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ABSTRACT 

We propose a new type of preconditioners for Hermitian positive definite Toeplitz 
systems A,x = b where A, are assumed to be generated by functions f that are 
positive and 2rr-periodic. Our approach is to precondition A, by the Toeplitz matrix 
A, generated by l/f We prove that the resulting preconditioned matrix A, A, will 
have clustered spectrum. When A, cannot be formed efficiently, we use quadrature 
rules and convolution products to construct nearby approximations to A,. We show 
that the resulting approximations are Toeplitz matrices which can be written as sums 
of {w)-circulant matrices. As a side result, we prove that any Toeplitz matrix can be 
written as a sum of { o)-circulant matrices. We then show that our Toeplitz precondi- 
tioners T, are generalizations of circulant preconditioners and the way they are 
constructed is similar to the approach used in the additive Schwarz method for elliptic 
problems. We finally prove that the preconditioned systems T, A, will have clustered 
spectra around 1. 

1. INTRODUCTION 

Toeplitz systems arise in a variety of practical applications in mathematics 
and engineering. For instance, in signal processing, solutions of Toeplitz 
systems are required in order to obtain the filter coefficients in the design of 
recursive digital filters; see Chui and A. Chan [lo]. Time-series analysis also 
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involves solutions of Toeplitz systems for the unknown parameters of station- 
ary autoregressive models; see King et al. [17, pp. 368-3791. 

There are a number of specialized fast direct methods for solving Toeplitz 
systems; see for instance Trench [23]. F or an n-by-n Toeplitz system A,x = 
b, these algorithms require O(n’) operations to solve it. Around 1980, 
superfast direct solvers of complexity O(n log’ n) were developed; see for 
instance Brent, Gustavson, and Yun [3]. However, recent research on using a 
preconditioned conjugate-gradient method as an iterative method for solving 
Toeplitz systems has received much attention. The most important result of 
this methodology is that the complexity of solving a large class of Toeplitz 
systems can be reduced to O(n log n). 

The iterative approach is to use a preconditioned conjugate-gradient 
method with circulant matrices as preconditioners for the solution of Toeplitz 
systems; see Strang 1211. Several successful circulant preconditioners have 
been proposed and analyzed; see for instance Chan [4], T. Chan [8], Huckle 
[15], Ku and Kuo [18], Tismenetsky [22], and Tyrtyshnikov [24]. In these 
papers, the Toeplitz matrix A,, is assumed to be generated by a generating 
function f, i.e., the diagonals of A,, are given by the Fourier coefficients off. 
It has been shown that if f is a positive function in the Wiener class, then 
these circulant preconditioned systems converge superlinearly. 

A unifying approach of constructing circulant preconditioners is given in 
Chan and Yeung [7], where it is shown that many of the abovementioned 
circulant preconditioners can be derived by using the convolution products of 
f with some well-known kernels. For example, Strang’s and T. Chan’s 
circulant preconditioners are generated by using the Dirichlet and Fejer 
kernels respectively. We remark that the convolution products of f with 
these kernels are just smooth approximations of f. Chan and Yeung 
[7] proved that if the convolution product converges to f uniformly, i.e. 
if the convolution product is a good approximation of f, then the circulant 
preconditioned systems will converge fast. 

As alternatives to circulant preconditioners, band-Toeplitz matrices have 
also been proposed as preconditioners for Toeplitz systems when the generat- 
ing function f is not positive, but only nonnegative with countable zeros. In 
this case, most of the circulant preconditioners will fail, whereas the spectra 
of band-Toeplitz preconditioned matrices are still uniformly bounded by 
constants independent of n; see Chan [5]. The motivation behind using 
band-Toeplitz matrices is to approximate f by trigonometric polynomials of 
f=ed degree rather than by convolution products off with some kernels. The 
advantage here is that trigonometric polynomials can be chosen to match the 
zeros off, so that the method still works when f has zeros. By using Remez’s 
algorithm to search for the best trigonometric approximation of f, band- 
Toeplitz preconditioned systems can be made to converge at about the same 
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rate as those circulant preconditioned systems even when f is positive; see 
Chan and Tang [6]. 

In this paper, we propose a new type of preconditioners for Hermitian 
positive definite Toeplitz systems. Our approach is to use the Toeplitz matrix 
A,, generated by l/f to-approximate the inverse of A,,, i.e., the precon- 
ditioned matrix will be A,A,. We remark that the inverse of A,, is non- 
Toeplitz in general, but it is closely related to Toeplitz matrices; see Frie@n- 
der et al. [13]. Since A, is a Toeplitz matrix, the matrix-vector product A,, y, 
which is required in every iteration of the preconditioned conjugate-gradient 
method, can be performed in O(n log n) operations by using fast Fourier 
transforms (FFTs); see Strang [21]. Hence the cost per iteration is O(n log n>. 

As for the convergence rate, it is well known that it depends on the 
spectrum of the preconditioned matrix A, A n: the more clustered it is, the 
faster the convergence_ rate will be; see Axelsson and Barker 12, p. 261. 
Presumably, we want A,, A,, = Z,, + L, + U,,, where Z,, is the n-by-n identity 
matrix, L, is a low-rank matrix, and U, is a small-norm matrix. We will first 
show that if f is a finite trigonometric series, then the rank of A” A, - Z, is 
fmed independent of n. Then in the general case when f is a 2r-periodic 
continuous function, we show that A,, A,, - Z,, is indeed equal to a low-rank 
matrix plus a small-norm matrix. Hence we can then conclude that the 
spectrum of the preconditioned matrix is clustered around I, and therefore, if 
the preconditioned conjugate-gradient method is applied to the precondi- 
tioned system, we expect fast convergence. 

