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The binding effects of quarks within hadrons are discussed in terms of the pion distribution amplitude 
over longitudinal momentum fractions. To understand the behavior of this quantity at different 
momentum scales, the concept of synchronization in complex systems has been employed. It is argued 
that at low momentum scales, the quarks get correlated by nonlocal quark/gluon condensates that 
cause an endpoint-suppressed, mainly bimodal structure of the pion distribution amplitude inferred 
from a sum-rule analysis. The mass generation mechanism, within the framework of Dyson–Schwinger 
equations, and evolution effects pull these two peaks back to the center to form at Q 2 → ∞ the 
asymptotic distribution amplitude which represents the most synchronized q̄q state.

© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

One of the greatest unsolved problems in Quantum Chromo-
dynamics (QCD) is the confinement phenomenon responsible for 
the binding effects of partons—quarks and gluons—within hadrons 
(see [1,2] for recent reviews). While at large momenta and ener-
gies, the color forces in the parton interactions can be adequately 
and systematically described by perturbative QCD, the regime of 
large distances, alias, small momenta, cannot be treated reliably 
in perturbation theory. The key for the success of perturbative 
QCD in the ultraviolet domain is grounded in the fact that the 
strong coupling becomes weaker as the distances between inter-
acting partons decrease, giving ultimately rise to an asymptotically 
free field theory—“ultraviolet freedom” [3].

On the other hand, the behavior of the strong coupling constant 
in the infrared (IR) has not yet been formally established. How-
ever, various calculations, based on the Dyson–Schwinger equa-
tions (DSE), yield clear signs for the saturation of color forces in 
the IR, see, e.g., [4] for a recent review. Standard QCD perturbation 
theory cannot be reliably applied at low Euclidean momenta be-
cause of the inevitable appearance of the (unphysical) Landau sin-
gularity at momenta μ2 ∼ Λ2

QCD. Several proposals exist to rectify 
this problem and define an analytic coupling in the IR—see [5] for 
a review. Nevertheless, it is still unclear how the confining prop-
erties of quarks and gluons, encoded in correlation functions, arise 
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in nonperturbative QCD. Certainly, lattice calculations can provide 
useful benchmarks for the confinement phase of QCD, but they 
have their own inherent limitations. In search of alternatives, and 
without the mathematical tools to solve QCD nonperturbatively in 
the continuum, we need new ideas and organizing principles to 
guide us through the data in hopes of revealing tangible predic-
tions that can be used to test these concepts.

In this paper, I will describe a “roadmap” to confinement by 
synthesizing different new and old ideas and methods to form 
a unified perception of this phenomenon without formally solv-
ing the QCD correlation functions in a deep mathematical sense. 
Nevertheless, predictions will be presented that can be tested in 
experiments in the near future. A novelty of the approach is the 
use of the concept of spontaneous synchronization of nonlinear os-
cillators, that has passed the test of experiment in various areas of 
nonlinear science, but has never been used before in the context 
of QCD.

To begin with, what are the landmarks along the confinement 
route? Instead of starting at high momenta and march down to 
small ones, where confinement becomes eminent for quarks, I will 
describe a scenario that goes the inverse way and discuss the be-
havior of interlocked quarks from low to large momentum scales. 
I will expose this scenario in three steps: (i) nonperturbative corre-
lations, (ii) dynamical chiral-symmetry breaking (DCSB) and mass 
generation, and (iii) evolution behavior from low to (asymptoti-
cally) high momenta. The following exposition will be basic but 
precise.
under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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2. Nonperturbative correlations

What binds quarks together? Although we cannot answer this 
question by performing ab initio calculations within continuum 
QCD, we may try to understand the salient features of what 
binds quarks together at different momentum scales by pursu-
ing multiple approaches and combining their results. The pri-
mary concern in analyzing a hadronic process within QCD is how 
to describe as much as possible of its dynamics in terms of 
hard (i.e., short-distance) partonic subprocesses—characterized by 
a large scale Q 2—amenable to QCD perturbation theory. The large-
distance (soft) remainder—ascribed to nonperturbative dynamics—
is then taken from experiment. This factorization procedure be-
comes particularly useful, if the isolated soft part is universal, i.e., 
process independent. Using techniques from collinear factorization, 
a good “laboratory” for testing these issues is provided by the 
process-independent pion’s distribution amplitude (DA) ϕπ (x, μ2)

for finding the valence q̄q pair in the pion carrying the longitudinal 
momentum fractions xq = x and xq̄ = 1 − x ≡ x̄. On the other hand, 
the large momentum scale Q 2 localizes the hard collisions of the 
partons in the longitudinal direction along the lightcone (see [6–8]
for reviews).

