16
13 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16
14 14 16 16 16 16 16 16 16 16 16 16 16 16 16 16
15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
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For example, one finds 11 ◦ 4 = 12 and 11 ◦ 5 = 15. The fact that the lower antidiagonal part of the
matrix is constant and equal to 16 is part of the following more general phenomenon.

Remark 5.4. If [L : K ] = n, then κK ,L(r, s) = n whenever r, s � n and r + s � n + 1.

Indeed, denote fh(r, s) = (�r/h� + �s/h� − 1)h. Then κK ,L(r, s) = minh fh(r, s), where h runs over a
certain set of divisors of n, namely the K -degrees of intermediate extensions. If r + s � n + 1, then
fh(r, s) � n + 1 − h. But since fh(r, s) is a multiple of h, it follows that fh(r, s) � n + h − h = n. Finally,
with h = n we get fn(r, s) = n, and the formula follows.

6. Finite Galois extensions

In this section we consider the case of a finite Galois extension K ⊂ L with Galois group G , and
attempt to compare the function κG from group theory to its linear version κK ,L .

By basic Galois theory, there is a bijection between intermediate extensions K ⊂ H ⊂ L and sub-
groups of G = Gal(L/K ), namely H �→ Gal(L/H). The cardinality of the subgroup of G corresponding
to H is given by the formula

∣∣Gal(L/H)
∣∣ = [L : H] = [L : K ]/[H : K ].

Recall that κG(r, s) is defined, in the case at hand, by minimizing the expression

(�r/h� + �s/h� − 1
)
h

over all subgroup cardinalities h = |Gal(L/H)| = [L : H]. However, in the definition of κK ,L(r, s), the
minimum is rather taken over the numbers h = [H : K ]. Thus, the functions κK ,L(r, s) and κG(r, s)
cannot be directly compared in general, except in the particular case where all divisors of |G| happen
to be subgroup cardinalities; this occurs for instance if G is abelian or a p-group. This observation
yields the following consequences of Theorem 1.1.

Corollary 6.1. Let K ⊂ L be a Galois extension with finite Galois group G of order n. Assume that every divisor
d of n is a subgroup cardinality. Then, for all positive integers r, s � n = [L : K ], we have

μK ,L(r, s) = κG(r, s) = min
d|n

(�r/d� + �s/d� − 1
)
d.

Assuming further that G is abelian, and using Theorem 2.1, we get an equality on the level of
μ-functions.

Corollary 6.2. Let K ⊂ L be a Galois extension with finite abelian Galois group G of order n. Then, for all
positive integers r, s � n = [L : K ], we have

μK ,L(r, s) = μG(r, s). (3)

However, note that equality (3) does not hold in general if G is nonabelian, even if all divisors of
|G| are subgroup cardinalities. For instance, for the nonabelian group G = Z/7Z � Z/3Z of order 21,
it is known that μG(5,9) = κG(5,9) + 1 = 13; this provides, by Corollary 6.1, a counterexample to
equality (3).



346 S. Eliahou et al. / Journal of Number Theory 129 (2009) 339–348
7. The small products property

In this section we show that Proposition 4.2 is valid in an arbitrary commutative field extension
H ⊂ L, not necessarily separable. Indeed, we shall prove that, for all positive integers r, s � [L : H],
there exist H-subspaces A, B of L with dimH A = r, dimH B = s and dimH 〈AB〉 � r + s − 1. We might
call this the small products property, in analogy with the small sumsets property for groups.

Proposition 7.1. Let H ⊂ L be a commutative field extension. Then, for all positive integers r, s � dimH L, we
have

μH,L(r, s) � r + s − 1.

