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Abstraet--A new iterative method for the solution of linear systems, based upon a new splitting of the 
coefficient matrix A, is presented. 

The method is obtained by considering splittings of the type A = (A -- M) + M, where M -  ~ is a 
symmetric tridiagonal matrix, and by minimizing the Frobenius norm of the iteration matrix so derived. 

Numerical examples are provided, showing that our algorithm improves the rate of convergence of 
Jacobi method, without increasing the order of magnitude of the computational efforts required. 

1. I N T R O D U C T I O N  

In this paper we show a new iterative method for the solution of  linear systems, which can be 
efficiently implemented in a parallel computational environment. We propose the following 
approach. 

Given an n x n nonsingular matrix A, we restrict ourselves to splittings of  the type 

A = M + ( A - M ) ,  

where M belongs to the class of  inverses of  symmetric tridiagonal matrices [1-3]. 
We look for a matrix M such that 

I [ I -  M-IA IIF 

is minimum, where 

I I B I I F = ~  

denotes the Frobenius matrix norm. 
We will present either theoretical results leading to a simple and elegant algorithm for the 

computation of  M -l ,  and therefore of  the iteration matrix (Section 2), or an experimental 
discussion of  the behaviour of  our  method (Section 3). 

2. T H E O R E T I C A L  R E S U L T S  

Let A ~R n×" be a nonsingular matrix, and b be a real n-vector. Moreover let J"  be the class of  
n x n nonsingular symmetric tridiagonal matrices, and let ./¢ be the class of  n x n nonsingular 
symmetric matrices M such that M - ~ e ~  [1, 3]. 

Given the linear system .Ax = b, we consider the splitting 

A = M + (A - M) 

of  A, with M e . g ,  leading to the iterative method 

Xk+l = (1 -- M-IA)xk+ M-lb. 

We look for the matrix J t ' E M  minimizing the norm II 1 - M-~A ILF. 
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we have 

where 
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M - l =  

"Cl bl 

bl cz 

b2 

b2 

bn-- 1 

bn -- 1 Cn 

f ( c l  . . . . .  Cn, bl . . . . .  b.-i) = II1 - M - I A  113 = ~ (6u-  b i - l a , _ l j  - -  c i a i j  - -  b, ai+u)2, 
q 

'f i = j  
otherwise '  

and b0 = O, a0~ = 0 and an+It = 0, j = 1 , . . . ,  n, for convenience. 
In  order  to find the s ta t ionary points  o f  the funct ion f ,  we compute  and equate to zero the partial 

derivatives o f f ,  namely 

aT - 2 ~ ( 3 k j - - b k _ l a k _ l j - - c k a k j - - b k a k + u ) a k j = O ,  k = 1 , 2  . . . . .  n, 
Oc~ j 

and 

O f  = - -2  ~ (6s+ i j -  bsasj -- G+la.+ u -- b,+las+2j)asy 
Ob, j 

- 2 ~  (6~ j -b ,_ la~_ l j - c . a~ j -b ,a~+u)a~+l j=-O .  s -- 1,2 . . . .  , n  - 1. 
J 

F r o m  the above equalities, we have: 

where 

D = diag (sit, s2~,. • . ,  Snn), 

L = (to), 

and 

T = (t,~). 

and 

where 

with l~ = s,+,i, l~+l~ = s,,+l,/~/=0, if i # j  

i # j - 1 ,  i = 1  . . . . .  n , j = l  . . . . .  n - l ,  

w i t h  tii = S~ + S~+l~+l. t~+l = si+2i, t~+. = s~+z. t~j = O. 

i ~ j +  1 . i  = 1 . . . . .  n - l , j  = 1 . . . . .  n - 1, 

if i # j ,  i ¢ j - 1  

E akjaj , 
J 

f t  = [au, a 2 2 , - . . ,  ann], 

f2  = [OI2 + a2l . . . . .  an-In  + ann-I].  

The solution o f  the above linear system is a min imum point  for f ,  s ince f (c l  . . . . .  Cn, bl . . . .  , bn_ t) 
is convex. 