The pion DA is the prototype for a two-body bound state in 
QCD and is defined at the leading-twist level two by the matrix 
element

〈
0
∣∣q̄(z)γμγ5[z,0]q(0)

∣∣π(P )
〉∣∣

z2=0

= i fπ Pμ

1∫

0

dxeix(z·P )ϕ
(2)
π

(
x,μ2). (1)

It is linked to the lightcone wave function of the q̄q pair [7]: 
ϕ

(2)
π (x, μ2) = ∫ μ2 dk2

T
16π2 ψ(x, kT ). The momentum scale μ enters 

through the renormalization of the current operator and denotes 
the maximum transverse momentum included in the lightcone 
wave function of the q̄q pair. We have adopted in (1) the light-
cone gauge A · n = 0, where n2 = 0, so that the gauge link [z, 0] =
P exp(ig

∫ z
0 Aμdτμ) = 1. We have also used the shorthand nota-

tion Aμ = ∑
a ta Aμ

a (ta being the generators of SU(3)c), whereas 
the symbol P path-orders these matrix-valued quantities along 
the lightlike vector n from 0 to z. The dependence of the pion DA 
on the scale μ is controlled by the Efremov–Radyushkin–Brodsky–
Lepage (ERBL) evolution equation [9,10]. Though the pion DA is 
not directly observable, it can be used within a factorization-based 
approach to calculate form factors that can be measured in exper-
iments.

Historically, one assumes a non-trivial vacuum that is populated 
by quark 〈0|q̄q|0〉 and gluon 〈0|Gμν Gμν |0〉 field condensates with 
a correlation length much larger than the typical hadronic size 
[11]. Focusing on the quark condensate, with the fields taken at 
the same point (therefore, local), this is equivalent to say that the 
average virtuality is zero, corresponding to an infinite correlation 
length of the vacuum fluctuation. This concept of “local” vacuum 
condensates has been used for decades in QCD sum rules and has 
provided valuable insight into the structure of hadrons, see [6] for 
a review. However, the description of dynamical quantities, such as 
quark distribution amplitudes for hadrons, faces severe problems 
(see, e.g., [12]) that are entailed by the local character (zero-quark 
virtuality) of the quark condensate. Moreover, an infinite correla-
tion length of the quark condensate would lead to a cosmological 
constant several orders of magnitude larger than observation [13].

The use of nonlocal condensates in QCD sum rules (NLC-SR)s
was proposed by Radyushkin and collaborators quite long ago 
[14–16]. More recently, this approach was updated and refined 
Fig. 1. (Color online.) Shaded (green) band contains the two-parametric BMS DAs 
at μ2 ≈ 1 GeV2 [17]. Curves: dashed, flat-top DA at μ2 = 1 GeV2 from [20]; lower
solid, DSE-based approach [21] at μ2 = 4 GeV2; dashed-dotted, asymptotic DA. Up-
per thick (pink) solid line shows the shorttailed platykurtic DA [22] at μ2 = 4 GeV2.

by Bakulev, Mikhailov, Stefanis (BMS) in [17] with the goal to ex-
tract the twist-two pion DA at the scale μ2 ≈ 1 GeV2 in terms 
of the expansion coefficients, a2, a4, a6, a8, a10 within the complete 
orthonormal basis on x ∈ [0, 1] of the Gegenbauer polynomials 
C3/2

n (2x − 1) (isospin symmetry applied):

ϕ
(2)
π

(
x,μ2) = ϕ

asy
π (x) +

∞∑
n=2,4,...