We note however that in general it may be difficult to compute the 
Fourier coefficients of l/f explicitly, and hence A, cannot be formed 
efficiently. In these cases, we derive families of Toeplitz preconditioners T,‘“) 
by using different kernel functions and different levels of approximation in 
approximating the Fourier coefficients of l/f We will show that for the first 
level of approximation, s = 1, our Toeplitz preconditioners TJ1) reduce to 
the well-known circulant preconditioners mentioned above, depending on the 
kernel function we used. As an example, if the kernel function is the Fejer 
function, then T,‘l) . 1s just the inverse of T. Chan’s circulant preconditioner 
proposed in 181. 

For integers s > 1, we will show that the Toeplitz preconditioner Ti'") 
thus constructed can be written as a sum of so-called (w}-circulant matrices 
(see Davis [ll, p. 841 or Section 4 for definition). More precisely, we have 

1 s-l 
T’“’ = : c V 

n t’ 

s t=o 

where V, are {o,}-circulant matrices with o, = e-2ait/s. As a side result, we 
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will see that given any Toeplitz matrix A, and integer s > 1, we have 

A, = :‘ilWt, 
S t=o 

where W, are also { w,}-circulant matrices. We note that for s = 2, this 
formula was first discovered by Pustylnikov [19]. We further show that for any 
O<t<swehaveW,-I= V,, provided that the Dirichlet kernel is used and 
W, is invertible. I n particular, if all W, are invertible, we have 

T,‘“, = ?&-l. 
S t=o 

In this aspect, our Toeplitz preconditioner is closely related to the additive 
Schwarz-type preconditioners proposed by Dryja and Widlund [12]. 

For the convergence rate, we will prove that the preconditioned system 
‘TL’“‘A, has clustered spectrum around 1 and converges at the same rate as 
other well-known circulant preconditioned systems. Numerical results show 
that our methods converge faster than those preconditioned by circulant 
preconditioners or best band-Toeplitz preconditioners. 

The outline of the paper is as follows. In Section 2, we study Toeplitz 
preconditioners generated by l/f and p rove some of their clustering proper- 
ties. The preconditioners serve as motivation for the general Toeplitz precon- 
ditioners Ti’) we construct in Section 3. Two ways of constructing Tic”) are 
given. In Section 4, we show that Ti’), and in fact any Toeplitz matrix, can be 
written as a sum of {o}-circulant matrices. In Section 5, we prove that 
Toeplitz preconditioners have clustering and superlinear convergence pro- 
perties. Finally, numerical examples and concluding remarks are given in 
Sections 6 and 7. 

2. TOEPLITZ PRECONDITIONER GENERATED BY l/f 

Let %?s= be the set of all 2n-periodic continuous real-valued functions. 
For all f E %?sm, let 

a k = &/;‘“/(R,e-‘ksdO, k = 0, f 1, + 2, . . . . 
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be the Fourier coefficients of f, s[f] be the semiinfinite Toeplitz matrix 

with the (j, k)th entry given by u~_~, and q,[fl be the n-by-n principal 
submatrix of flf]. Since f is real-valued, we have 

a-k = tik, k = 0, & 1, f 2,. . . . 

It follows that flf] and x[f] are Hermitian. We note that the spectrum 
a(<[fI) of z[fl satisfies 

where fmin and fm,, are the minimum and maximum of f respectively; see, 
for instance, Grenander and Szegii [14, pp. 63-651. In particular, if f is 
positive, then <[f] is positive definite for all n. 

For the Toeplitz systems A,x = b considered in this paper, we will 
assume that A, = q[f] for some functions f in %Yz,. The systems will be 
solved by using a preconditioned conjugate-gradient method; see Axelsson 
and Barker [2, p. 261. Th us instead of solving the original system, we solve 
P,, A,, x = P,b. In order to have fast convergence, the preconditioner P, 
should be chosen such that the spectrum of P,A, is clustered. Specifically, 
we want P, A,, to be of the form I, + L, + U,, where I, is an n-by-n 
identity matrix, L, is a matrix of low rank, and U,, is a matrix of small 1, 
norm. 

In this section, we will consider using the Toeplitz matrix q,[l/f] 
generated by l/f as preconditioner for x[f]. Our motivation for choosing 
q[l/f] as preconditioner is given by the following lemma due to Widom 126, 
p. 1921. We first note that a function f (not necessarily real-valued) is said to 
be of anaZytic type (or respectively coanalytic type) if ak = 0 for k < 0 (or 
respectively uk = 0 for k > 0). 

LEMMA 1. Let f be of analytic type (or respectively coanalytic type) and 
a, # 0. Then flf] is invertible if and only if l/f is bounded and of analytic 

type (or respectively coanalytic type). In either case, we have fll/f m f I = 

s[fMl/fl = 1, h w ere Z is the identity operator. 

As an immediate corollary, we have x,[l/f E[f ] = I, for all n > 1, i.e., 
if <[ f ] is an upper or lower triangular Toeplitz matrix, then its inverse is the 
Toeplitz matrix <[l/f ] g enerated by l/f. In the remainder of this section, 
we assume that the Fourier coefficients of l/f are given explicitly or easily 
found and hence <[l/f ] is readily available. 
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LEMMA 2. Let f be a positive trigonometric polynomial of degree K in 

%F 2T, i.e. 

f(O) = 5 akeike. 
k= -K 

Then for n > 2 K, rank@$/f E[f 1 - Z,,) G 2 K. 