Proof. As in the proof of Proposition 4.2, we are done if L contains a transcendental element over H .
Assume now that L is algebraic over H . If [L : H] is infinite, then L contains intermediary extensions
H ⊂ L′ ⊂ L with [L′ : H] finite but arbitrarily large. (Indeed, take L′ = H(u1, . . . , un) for all choices of
n � 1 and u1, . . . , un ∈ L.) Hence we may further assume that [L : H] is finite. Let H ⊂ M ⊂ L be an
intermediate extension for which the statement of the proposition is true, namely satisfying

μH,M(r0, s0) � r0 + s0 − 1 (4)

for all 1 � r0, s0 � [M : H]. Such extensions exist, for instance M = H . We may further assume that
M is maximal for this small products property. If M = L we are done. If not, let α ∈ L \ M, say
of degree d over M . For the record, the set {1,α, . . . ,αd−1} is an M-basis of M(α). We shall show
that the statement of the proposition still holds for the extension H ⊂ M(α), in contradiction to the
maximality of M .

Let r, s � [M(α) : H] = [M : H]d. Performing a slightly modified euclidean division by [M : H], we
may write

r = q1[M : H] + r0,

s = q2[M : H] + s0,

with remainders 1 � r0, s0 � [M : H] and quotients q1,q2 � d − 1.
Since μH,M(r0, s0) � r0 + s0 − 1, we may choose H-subspaces A0, B0 ⊂ M such that

dimH A0 = r0,

dimH B0 = s0,

dimH 〈A0 B0〉 � r0 + s0 − 1.

We may assume q1 + q2 � 1, for otherwise r = r0, s = s0 and we are done in this case by assumption
on M . We now define

A = M · {1,α, . . . ,αq1−1} ⊕ A0 · αq1 ,

B = M · {1,α, . . . ,αq2−1} ⊕ B0 · αq2 ,

provided q1,q2 � 1. If q1 = 0 or q2 = 0, we simply set A = A0 or B = B0, respectively. In all cases,
viewing A, B as vector spaces over H , we have

dimH A = q1[M : H] + r0 = r,

dimH B = q2[M : H] + s0 = s.
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(Recall that 1,α, . . . ,αd−1 are linearly independent over M , that q1,q2 � d − 1 and that A0, B0 ⊂ M .)
Now, taking the product of A and B , it is plain that we get

〈AB〉 ⊂ M · {1,α, . . . ,αq1+q2−1} ⊕ 〈A0 B0〉 · αq1+q2 .

It follows that

dimH 〈AB〉 � (q1 + q2)[M : H] + (r0 + s0 − 1) = r + s − 1,

and the proof of the proposition is complete. �
8. Two conjectures

In Theorems 1.1 and 3.1, the extension K ⊂ L is assumed to have all its algebraic elements sepa-
rable. Are these results still valid without this hypothesis? The answer for Theorem 3.1 is conjectured
in [5] to be positive.

Conjecture 8.1 (X.D. Hou). Let K ⊂ L be a commutative field extension, and let A, B ⊂ L be nonzero finite-
dimensional K -subspaces of L. Let H be the stabilizer of 〈AB〉. Then

dimK 〈AB〉 � dimK A + dimK B − dimK H .

As shown in [5], the conjecture holds for dimK A � 5 and for simple extensions. (See the comment
in Example 5.2.)

It remains to decide whether the separability hypothesis in Theorem 1.1 can be removed. We
conjecture that this is the case.

Conjecture 8.2. Let K ⊂ L be a commutative field extension. Then, for all positive integers r, s � dimK L, one
should have

μK ,L(r, s) = κK ,L(r, s).

This conjecture in fact follows from Conjecture 8.1. Indeed, our proof of Theorem 1.1 relies on both
Theorem 3.1 and Proposition 4.2. Removing the separability hypotheses in these two results yield
Conjecture 8.1 and Proposition 7.1, respectively. With the latter statements, our proof of Theorem 1.1
becomes a derivation of Conjecture 8.2 from Conjecture 8.1. In particular, by the above-mentioned
results in [5], Conjecture 8.2 holds at least for r � 5 and for simple extensions.

Of course, by Theorem 1.1, Conjecture 8.2 holds for all separable extensions, and in particular in
characteristic 0.
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