an
(
μ2)ψn(x), (2)

where ϕπ(x, μ2 → ∞) = ϕ
asy
π (x) = 6xx̄ is the asymptotic pion 

DA and ψn(x) = 6xx̄C3/2
n (2x − 1). Inverting the moments 〈ξ N 〉 =∫ 1

0 dx(2x −1)Nϕ
(2)
π (x, μ2), with the normalization condition 

∫ 1
0 dx ×

ϕ
(2)
π (x, μ2) = 1, it was found [17] aBMS

2 (1 GeV2) = (7/12)(5〈ξ2〉 −
1) ≈ 0.20, aBMS

4 (1 GeV2) = (77/8)(〈ξ4〉 − (2/3)〈ξ2〉 + (1/21)) ≈
−0.14, while the coefficients a6, a8, a10 were also determined but 
were neglected in the modeling because they were found to be 
significantly smaller than the first two and bearing large uncer-
tainties, see [17,18] for details. This DA is shown in Fig. 1 as a 
solid line inside the shaded (green) band which contains the whole 
family of two-parametric pion DAs enclosed by the envelopes 
[a2 = 0.134, a4 = −0.044] and [a2 = 0.251, a4 = −0.207] (from top 
to bottom). This two-parametric DA family complies with the mo-
ment values determined from the QCD SR with nonlocal conden-
sates at μ2 ≈ 1 GeV2 considered in [17] and yields values for the 
inverse moment 〈x−1〉π = ∫ 1

0 ϕπ (x)x−1dx = 3(1 +a2 +a4 +a6 + . . .)

which comply within errors with those determined via an in-
dependent sum rule [17], 〈x−1〉BMS

π = 3.35 ± 0.3. This implies 
that the sum of all coefficients an is dominated by the contri-
bution of a2 and a4, a result which lends credibility to the BMS 
DA family. Moreover, the value a2 = 0.19 ± 0.06 conforms with 
the recent lattice estimates of the RBC and UKQCD Collabora-
tions [19].

As one observes from Fig. 1, one key characteristic of this type 
of DAs (shaded band in green color) is that the regions at the 
kinematic endpoints x ≈ 0 and x ≈ 1 are strongly suppressed—
even relative to the asymptotic DA (dashed–dotted line) [20]. This 
suppression is entailed by the finiteness of the average quark virtu-
ality λ2

q = 〈q̄(0)D2q(0)〉/〈q̄(0)q(0)〉 
 〈q̄igGμνσμνq〉/2〈q̄(0)q(0)〉 ≈
[0.35–0.5] GeV2, where Dμ = ∂μ − igΣa Aa

μta and Gμν is the 
gluon-field strength tensor. In the following, the value λ2

q(μ2 ≈
1 GeV2) ≈ 0.4 GeV2 will be used, which was determined in [17]
with the help of the CLEO data [23] on the pion–photon tran-
sition form factor—see [24] for lattice estimates and references. 
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The parameter λ2
q controls the strength of the nonlocal conden-

sate contribution in the QCD sum rules: the larger its value, the 
stronger suppressed this contribution and the closer the shape of 
the pion DA becomes to the asymptotic form. Technically speaking, 
the profile of the BMS DAs results from the interplay between the 
perturbative contribution and the dominant nonperturbative term 
due to the scalar nonlocal condensate in the theoretical part of 
the QCD sum rule. Because the latter contribution is not singular 
in x and has a dip around x = 1/2, it causes a bimodal endpoint-
suppressed structure of the DA profile.

The crucial assumption underlying the nonlocality of the con-
densate is that in coordinate space the correlation length Λ ∼
1/λq for a q̄q pair behaves like 〈q̄(z)[z, 0]q(0)〉 ∼ 〈q̄(0)q(0)〉×
exp(−λ2

q |z2|/8). Such a distribution function of Gaussian fluctua-
tions means that the q̄q correlation length induced by the con-
densate tends to stay within a limited range, which is about 
Λ ∼ 0.3 fm (for λ2

q = 0.4 GeV2 [17]). At large Euclidean z2, the 
nonlocal quark condensate decays rapidly to zero [20,24], so that, 
from a distance, the virtuality fluctuations are ironed out and the 
condensate practically exists only inside hadrons (similarly to the 
in-hadron condensates proposed in [13,25]). If we calculate the av-
erage transverse momentum of a valence quark in the pion with 
the help of the q̄q pair wave function ψ(x, kT ), assuming again 
a Gaussian distribution for the intrinsic kT momenta carried by 
the quarks [26], we find 〈k2