Proof. Let 

1 m 
- = 
f( 6) k=?mPke”‘. 

We see that 

Hence for n > 2 K, the entries of the matrix z[l/f E[ f ] - Z,, are all zeros 
except possibly entries in its first and last K columns. W 

As an example, consider the Kac-Murdock-Szegii matrices [16], whose 
generating function is given by 

f(O) = 

1 + (y2 _ aei@ _ ae-i@ 

1 - a2 

for I a I < 1. Hence x;I[ f 1 is a tridiagonal Toeplitz matrix. Since 

1 m 1 - ff2 
- = f(e) k_C_ma’k’eike = (1 - aeie)( 1 - (Yepie) ’ 

q[l/f ] is a dense Toeplitz matrix. However, by Lemma 2, the rank of the 

matrix Z,[l/f ITJf I - Z, is at most two, and therefore the conjugate gradi- 
ent method will converge in at most three steps; see Axelsson and Barker [2, 
p. 141. 

We end this section by considering general f in g2,,. 
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LEMMA 3. Let f E tF2, be positive. Then for all E > 0, there exist 
positive integers M and N such that for all n > N, 

XWfFcJf 1 = 1, + &I + u,, (2) 

where rank L, < M and IlU,,llz < e. 

Proof. By the Weierstrass theorem (see Cheney [9, p. 144]), there exists 
a positive trigonometric polynomial 

~~(0) = f pkeike 
k= -K 

with p-k = & such that p,(8) satisfies the following conditions: 

(3) 

and 

,207nllf(e) -pK(e)l G ‘?(-I + lli+E)min( $>l). C4) 
max 

Since f is positive, it follows from (1) and (3) that the matrices x[l/f], 

z;1[ p, 1, and z[l/pK ] are all positive definite for all n. Write 

= cc + K)(?WP&[ PKIUI + w,), (5) 

where 

and 

v, = Pm/f 1 - %l/PK l)TAl/P, 1 

w, =K’[PKI(~[fl -%[PKl)~ 
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Note that by cl), (3), and (4), we have 

and 

From Lemma 2 we have, when n > 2 K, 

with rank &, < 2K. Therefore, (5) becomes 

~[l/flz[fl = (In + VJ(Z, + L)(L + wn> = 1, + L + un, (10) 

where 

u, = v, + w, + v*w, 

and 

L, = L,( I, + W”) + V,i”( I, + W”) . 
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It is clear that rank L, < 4K, and from (61, (7), (B), and (9) we see that 

IlV”ll2 G E. n 

We now show that the spectrum of ~[l/f~[fl is clustered around 1. 

THEOREM 1. Let f E %Y2= be positive. Then for all E > 0, there exist 
positive integers M and N > 0 such that for all n > N, at most M eigenvalues 

of~;l[l/f~tfl - 1, h ave absolute values greater than E. 

Proof. First we note that since f is positive, it follows from (1) 
that K[l/f] is a Hermitian positive definite matrix. Hence its square 

root <l/“[ l/f] is well defined and is also a Hermitian positive definite 
matrix. Moreover, the norms ]~1/2[l/“](J~ and l~/“[l/f]II2 are uniformly 
bounded independent of 12. Next we note that the non-Hermitian matrix 
<[l/fE[f] is similar to the Hermitian positive definite matrix 

x, ~~1’2[l/f~[f~1’2[l~fl; 

therefore the eigenvalues of ~[l/f~[f] are the same as the singular values 
of X,. In the following, we will show that the singular values of X, are 
clustered. 

By (2>, we have 

X” = I, + 5y”[l/f]Ln~~‘“[l/f] + ~““[l/f]un.p[l/f]. 

Using the properties of L, and V, as stated in Lemma 3 and the uniform 

boundedness of l~1/2[l/f1112 and I~1’2[l/flll~, we see that the ma-ices 
~‘/2[l/f]Ln~1/2[1/f] and ~‘~2[l/“lUn~‘2[1/fl are matrices of low 
rank and small 1, norm respectively. Therefore, we have 

x,*x, = I, + il, + fin, 
A . 

where L, is of low rank, U,, is of small 1, norm, and both matrices are 
Hermitian. Using Cauchy’s interlacing theorem (see, for instance, Wilkinson 
[27, p. 103]), we see that the singular values of X, are clustered around 1. n 

Using Theorem 1, we can easily prove that if the conjugate-gradient 
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method is used to solve the preconditioned system 

the method will converge superlinearly; see Chan [4]. Thus, we see that 

~;;[l/“l g d h . IS a oo c oice of preconditioner for z[f]. However, we remark 
that in order to construct x[l/f], the first n Fourier coefficients of l/f 

should be easily available, and this may not be true in general. 

3. CONSTRUCTION OF 
PRECONDITIONERS 

GENERAL TOEPLITZ 

In this section, we construct our Toeplitz preconditioners for cases where 
the Fourier coefficients of l/f i.e. 

(11) 

cannot be evaluated efficiently. There are three different cases where this can 
happen: 

(a) f is given explicitly, but the evaluation of the definite integral (11) 

cannot be done efficiently. 
(b) f is given, but the evaluations of l/f are costly, e.g., f is given in 

series form. 
(c> f is not given explicitly, e.g., only the Toeplitz matrix A,, is given 

rather than f. 

