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1. Introduction 

Sulphatides (N-acyl-1-O-(fl-3’-sulphogalactosyl)- 

sphingosine) and seminolipid (1 -O-alkyl-2-0-acyl-3- 
(/3-3’-sulphogalactosyl)~glycerol) are both physio- 
logical substrates of the sulphatase A (EC 3.1.6.1) 
[l-3] . For their enzymic degradation in buffers 
of physiological ionic strength in vitro, either 

detergents [2-61 or a physiological activator ([7,8] , 
Reiter et al., unpublished results) have to be added. 
Both the enzyme [9,10] and its activator are loca- 

lized in the lysosomes [ 111. 
Metachromatic leukodystrophy (MLD) is caused 

by an inborn deficiency of the lysosomal sulphatase 

A [ 121. This results in an accumulation of sulpha- 
tides [ 131, predominantly in brain and kidney. 
Seminolipid, however, which is localized in testis 

[14] and to a smaller extent in brain [15] is not 

stored in cases of infantile MLD [ 161. This may 
imply either that the deposition of seminolipid in 

human testis has not been developed in the infantile 
period (Handa [ 161) or that yet another pathway 
exists for the degradation of seminolipid. In this 

paper it is shown that iron-loaded secondary lyso- 

somes from rat liver contain a lipase which cleaves 
the acyl residue of seminolipid thus supporting the 
second possibility. 

2. Materials and methods 

2.1. Isolation and subfractionation of iron-loaded 

secondary lysosomes 

Iron-loaded secondary lysosomes were obtained 
from rat liver according to described procedures [ 17, 
181 with minor modifications [ 111. The lysosomal 
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pellet was osmotically shocked with 10 ml of distilled 
water. This dispersion was frozen and stored at -20°C 

until use, which is referred to throughout this paper 
as ‘total (iron-loaded secondary) lysosomes’. 

For subfractionation the dispersion of lysosomes 
was centrifuged at 100 000 X g,,. for 30 min. The 

pellet was dispersed in the starting volume of distilled 

water. Without further treatment the supernatant 
(lysosol) and the dispersed pellet (membranous frac- 
tion) were used for the experiments. 

2.2. Enzymic characterization of the lysosomes by 

their hydrolases with chromogenic substrates 

Acid phosphatase (EC 3.1.3.2) was assayed with 
p-nitrophenylphosphate (Koch-Light Lab. Ltd., 
Colnbrook, England) [ 191, arylsulphatase (A and B) 

(EC 3.1.6.1) with p-nitrocatecholsulphate (Sigma 
Chem. Co., St. Louis, USA) [20,21], fl-galactosidase 
(EC 3.2.1.23) with p-nitrophenyl-/3-D-galactopyrano- 

side (Koch-Light Lab. Ltd., Colnbrook, England) 
[19]. Protein was determined by the method of 
Lowry et al. [22] using bovine serum albumin (Serva, 
Heidelberg, Germany) as a standard. Specific activities 
are defined as pmoles of substrate hydrolysed per 
mg of protein per min under the incubation conditions 

stated. The values obtained are the average of two 

experiments with a S.E.M. < 5%. 

2.3. Assay conditions with 35S-labelled sulphatides 

(23/, seminolipid (241 or ‘lysoseminolipid’ 

(prepared according to section 2.4.) as substrates 

The incubation mixtures contained in a total 
volume of 100 ~1: 10 pmol of sodium acetate buffer 
(pH 4.5), 10 nmol of “S-1abelled lipids and various 
amounts of lysosomal protein. After incubation 
periods of 6 to 24 h the total incubation volumes 
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were chromatographed on Silicagel plastic sheets 
(No. 5748, Merck, Darmstadt, Germany) in chloro- 
form-methanol-water (14:6:1 v/v/v). The radio- 
activity on the plastic sheets was localized with a 

Berthold radio thin-layer scanner (Wildbad, Germany). 
The areas representing substrate and products were 

cut out and the radioactivity was determined in a 
liquid scintillation analyzer (Mark II; Nuclear Chicago, 
USA) (fIg.1) (Sandhoff, personal communication). 