T 〉1/2
BMS ∼ 0.35 GeV which amounts to 

a distance of approximately 0.6 fm ≈ 〈r2
π 〉1/2 (the pion’s charge 

radius). This value is about the same for the values mq = 0 and 
mq ≈ 0.3 GeV, we used, and agrees well with the estimate in 
[6]. On the other hand, gluons decouple and disperse their trans-
verse momentum to an infinite number of gluons via their self-
interactions. Thus, the vacuum field fluctuations are much shorter 
than the typical transverse size of the valence-quark state—see [26]
for details. These findings are in line with the appearance of DCSB 
on a scale ∼ 0.3 fm, see, e.g., [27].

3. Synchronization concepts

The most obvious characteristic of the BMS pion DA is its two-
humped structure, which is condensate-driven and reflects the ten-
sion between the valence quark and the valence antiquark with 
respect to their longitudinal momentum fractions. To comprehend 
the meaning of the pion DA at different momentum scales, it is 
helpful to conceive of the longitudinal momentum fractions x as 
being natural oscillator frequencies (phases) of a large number 
(N → ∞) of phase-coupled oscillators using the Kuramoto model—
see [28] for reviews and references.1 As long as the oscillators are 
non-interacting, their native frequencies—visualized in an idealized 
way as a swarm of points randomly distributed on a unit circle of 
x ∈ [0, 1]—are unlocked building an incoherent ensemble of points 
(left portrait in Fig. 2). This situation corresponds to a constant 
pion DA, or a flat-top one that vanishes at the kinematical end-
points x = 0, 1, e.g., ϕflat-top

π (x) = Γ (2(α + 1))[Γ 2(α + 1)]−1(xx̄)α

with α = 0.1—dashed (red) line in Fig. 1 [20].2 Such a distribution 
is scale-free, meaning that no x region is singled out to be asso-
ciated with a valence quark (antiquark) because all locations on 
the unit circle are indistinguishable; the pion looks like a pointlike 
particle without internal structure, see, for example, [29]. Besides, 
ϕπ(x) = const (corresponding to a vanishing pion charge radius) 

1 The technical details of this model are not relevant for our qualitative exposi-
tion.

2 A “table-like” pion DA ϕtable
π (x) 
 (xx̄)0.05/0.91 with λ2

q ∼ 0.35 GeV2 was pro-
posed in [15].
Fig. 2. (Color online.) Pion DAs at different momentum scales in terms of the Ku-
ramoto model. The dots represent x values in the interval [0, 1]. The tension (�|�) 
and compression (�|�) tendencies in the x spectrum are indicated. The strips show 
the dominant x regions in the corresponding DAs.

would yield results for the electromagnetic and transition form fac-
tors in conflict with experiment [29].

The nonlocal condensate 〈q̄q〉λ , as a clear manifestation of non-
perturbative QCD, creates a color-singlet proto-pion and causes the 
set of the x values in the pion DA to flock into two distinct clus-
ters: one close to x ≈ 0.75, the other at x ≈ 0.25. These clusters 
correspond to two groups of synchronized oscillators (upper graph 
in Fig. 2), whereas the endpoints x = 0, 1 around the “North pole” 
are almost depleted. This pattern conforms with the generic profile 
of a BMS-like DA in Fig. 1. It suggests that most configurations of 
the valence q̄q pair tend to have either a leading quark or a lead-
ing antiquark, though configurations in which the valence quark 
and the valence antiquark share comparable fractions of the lon-
gitudinal momentum of the pion around x = 1/2 are also possible 
but are less favorable. In accordance with Fig. 1, the size of the two 
clusters bears large uncertainties.3 The same applies to the region 
around the “South pole” in Fig. 2, which corresponds to the cen-
tral region x = 1/2 in Fig. 1, while the absence of dots around the 
“North pole” is quite strict. This is, because in our approach [17]
the uncertainties on the shape of the πDA in the endpoint regions 
x = 0, 1 are very small (see Fig. 1).