Our approach is to approximate the integral by the rectangular rule and f by 
the convolution product off with some kernel functions. 

Let us begin with case (a). We subdivide the interval [O, 27r] into sn - 1 
subintervals of equal length. Here s is a positive integer independent of n. 
Then we approximate (11) by 

e-2rijk/sn 

’ 
k=0,+1 ,..., + (n - 1). 

(12) 



TOEPLITZ PRECONDITIONERS 191 

Our preconditioner is then defined to be the Toeplitz matrix x;;[gp’] 
generated by 

n-1 
gp)(e) E C ,p),ik@ ve E [0,27r]. (13) 

k= -(n-l) 

We remark that we have defined a family of Toeplitz preconditioners indexed 
by s. Notice that the first column of the Toeplitz matrix z;[ gc’] is given by 
the numbers { z~)}[,~. 

In case (b), we further approximate f in (12) by using its (n - 0th partial 
sum, i.e., we replace f in (12) by 

n-l 

fn_l( 6) = c ukeike v6 E [o, 2r], (14) 
k= -(n-l) 

and the numbers { z~)}[,~ so obtained will again give the first column of the 
Toeplitz preconditioner q[ gg’]. In case (c), we associate the entries of 
the first column of A,, with a generating function fn _ ,(0) given by (14). 
Then the numbers {zh”‘]~~,’ can be obtained as in case (b). 

We remark that we can unity the notations employed above by using 
convolution products. Given a kernel function X and a positive integer s, we 
define our approximation to the Fourier coefficients in (11) to be 

1 m-1 
$) zz - c 

1 

sn j=O (Z*f)(2mj/sn) 
e-zTijk/sn, k = 0, & 1,. . . , f (h - 1). 

(15) 

Here Z* f is the convolution product of 3 and f, see Walker [25, p. 861. In 
the first case (12) above, we are just using the Dirac delta kernel 2 = 6, and 
in the second case (14), Z =.9_ r, the Dirichlet kernel; see Walker [25, pp. 
87, 451 respectively. We note that there are other kernels that one can use, 
such as the Fej6r kernel x,; see Walker [25, p. 761. We remark that in (151, 
we are assuming that the values of Z* f at the sampled points (2nj/sn)js=” 0 ’ 
are nonzero. 

In all cases, the Toeplitz preconditioner z[ gc)] is the Toeplitz matrix 
with the first column given by zI_“) in (15). The cost of obtaining the numbers 
zp) depends on the kernel we use. For the Dirichlet and the Fejer kernels, or 
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more generally, for kernels 

(~*fP> = 
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that can be written as 

n-l 

c b,,ke’ke VIM E [0,2m], 
k= -(n-l) 

(16) 

the values {(X* f>(27rj/sn>)l”,” 0 ’ can be obtained in O(sn log sn) operations 

by using an sn-dimensional FFT. After getting the values, the numbers 
{z~))~~~ in (15) can then be obtained by using another sn-dimensional FFT 
in O(sn log sn) operations. For a list of kernels that satisfy (16) and their 
corresponding b,, k, see Chan and Yeung [7]. 

We note that another way of constructing the Toeplitz preconditioners is 
by embedding. In fact, by (16), we have 

(3?* f)( z) = k= ~$1_l,b,,,ke2”“x/“” = S~$~6.,ke2mi~k~S”, 

where for s = 1, 

&Sk = bn,k + bn,k-n, k = l,...,n - 1, 

and for s > 1, 

6,,, = 

1 

b n,k O<k<n, 

0 ngk<sn-n, 

b,, k-se sn -n <k <sn. 

Thus (X* f>(2rj/sn), j = 0,. . . , sn - 1, are $genvalues of an sn-by-sn 
circulant matrix with the first column given by {b,, &I,‘; see Davis [ll, p. 
741. Let us denote this circulant matrix by C,,. Clearly, the eigenvalues of 
C,i are given by l/[(%*f)(27rj/sn)]. Therefore, the first column of the 
circulant matrix C,’ will be given by 

l 
sn jzo (x*f)(Zm.j/sn) 

e-2?rijk/sn 

’ 
O<k<sn; 

see also Davis [ll, p. 741. By comparing this formula with (151, we see that 
our Toeplitz matrix z[ gp)] is just the n-by-n principal submatrix of C,‘. 
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Notice that if b, k are known, then the second method requires only one 
sn-dimensional FF’I: and we don’t need to generate the values {(X*f) 
(2rj/sn>),sf 0 ’ explicitly. For example, if the Dirichlet kernel 9,, _ i is used, 
then b, k = uk for all n and k. Hence in this case, we just embed A, into an fi 
sn-by-sn circulant matrix CYY,, as defined. by b,, k above, and our Toeplitz 
preconditioner is given by the n-by-n principal submatrix of C,‘. 