The computa t ion  o f  the entries o f  matrix M - I  can be performed according to the following 
algorithm. 



Algorithm 
1. Compute 

2. Compute 

3. Compute 

Solution of linear systems by iterative methods 

sip i =j, i = j -  1, i = j - 2 ,  j =  1 . . . . .  n, 

LTD-1L, LTD-lfl, 

T - L T D - 1 L ,  f2 - L T  D-1 f l ,  

4. Solve the tridiagonal linear system 

( T - f r O  -1 t J b  = f 2 - 1 . X D  -1 f l ,  

5. Compute 
c = D  -1 fl - D - 1 L  b. 

Table 1 shows the sequential and the parallel cost of the algorithm, in terms of the number of 
operations and of the number of parallel steps (t) together with the number of processors (p), 
respectively. 

Note that both the sequential cost O(n log n) and the parallel cost O (log n) for Step 4 can be 
attained by using cyclic or odd-even reduction algorithms [4]. 

Table 1 

Parallel cost 

Step Sequential cost t p 

1 O(n 2) O(Iogn) O(n 2) 
2 O(n) 0(1) O(n) 
3 O(n) 0(1) O(n) 
4 O(n Iogn) O(Iog n) O(n) 
5 o(n) o(1) o(n) 

3. NUMERICAL EXPERIMENTS 

In this section we present some experimental results which show the behaviour of the method 
described in Section 2, in comparison with the Jacobi method. We used the following approach. 

The parameter chosen as a measure of the performance is the spectral radius of the iteration 
matrix, which determines the asymptotic rate of convergence, and therefore the number of iteration 
required to get a given accuracy in the result [5]. 

It is worth noting that the computational effort of the method based on the results of Section 2, 
and of the Jacobi method, are equivalent, up to constants. 

Table 2. A =uuT-~-~tl, uT=(I  . . . . .  1), ~t = 7--(2h + 1)/5, 
h=O,  1 , . . . ,  14, n = 8  

Spectral radius of Spectral radius of 
new iteration matrix Jacobi iteration matrix 

p(l - M - '  A) p(J)  

0.3400 0.6250 
0.3481 0.6481 
0.3567 0.6731 
0.3657 0.7000 
0.3752 0.7292 
0.3853 0.7609 
0.3960 0.7955 
0.4074 0.8333 
0.4196 0.8750 
0.4328 0.9211 
0.4471 0.9722 
0.4628 1.029 
0.4803 1.092 
0.5000 1.167 
0,5230 1.250 
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Table 3..4 is a symmetric Toeplitz matrix with random off-diagonal 
entries and a u =, 2~j,j i a# - 5 + (5h + I)/20, h = 0, 1 . . . . .  14, n = 32 

Spectral radius of Spectral radius of 
new iteration matrix Jaeobi iteration matrix 

p(1 - M - j  A)  p (J )  

1.017 1.421 
1.006 1.393 
0.9953 1.366 
0.9844 1.341 
0.9737 1.316 
0.9631 1.292 
0.9526 1.269 
0.9422 1.246 
0.9320 1.225 
0.9219 1.204 
0.9120 1.184 
0.9022 1.164 
0.8925 1.146 
0.8830 1.127 
0.8736 1.110 

Table 4. A = QQT is a positive matrix, where Q has random entries, 
n = 4 0  

Spectral radius of Spectral radius of 
new iteration matrix Jacobi i~ration matrix 

p(l - M - '  A) p(J) 

0.9923 21.36 
0.9930 114.3 
0.9915 12.31 
1.014 16.29 
0.9976 27.16 
0.9991 21.24 
1.009 64.22 
0.9997 102.4 
0.9620 21.18 
1.022 24.16 
0.9925 47.14 
0.9830 31.12 
0.9736 13.11 

Tables 2-4  show the experimental results. 
It turns out that: 

(1) when the Jacobi method is convergent, our method converges as well with an 
improved convergence rate; 

(2) there exist classes of matrices for which our method converges while the Jacobi 
method does not. 
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