Note that the well-known Chernyak–Zhitnitsky DA [6] would 
correspond to a pattern (not shown) with two distinct clusters 
concentrated at the endpoints x = 0, 1, while the central region 
x = 1/2 would be almost empty.

4. DCSB and mass generation

The other important feature of confinement is DCSB and the 
generation of quark and gluon masses. At a deeper level of un-
derstanding of QCD in the IR, it is likely that condensate forma-
tion and mass generation are intertwined phenomena. However, 
at present it is prudent to discuss these effects separately using 
specific schemes. An appropriate framework to study the mass-
generation effects is provided by the DSE-based method, see [30]
for a recent review. The dressed-quark mass ∼ 0.3 GeV converts 
the real quark pole in the dressed quark propagator into a com-
plex one, whereas the effective gluon mass, with a dressed-gluon 
mass scale in the range 0.4–0.6 GeV [30], enters the argument of 

3 Inclusion of more coefficients an would eventually entail more and smaller clus-
ters.
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the strong coupling and provides saturation of the color forces in 
the IR. In Fig. 1 we show a pion DA—solid (blue) line—obtained 
with the DSE methodology [21,30–32]—Eq. (15) in [21]. It derives 
from the nonperturbative content of the Bethe–Salpeter kernels in 
the dressed quark and gluon propagators associated with DCSB, 
the later being exclusively responsible for the broadening of this 
DA relative to ϕasy

π [21]. At the renormalization point μ = 2 GeV
it is described by the concave function ϕDSE

π (x) = 1.81(xx̄)a[1 +
ã2Ca+1/2

2 (2x − 1)] with a = 0.31, ã2 = −0.12. A similarly down-

ward concave DA, ϕAdS/QCD
π (x) = (8/π)(xx̄)1/2, was derived within 

a holographic approach to QCD embedded in a five-dimensional 
Anti-de Sitter (AdS) space [33]. Using the Kuramoto model, the 
portrait of ϕDSE

π is represented by the graph at the bottom in Fig. 2. 
It describes a pack of partially synchronized oscillators with natu-
ral frequencies in a wide range of x values. Similar considerations 
apply to the AdS/QCD DA.

Thus, the “true” pion DA seems to be determined by the bal-
ance of two competing effects: the correlation caused by the 〈q̄q〉λ
condensate, pushing the x values away from the center at x = 1/2
to form a two-cluster arrangement, and DCSB which tends to en-
hance the central x region by broadening the shape of the DA and 
create—speaking in terms of the Kuramoto-model analogy—a sin-
gle moderately synchronized group of oscillators (see Fig. 2). One 
might argue that at low scales, μ ≈ 2 GeV, ϕtrue

π (x) ≈ aϕBMS
π (x) +

(1 − a)ϕDSE
π (x).4 This synthesized DA would have features per-

taining to both confinement facets, exhibiting profile character-
istics inherited from both DAs: endpoint suppression like ϕBMS

π
and central-region enhancement like ϕDSE

π . For a ≈ 0.7–0.9, it 
would still belong to the family of BMS-like DAs shown in Fig. 1
within the shaded area yielding an inverse moment [〈x−1〉π =
3(1 + a2 + a4 + . . .) = 3/(

√
2 fπ )Q 2 F (LO)

γ ∗γπ0(Q 2)] with values in 
the range 〈x−1〉true

π ∼ 〈x−1〉BMS
π � 3.5 < 〈x−1〉DSE

π ≈ 4.6 and, as a re-
sult, a pion–photon transition form factor (TFF) inside the margin 
of predictions in Fig. 3. The accurate determination of the mix-
ing parameter a, which controls the tradeoff between the endpoint 
suppression and the broadness of the πDA, will be discussed sep-
arately in a future publication. Here suffice it to say that one may 
select within the BMS scheme a DA which is a downward concave 
curve over a broad interval of x values but which still exhibits end-
point suppression entailed by the nonlocal condensate [22]. This 
short-tailed platykurtic pion DA belongs to a family of admissible 
DAs derived with the nonlocality λ2

q = 0.45 GeV2 and is displayed 
in Fig. 1 (thick solid pink line). The close resemblance between 
this DA and the DSE one is obvious. But the distinct behavior from 
the DSE DA at the endpoints is key in deriving predictions for the 
pion–photon TFF in good agreement with the data (see Fig. 3). As 
the pion DA evolves to higher Q 2, QCD interactions die out and 
the DA reaches at Q 2 → ∞ its asymptotic form which represents 
the most synchronized q̄q configuration (Fig. 2).