Let us end the section by considering the cost per iteration in applying 
the preconditioned conjugate-gradient method to the preconditioned system 

We first recall that the multiplication of an n-vector to an n-by-n circulant 
matrix requires only two n-dimensional FFTs. Since both matrices q,[gp’] 
and A,, are Toeplitz, products of the form z[ gF’]v and A,u can be 
obtained by first embedding the matrices into 2n-by-2n circulant matrices 
and using 2ndimensional FFTs; see Strang [21]. Thus the cost per iteration 
is about the same as the cost of applying four en-dimensional FFTs. For 
circulant preconditioned systems, we still have to compute a product of 
the form A,IJ in each iteration, but the product 9Jg$‘]u will be replaced 
by a circulant matrix-vector multiplication which can be done by two n- 
dimensional FFTs. Thus the actual cost per iteration of our method is roughly 
GJ times higher than that required by circulant preconditioned systems on 
sequential machines. On parallel computers using a single-instruction-stream, 
multiple-data-stream (SIMD) architecture (see for instance Aki [l, p. 5]>, 
because the real time required by a 2n-dimensional FFT is of O(log 2 n) (see 
Aki [l, p. 23811, h’ h w ic is about the same as the cost of an n-dimensional FFT, 
there will be no significant time difference per iteration between our method 
and those that use circulant preconditioners. 

4. PROPERTIES OF TOEPLITZ PRECONDITIONERS 

In this section, we give some interesting properties of the Toeplitz 
preconditioners which will be useful in proving the convergence rate of the 
Toeplitz preconditioners in the next section. We first show below that 
the Toeplitz preconditioner can always be written as a sum of so-called 
{w}-circulant matrices, which are defined as follows (see also Davis [ll, p. 841 

for an equivalent definition): 
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DEFINITION. Let o = eieo with 6, E LO, 29~). A matrix W, is said to be 
an { w}circulant matrix if it has the spectral decomposition 

W, = D,,F,,A,,F,*D,*. (17) 

Here F,, is the Fourier matrix with entries 

[ Fn]k,j = $,-zVk/n, (18) 

D,, is given by 

D,, = diag[l, till”, . . ., d-1)/n], 

and A, is a diagonal matrix holding the eigenvalues of W,. 

Notice that {o)-circulant matrices are Toeplitz matrices with the first 
entry of each row obtained by multiplying the last entry of the preceding row 
by w. In particular, {I}-circulant matrices are circulant matrices, while 
{ - l}-circulant matrices are skew-circulant matrices. Also, from the spectral 
decomposition in (17) we see that the entries in the first column of W,, and 
the eigenvalues Aj(W,,) of W, are related by the following formula: 

“k/n n-1 

[W,,],,, = n c Aj(W,)e-2”ijk/n, k = 0 ,..., n - 1. (19) 
j=O 

THEOREM 2. Let (A?* f X2rj/sn> # 0 for 0 <j < sn. Then the 
Toeplitz preconditioner z[ gp)] can be expressed as 

where %;1[ g, (S*t)], 0 =G t < s, are (o,}-circulant matrices with q = e-z?rit/s 
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and eigenvalues given by 

h,(qj gl”.“]) = 
1 

(x*fj(2mJ I Ynfl)‘ OGjCn, OdtCs. 

(21) 

In particular, if (X* f X2mj/sn) > 0 for 0 Q j < sn, the Toeplitz precondi- 
tioner x;;[ g:‘] is positive definite. 

Proof. We replace the index j in (15) by sj + t where 0 < t < s and 
0 < j < n. Then we have 

for k = 0, f 1 + (n - 1). Here ,*.., - 

for 0 < t < s, 0 <j < n. Correspondingly, we define 

n-l 

gp-t)(0) E C zfszt)eike, 0 Q t < s, VO E [o, 274, 
k= -(n-l) 

and rewrite (13) as 

g($(q = ;;c;gl”.“(q = “2’ n-l 
C $atje’ke, s 2 1, 

’ t=O k= -(n--l) 

w E [o, 274. 
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By the linearity of the operator %;[*I, we see that (20) holds. Moreover, 

since x[g, (S,t)] are Toeplitz matrices with their first columns given by 
{ zpx ‘)&‘:~, by comparing (19) with (22) we see that ~[g~~t’] are Iw,]- 
circulant matrices with eigenvalues given by (21). If (X* f)(2~j/sn) > 0 for 
0 <j < sn, then <,[g, (S,f)] will be positive definite for 0 < t < s. Hence 
z[ gf’] is positive definite. n 

As an application, we note that our Toeplitz preconditioners are general- 
ization of circulant preconditioners. Indeed, when s = 1, then by Theorem 2, 
x[ gz’)] is a circulant matrix. This can also be seen simply from (15) as 

(1) - -Cl) 
2,-k - zk > k = l,...,n - 1. 

Using the characterization of circulant preconditioners in Chan and Yeung 
[7], we can further show that if in (15) we choose the kernel X to be g,,,,,, 

SZrn_ i, or E, then the inverse of x[ g:“] equals the Strang, Chan, or T. Chan 
circulant preconditioner respectively; see Chan and Yeung [7]. 

We next show that indeed any Toeplitz matrix can be written as a sum 
of {w,}-circulant matrices. We first note that from the definition of 
(w,)-circulant matrix, the inverse K’[ gF*t)] of S;l[ gpxt’] is still an {w,]- 
circulant matrix, Moreover, by (21) its eigenvalues are given by 

A,(El[gp,“]) = (X*f)( y + Z), O<j<n, O<t-Cs. 

Therefore by (19) we see that 

where 

n-l 

’ lp’( 0) = c yp%~k~, 0 < t < s VO E [0,27r], 
k= -6-l) 

with 
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for 0 < t < S, 0 < j < n. Clearly, we also have 

(24) 

and 

Aj(YJhy’]) = (-x.f)( T + g, O,<j<n, Ogt<s. (25) 

Now let us add the matrices z[h,:, ( “1 together. More precisely, let 

We now show that for most kernels 3, h’,‘) does give us back AT* f exactly. 