2.4. Identification of the degradation product of 
seminolipid after incubation with the lipase 

The acyl group of seminolipid was removed by 
mild alkaline hydrolysis under the same conditions 
as described for the deacylation of 1,2-diacyl-3-(3’- 
sulphogalactosyl)-glycerol [25] . The crude acyl-free 
‘lysoseminolipid’ was purified by column chromato- 

graphy on Silicagel 60 (no. 7729, Merck, Darmstadt, 

Germany) using chloroform-methanol-water (65:25:4 
v/v/v) as the solvent system. Its identity with the 
enzymically obtained degradation product was shown 
by co-chromatography on Silicagel 60 plates (No. 
5721, Merck) in two different chromatographic 
systems: chloroform-methanol-water (14:6:1 v/v/v) 
and chloroform-methanol-cont. ammonia-water 
(70:25:4:1 v/v/v/v) (frg.1). 

3. Results 

3.1. Characterization of the lysosomal subfractions 
by means of the acid hydrolases 

After osmotic shock combined with freezing and 
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Fig.1. Scan of a thin-layer radiochromatogram showing the 
degradation of 10 nmol of 35S-labelled seminolipid by the 
supernatant of secondary lysosomes to give ‘lysoseminolipid’. 
The same experiment was run in two solvent systems with 
addition of chemically-obtained 3sS-labelled ‘lysoseminolipid’ 
to ensure identity of the_enzymic reaction product. For 
further details see text. Seminolipid (SL); ‘Lysoseminolipid’ 

(LSU. 

thawing the iron-loaded secondary lysosomes were 
separated by centrifugation into a supernatant (lysosol) 
and sediment (membranous fraction). To compare the 
distribution of acid hydrolases in these two subfrac- 
tions the sediment was suspended in the original 
volume of distilled water. The distribution of enzyme 

activities between sediment and supernatant was 

similar to that reported by Mraz et al. [l 1 ] . The 
specific activities (relative to the protein content 
(mg/ml) of the total lysosomes) are given in table 1. 

Table 1 
Distribution of acid hydrolases in isolated secondary lysosomes and their subfractions 

Arylsulphatases Acid phosphatase p-Galactosidase 

Protein Specific Totala Specific Totala Specific Totala 
mg/ml activity activity activity activity activity activity 

Total lysosomes 4.2 0.086 3.3 0.105 4 0.045 1.7 

100 000 X supernatant g 2.44 0.119 2.6 0.09 2 0.065 1.4 
(lysosol) 

100 000 X g sediment 1.8 0.04 0.7 0.122 2 0.02 0.32 
(membranous fraction) 

a In a total voiume of 10 ml. 
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3.2. Degradation of seminolipid and sulphatides by 3.3. Comparison of the sulphatase and lipase activities 
iron-loaded secondary lysosomes 

The degradation of the two lipid substrates, semino- 

lipid and sulphatides, was examined as previously 
described (see Materials and methods) using 105 or 
210 ng of protein per incubation. Figure 2 shows the 

time dependency of the enzymic hydrolysis of either 
the sulphate group of sulphatide and seminolipid or 

the acyl group of seminolipid. The degradation by 
sulphatase A of seminolipid is slightly higher than 
that of sulphatides. The amount of radioactive product 
formed in both cases was virtually independent of 
the amount of protein added, perhaps due to inhibi- 

tion. The degradation of seminolipid by the lipase 
depended on the amount of protein added. The 

degradation product was identified to be the acyl- 
free ‘lysoseminolipid’ (1-0-alkyl-3-($3’~sulphogalacto- 
syl)-glycerol) (see Materials and methods). The amount 

of product formed by the lipase reaction was much 
higher than that obtained by the sulphatase reaction. 