5. Litmus test of the approach

The scenario exposed above, can be tested experimentally by 
measuring the pion–photon TFF F γ ∗γπ0

(q2
1 = Q 2, q2

2 → 0) with 
Q 2 
 Λ2

QCD. This is the gold-plated QCD observable because it 
arises from the factorization properties of QCD, with all bind-
ing nonperturbative effects being absorbed into the twist-two and 
twist-four pion DAs. Hence, the Q 2 behavior of this TFF reflects 
and reveals the underlying structure of the pion DA. The calcula-
tion of F γ ∗γπ0

has been carried out within our approach—based 

4 This would imply that at nonperturbative scales ψ true is a superposition of 
ψBMS and ψDSE (or AdS/QCD).
Fig. 3. (Color online.) Scaled pion–photon TFF vs. Q 2 in comparison with data. The 
designations are given in the text.

on lightcone sum rules (LCSR)s [34–36]—in [37] and subsequently 
in [38], with technical details being provided in [18]. The TFF 
within the method of LCSRs is calculated with the help of Eq. (2) 
in [18] using the expressions provided in Appendices A and B in 
the same reference. The upshot of this calculation is state-of-the-
art predictions, shown in Fig. 3. The broad horizontal (green) band 
represents the TFF which uses as input the two-parametric family 
of BMS DAs, discussed above, and includes the NLO perturbative 
corrections, i.e., TLO and TNLO, as well as the twist-four term in 
terms of an effective twist-four DA [35], while the main next-
to-next-to-leading order contribution, TNNLO, is taken into account 
together with the twist-six term [39] in the form of uncertainties 
(see [18] for details). ERBL evolution is also included at NLO. The 
narrower (blue) strips above and below the broader (green) one 
show the influence of the uncertainties induced by the next higher 
coefficient a6, while the very narrow (red) strip, at lower Q 2 val-
ues, represents the effect on the calculated TFF of a non-vanishing 
virtuality of the quasireal photon caused by the untagged electron 
in the Belle experiment [40] with the value q2

2 ≈ 0.04 GeV2, as de-
tailed in [18]. The pink line just below the BMS one (central line of 
the band) denotes the prediction obtained with the platykurtic DA 
and has similar statistical accuracy with respect to the data. The 
presented predictions for the endpoint-suppressed DAs of our ap-
proach agree very well with all existing data that are compatible 
with QCD scaling: CELLO [41], CLEO [23], and Belle [40]. The same 
applies to the BaBar data [42] below 9 GeV2. However, there is no 
matching between our scaling predictions and the auxetic behavior 
of the high Q 2 BaBar data above 10 GeV2 [18].

There are two momentum regimes for the pion–photon TFF 
which will be probed experimentally by two different collabora-
tions in the near future—see Fig. 3. Window I (shaded area towards 
the left): Measurement data with high statistics in the spacelike 
region 2 < Q 2 < 10 GeV2, taken with the BESIII (Beijing Spectrom-
eter) detector at the BEPC-II (Beijing Electron Positron Collider) 
facility, in e+e→π+π− J/Ψ collisions can be used to study TFFs 
of light mesons [43]. Window II (shaded area towards the right): 
Single-tagged measurements of the pion TFF will be performed 
with the Belle II detector at the upgraded KEKB accelerator (Su-
perKEKB) in Japan in the next few years and are expected to cover 
a wide range of momenta up to about 50 GeV2, where the data 
is much sparser. A confirmation of the predictions in Fig. 3 will 
provide a key piece of evidence for the presented approach.

6. Conclusions

In conclusion, I have aggregated different concepts and methods 
together in order to provide insight into the inner structure of the 
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q̄q component of the pion DA as it appears at different momentum 
scales from the typical hadronic domain to the asymptotic regime. 
While the binding effects at low momenta are mainly due to non-
local condensates, combined with mass dressing owing to DCSB, at 
very high momentum the quarks in the pion are in lockstep only 
as a result of synchronization.
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