LEMMA 4. Let 2 be a kernel of the form given by (16). Then for all 
s > 1. 

h:)(e) = (x* f)(e) w E [o, 24. 

Proof. By comparing (16) and (261, it suffices to show that 

b n,k k = 0, + l,... + (n - 1). (27) 

However, by (23), 

k = 0, &- l,..., f (n - l), 

where the last equality is obtained by setting the index sj + t equal to 1. 



198 RAYMOND H. CHAN AND KWOK-PO NG 

Using (16) again, we have, for any s > 1 and k = 0, f 1,. . . , + (n - 11, 

Since 

2ail(j-k)/sn = 1 j=k,k+sn,kf2sn ,..., 

0 otherwise, 

(27) follows by noting that s > 1. 

We can now show that anv Toevhtz matrix can be written as the sum of 
{ w,}-circulant matrices where’0 < tL< s, s > 1. 

THEOREM 3. Given any Toeplitz matrix A,, 

1 s-l 

A, = : c Wn(s.t), 
S t=o 

where W,‘“, t, are { w,)-cir&ant matrices with u, =e -2?rit/s. Moreover, if all 
W (‘2 t, are invertible, then the Toeplitz preconditioner q[ g?‘] corresponding 
tonthe Dirichlet kernel 9,,_ 1 is given by 

and s > 1, we have 

2qgpq = fs~l(w;s.t’)-l. 
t=o 

Proof. Given A,, with the first column entries {ak)i,i, we can write it as 

A, = x;l[_f_ 1l where 

n-l 

fn_l( 0) = C akeike. 
k= -(n-l) 
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Since 

n-1 

(~n-l*fn-l>(~) = C akeike =f,-l(o), 

k= -(n-l) 

we have, by Lemma 4 and (25), 

199 

where %;I[ h’,, “‘1 { o,}-circulant matrices corresponding to the Dirichlet kernel 
C-3 n- 1’ Moreover, by (20) and (24), 

z[&‘] = +[&t)] = +qqq, 
t=o 

provided that <,[ h’,~ “1 are invertible. n 

When s = 2, the theorem gives 

where Wn(2%o) is a circulant matrix and W,‘“, ‘) is a skew-circulant matrix. We 
remark that this formula was first discovered by Pustylnikov [19]. Also from 
the theorem, we see that any Toeplitz matrix can be decomposed as a sum of 
(w,}-circulant matrices and that our Toephtz preconditioner is just the sum of 
the inverses of these { o,}-circulant matrices. 

We recall that in the additive Schwarz method, a matrix A is first 
decomposed into a sum of individual matrices, 

A = A(r) + A@) + . . . +A(“, 

and then the generalized inverses of these individual matrices are added back 
together to form a preconditioner P of the original matrix A, i.e. 

P = A(‘)+ + A@)+ + . . . +A(S)+. 

see Dryja and Widlund [12]. Th us, the construction of our Toeplitz precondi- 
tioner is very similar to the approach used in the additive Schwarz method. 
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5. ANALYSIS OF CONVERGENCE RATE 

In this section, we discuss the convergence rate of the preconditioned 
systems q,[ gF)]A,. Before we start, we recall the following two lemmas 
which are useful in the following analysis. The proofs can be found in Chan 
[5] and Chan and Yeung [7] respectively. 

LEMMA 5. Let f E gz, and f( 6) =f(6 + e,), where 8, E [O, 2~). 

Then for all n > 0, 

where 

0, = &g(l, eiBo, ei2eo,. . . , ei(n-l)eo). 

LEMMA 6. L&f E gsrr, and 3 be a kernel such that A?* f converges to 
f uniformly on [0,2m]. Define A, to be the diagonal matrix with diagonal 
entries 

Ihnlj,j = (.,,f,( T)> 0 <j <n. 

Then for all E > 0, there exist positive integers N and M such that for all 
n > N, at most M eigenvalues of q[f ] - F,A, F,* have absolute value 
greater than E. 

We note that the matrix F,, in Lemma 6 is the Fourier matrix defined in 
(18), and hence F,h, F,* is an n-by-n circulant matrix, and by (251, it is equal 
to x[h’,zO)]. The lemma thus states that the matrix z[ f ] - K[ h’,,“] has 
clustered spectrum around zero. Using Lemmas 5 and 6, we now show that 
the spectrum of z[ f ] - %;I[ h, (S,t)] is also clustered around zero for 0 =S t < s. 

THEOREM 4. LetfE gzm and s > 1. Let A? be a kernel such that Z* f 
converges to f uniformly on [O, 2~1, and 

W(sxt) = D,F,n’,T.t)F,*D,* n 

be {a+}-circulant matrices with o, = ePzmit/’ and 

[~~,t’]ii=(~*f)(~+~), O<j<n, O<t<s. (28) 
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Then for all E > 0, there exist positive integers N and M such that for all 
n > N, at most M eigenvalues of 3[ f ] - W,, (‘3 t, have absolute value greater 
than E. 

Proof. For all 0 < t < s, define 

K(e) =f(e+ Z). 

Then we have 

[Ayqjj = (.a*f)( y + ;) = (x*i)( F), 

j=O,l,..*, n-l. 

Since by Lemma 5 we have 

it follows that 

As X* f converges uniformly to f on [0,27r], Z* f; also converges to x 
uniformly on [O, 29~1 for all 0 < t < s. Hence the theorem follows by 
applying Lemma 6 and noting that ]]D,112 = 1. w 

As an immediate corollary, we can show that each z,[ gF% “‘I, 0 < t < s, is 
already a good approximation to x[f]. 