in isolated total secondary lysosomes and in the 
subfractions 

Both the sulphatase and the lipase activities in the 
lysosomal subfractions were compared with those in 

the total lysosomes. With different protein concen- 
trations in the incubation mixtures the amount of 

product formed was measured. Figure 3 shows the 
degradation of sulphatides, seminolipid and ‘lyso- 
seminolipid’ by sulphatase A. The specific activities 
in relation to both substrates (sulphatides and semino- 
lipid) were highest when the supernatant was used. 
This is in good agreement with the distribution of 
sulphatases tested with the chromogenic substrate 
(see table 1). In comparison to the sulphatides the 
seminolipid and ‘lysoseminolipid’ are desulphated 
much better by the supernatant. 

The distribution of lipase activities in the sub- 

fractions related to the protein concentration in the 
incubation differs from that of sulphatase A. The 
activities in the total lysosomes and in the sediment 
are of the same order of magnitude (fig.4) but higher 

than in the supernatant. The difference might not be 
as high as shown in fig.4 since it is probable that a 

significant percentage of the formed ‘lysoseminolipid’ 
is further degraded by the sulphatase A, whose activity 
is highest in the supernatant. 

incubation time (hours) 

Fig.2. Time dependency of the degradation of sulphatides 

and seminolipid by isolated iron-loaded secondary lysosomes. 

Sulphate cleavage from 10 nmol of sulphatides (X-X) or 
seminolipid (0-o). No difference between the amount of 

products formed was detectable when 105 or 210 ~g of 

protein were used. Acyl cleavage from 10 nmoles of semino- 

lipid using 105 pg (o-o) or 210 pg (o-b) of protein. 

Each value is the average of two experiments with a S.E.M. 

Q 5%. For details see Materials and methods. 

4. Discussion 

These experiments show that seminolipid is 
degraded in two different ways by enzymes in 
secondary lysosomes, one occurs through desulpha- 
tion by sulphatase A, the other by a lipase resulting 
in deacylation, thus forming ‘lysoseminolipid’. The 
latter reaction is analogous to the phospholipase Aa 
reaction with phospholipids [26,27] (or sulpho- 
diglycerides) [28]. Both pathways could also be 
used to degrade other sulphogalactoglycerolipids 
such as 1,2-diacyl-3-(3’~sulphogalactosyl)-glycerol, 
recently detected in mammalian brain [25]. 

In MLD which is caused by a sulphatase A defi- 
ciency [ 121, only the accumulation of sulphatides 
was observed [ 131. These lipids are exclusively 
degraded by sulphatase A. The ‘lysoseminolipid’, 
though also degraded by sulphatase A, was not 
detected (and therefore apparently not accumulated) 
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Fig.3. Degradation of sulphatides and seminolipid by sulphatase A in total lysosomes or in lysosomal subfractions. Sulphate 
cleavage from 10 nmol of sulphatides by total lysosomes (4-A), supernatant (a---A) and sediment (o-o), from 10 nmol of 
seminolipid by total lysosomes (o-o), supernatant (o-o), and sediment (o-n) or from 10 nmol of ‘lysoseminolipid’ by 
supernatant (n-m). Heat-inactivated subfractions and total lysosomes (15 min at 95°C) did not show any enzyme activity 
(X-X). Each value is the average of two experiments with a S.E.M. G 5%. For details see Materials and methods. 
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Fig.4. Degradation of seminolipid by the lipase in total lysosomes and in lysosomal subfractions. Cleavage of the acyl group from 
10 nmol of seminolipid by total lysosomes (A-A), supernatant (m---m), and sediment (W-O). Heat-inactivated subfractions and 
total lysosomes (15 min at 95°C) did not show any enzyme activity (X-X). Each value is the average of two experiments with a 
S.E.M. & 5%. For details see Materials and methods. 
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in MLD brains. Further experiments are necessary 
to clarify this point. 
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