LEMMA 7. Letf E %Yzr be positive and s > 1. Let 3 be a kernel such 
that X* f converges to f uniformly on [O, 27~1. Then for all e > 0 and 
0 < t < s, there exist positive integers N and M such that for all n > N, 
at most M eigenvalues of 1, - x,[ g?B “E[ f ] have absolute value greater 
than e. 

Proof. For any fixed 0 G t < s, by comparing (25) and (28) and recalling 
z[ h’,“, “‘1 are { w,}-circulant matrices, we see that the spectrum of 9Jf ] - 
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F[ h’,“, “‘1 is clustered around zero. Since Z* f converges to f uniformly and n 
fmi, > 0, it follows that for sufficiently large n, Z* f will be positive. 
Therefore, by (25) and (21) x[ hc,“~ “1 and its inverse <[gF. “‘1 are positive 
definite and uniformly invertible for large n. The lemma then follows by 
noting that 

z, - ‘5q gy’]qJf] = z, - p[ h’n”qqf] 

=~l[hj:J’](~[hy’] -Lgf]). 

Now we can prove the main theorem of this section, namely that the 
spectrum of the preconditioned system q[ gF’E[f] is clustered around 1. 

THEOREM 5 . Let f E SYz, be positive and s > 1. Let 3 be a kernel 
such that X* f converges to f uniformly on [0,27r], and 9J g:)] be the 
Toeplitz preconditioner defined in (20). Then for all E > 0, there exist 
positive integers N and M such that for all n > N, at most M eigenvalues of 

1, - X[g?‘E[f 1 h ave absolute value greater than E. 

Proof. Since the spectrum of 
0 < t < s, we have 

<[ gc, “‘E[ f ] is clustered around 1 for 

= 1 + L(S,0 + qs.0, 
n n 

where L’,zt) is a matrix with rank independent of n, and UiS,t) is a matrix 
with 1, norm less than E. We note that by (20) 

where Lt) = (l/s)CiIA L’,“, t, and Ui’“) = (l/s)E~~,’ UJ’“, t). As s is indepen- 
dent of n, the rank of L’,“’ is also independent of n and IlU~‘“‘ll~ < E. The 
remaining part of the proof is similar to that in Theorem 1. n 

It follows easily by Theorem 5 that the conjugate-gradient method, when 
applied to the preconditioned system x[ g:)] A,, converges superlinearly. 
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Recall that in each iteration, the work is O(n log n); therefore, the work of 
solving the equation A,x = b to a given accuracy is also O(n log n). 

6. NUMERICAL EXAMPLES 

In this section, we compare our Toeplitz preconditioners with band- 
Toeplitz preconditioners and circulant preconditioners. We test their perfor- 
mance on six continuous functions defined on [ - rr, ~1. They are (i) e4 + 1, 
(ii) Cy= -11 + ]kl)-‘.‘eike, (iii) (1 - O.leie)/(l - 0.8eie) + (1 - 
O.le~ie>/(l - 0.8e-“), (iv) 1 + (0 + ,rr)‘, (v) 04, and (vi) (0 - l)‘(tZ + 1)‘. 
We note that the first two functions are Zrr-periodic continuous, the third one 
is a positive rational function and can be written as 

2.16 - 1.8~0s 0 

1.64 - 1.6~0s 8’ 

the fourth one has a jump at 0 = & 7r, and the last two are functions with 
zeros. The matrices A, are formed by evaluating the Fourier coefficients of 
the test functions. 

In the test, we used the vector of all ones as the right-hand-side vec- 
tor and the zero vector as the initial guess. The stopping criterion is ]]r,]]s/ 

Il~Jz G 10-7, where rq is the residual vector after 9 iterations. All computa- 
tions were done on a Vax 6420 with double-precision arithmetic. Tables l-6 
show the numbers of iterations required for convergence with different 
choices of preconditioners. In the tables, Z denotes that no preconditioner 
was used, and T$“‘, T$), and T$) are the Toeplitz preconditioners based on 
the Dirac delta function, the Dirichlet kernel an_ r, and the Fejer kernel z 

TABLE 1 
NUMBERS OF ITERATIONS FOR f(e) = /!14 + 1 

Number of Iterations 

n Z &o’ 7$2’ @l’ #” @2’ $0 @’ @2) I,($, (-, B, 

16 8 5 4 4 6 5 4 8 8 8 6 7 
3219 5 4 4 5 4 4 7 8 8 5 7 
6436 5 4 4 5 4 4 7 7 7 5 7 

128 54 5 4 4 5 4 4 6 6 6 5 7 
256 66 5 4 4 5 4 4 6 5 5 5 7 
512 70 5 4 4 5 4 4 6 5 5 5 7 
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respectively. For comparison, we also used Strang’s circulant preconditioner 
C, (see Strang [2I]) and the best band-Toeplitz preconditioner B, with half 
bandwidth 5 (see Chan and Tang [6]). We emphasize that for the circulant 
and band-Toeplitz preconditioners, the inverse of the matrix is used as the 
preconditioner. In particular, T&l) and T$) are the inverses of the circu- 
lant preconditioners proposed by Chan [4] and T. Chan [S] respectively, 
whereas C, is the inverse of the Toeplitz preconditioner corresponding to the 
Dirichlet kernel JZ,~,~, with s = 1. 

In Table 2, since the generating function is not known explicitly, I?, and 
T$“) are not available. In Table 4, Remez’s algorithm fails to give the best 
trigonometric approximation to the discontinuous generating function. Hence 
B, is also not available in that case. In Tables 5 and 6, since f has zeros, the 
kernel functions may be zero at some of the mesh points 2rj/sn, and hence 
some of the matrices z[ g, (S,t)] are undefined; see (21). In that case, we just 
replace those eigenvalues of z[ gpx “‘1 by zeros. We note that although 

TABLE 2 
NUMBERS OF ITERATIONS FOR f(e) = YE?= -11 + Ikl)-‘.‘e”ke 

Numbers of Iterations 

n I TJ’l’ T$2’ T$4’ T&l) T$’ T$’ T$’ T$) Tf4’ C, B, 

16 8 - - - 5 3 4 4 4 4 5 - 
3211--- 5 3 3 5 3 3 5- 
6414--- 4 3 4 5 4 4 5- 

128 17 - - - 5 4 4 5 4 4 5 - 
256 20 - - - 5 4 4 5 4 4 5 - 
512 22 - - - 5 4 4 5 4 4 5 - 

TABLE 3 
NUMBERS OF ITERATIONS FOR f(e) = (1 - O.leie)/(l - O.Be”) + 

(1 - O.le-“j/(1 - O.Be-“1 

Number of Iterations 

n 1 T$” T$z) $4’ T#’ T$) @ T” T$’ T$$) C, B5 

16 6 2 2 2 5 4 4 3 3 3 5 7 
32 9 2 2 2 5 4 4 3 2 2 5 8 
6411 2 2 2 5 5 5 2 2 2 3 9 

128 15 2 2 2 5 4 4 2 2 2 2 9 
256 18 2 2 2 4 4 4 2 2 2 2 9 
512 18 2 2 2 4 4 4 2 2 2 2 9 
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TABLE 4 
NUMBERS OF ITERATIONS FOR f(O) = (0 + T>’ + 1 

Number of Iterations 

n I T,c’) Tp Ts’4’ T$’ T$’ T$) T$’ Tp) T$) C, B, 

16 16 7 6 6 8 7 7 9 9 9 10 - 
32 33 7 6 6 9 8 8 10 10 10 14 - 
64 45 8 7 7 9 10 9 11 11 11 17 - 

128 49 10 7 7 10 10 10 12 12 12 19 - 
256 50 10 8 8 10 11 10 12 12 12 20 - 
512 51 11 8 8 11 11 10 12 13 13 21 - 

TABLE 5 
NUMBERS OF ITERATIONS FOR f(O) = O4 

n I 

16 9 
32 28 
64 103 

128 420 
256 > 1000 
512 > 1000 

Number of Iterations 

Ts’l’ Tf ’ TJ4’ T$’ T$’ Tg’ T#’ T$’ T$) 

- 67886888 
- 6 7 11 11 10 16 17 17 
- 7 7 16 18 14 25 25 25 
- 13 10 27 30 20 38 40 40 
- 13 12 45 70 30 109 102 102 
- 14 13 119 179 66 340 305 305 

TABLE 6 
NUMBERS OF ITERATIONS FOR f(O) = (0 - l>‘(O + 1j2 

Number of Iterations 

n I Tj” T,c”) T$Q TJ!” Tp T$) Tjl’ T$) T$) C s B5 

16 8 5 5 4 12 9 10 8 8 8 7 7 
32 24 5 5 4 8 7 6 14 13 13 8 8 
64 67 5 5 4 8 8 6 17 18 18 9 8 

128 185 6 6 4 10 8 7 22 21 21 6 8 
256 450 8 4 6 10 7 7 27 28 28 8 8 
512 > 1000 8 6 6 10 9 10 36 35 35 8 8 
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z;[ Gus’)] may be singular, the preconditioners 

are nonsingular in all the cases we tested, except in the Table 4, 7”‘) is 
singular, as f(O) = 0. 

From the numerical results, we see that in all tests, the Toeplitz precondi- 
tioner TJ4) performs better than the other preconditioners and the differ- 
ences are more profound when f is either discontinuous or nonnegative. For 
other Toeplitz preconditioners, the number of iterations in most cases 
decreases as s is increased. We note that the larger s is, the better the 
rectangular rule (12) will b e in approximating the definite integral (11). 

7. CONCLUDING REMARKS 

In this paper, we have proposed and analyzed new types of precondition- 
ers for Hermitian positive definite Toeplitz systems. The preconditioners are 
Toeplitz matrices and can be considered as generalizations of circulant 
preconditioners proposed previously by other authors. In this preliminary 
report, we have only considered using the rectangular rule to approximate the 
definite integral (11). W e note that other Newton-Cotes formulas can also be 
employed (see Stoer and Bulirsch [20, pp. 119-1201). The definite integral 
(11) will then be approximated by 

1 m-1 

p= - c 
Pj 

sn j=. _f(2?rj/sn) e-2?riJk’sn’ 
k =O, + l,..., k (n - l), 

where pj are the weights used in the approximating formula. For example, 
for Simpson’s rule, (11) will be approximated by 

-2rik/sn + 
2 

f(47T,sn) e-4mik/sn 

1 
+ + . . . 

f(2(sn - l)?r/sn) 
e-2ri(sn-l)k/sn 

for k = 0, + 1,. . . , + (n - 1). Presumably, such higher-order quadrature 
rules will yield better preconditioners. 
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