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ABSTRACT The nerve growth factor (NGF) is an important pharmacological target for Alzheimer’s and other neuro-
degenerative diseases. Its action derives partly from its binding to the tyrosine kinase A receptor (TrkA). Here we study
energetics and dynamics of the NGF-TrkA complex by carrying out multinanosecond molecular dynamics simulations,
accompanied by electrostatic calculations based on the Poisson-Boltzmann equation. Our calculations, which are based on the
x-ray structure of the complex, suggest that some of the mutations affecting dramatically the affinity of the complex involve
residues that form highly favorable, direct or water-mediated hydrogen bond interactions at the ligand-receptor interface and, in
some cases, that also critically participate to the large-scale motions of the complex. Furthermore, our calculations offer
a rationale for the small effect on binding affinity observed upon specific mutations involving large changes in electrostatics (i.e.,
the charged-to-neutral mutations). Finally, these calculations, used along with the mutagenesis data, provide a basis for
designing new peptides that mimic NGF in TrkA binding function.

INTRODUCTION

The nerve growth factor (NGF) is a neurotrophin protein

dimer essential for the development and maintenance of se-

lected neuronal cells (Bothwell, 1995; Ibanez, 1995). NGF is

involved in a large variety of processes, from cell differ-

entiation and survival to growth cessation and apoptosis of

neurons. In the last decade, NGF has emerged as a potential

target for the treatment of neurodegeneration in Alzheimer’s

diseases (Yuen and Mobley, 1995). In this respect, the recent

determination of the structure of NGF complexed with the

cell surface receptor tyrosine kinase A (TrkA) (Wiesmann

et al., 1999) has represented a fundamental step for rational

drug design, as several of the actions of NGF are thought

to result from its interaction with this receptor (TrkA)

(Bothwell, 1995; Yuen and Mobley, 1995).

Visual inspection of the structure has revealed that specific

domains on NGF, such as the N- and C-termini (Ibanez et al.,

1992, 1993; Urfer et al., 1994; Kahle et al., 1992; Drinkwater

et al., 1993), and the hairpin loops and residues 91–97 play

a pivotal role for the binding (Ibanez et al., 1993; Ilag et al.,

1994; Kullander and Ebendal, 1994). Furthermore, the

structure has also allowed to rationalize the effect of a very

large number of site-directed mutagenesis experiments per-

formed on this receptor (Urfer et al., 1998), on its corres-

ponding NGF ligand (McInnes and Sykes, 1997; Ibanez

et al., 1991; Kullander and Ebendal, 1994; Ibanez et al.,

1993) and on other neurotrophin ligands, such as BDNF and

NT-3 (Urfer et al., 1994, 1997), highly homologous to NGF

and binding to receptors of the Trk family.

Still, despite the large amount of structure-function data

that has been possible to interpret, several activity measure-

ments of TrkA variants appear difficult to be fully rational-

ized on the basis of the sole structural information (Ibanez,

1995; Urfer et al., 1998; Guo et al., 1996). Indeed, a number

of mutations that involve charge neutralization on residues

in direct contact at the NGF-TrkA surface, which disrupt

strong electrostatic interactions, turn out not to cause loss

of bioactivity (Urfer et al., 1998; Guo et al., 1996). Examples

include E324A, E331A, and E334A on TrkA, and R103A on

NGF (Table 1). In contrast, replacement of a polar residue

with a neutral one, which is expected to cause only a small

decrease in the interaction energy (such as in T352A and

H353A, Table 1), affects dramatically the binding (Urfer

et al., 1998).

Understanding the factors governing the molecular recog-

nition between the TrkA receptor and its ligand would be

very important not only to rationalize these data, but also to

design novel mutants and eventually design powerful pep-

tide NGF mimics (LeSauteur et al., 1996).

Here we address these issues by means of theoretical

methods. Molecular dynamics (MD) simulations, comple-

mented by an electrostatic analysis and a structural analysis

of direct and water-mediated hydrogen bond interactions, are

carried out on the NGF-TrkA complex in aqueous solution.

The calculations help provide a rationale for many of the

mutations of Table 1 and they show that highly persistent,

water-mediated H-bond interactions at the protein-protein

interface are important for binding. Furthermore, they indi-

cate that the conformational flexibility of the region 352–

355 of TrkA is important in the large-scale fluctuations of

the NGF-TrkA complex. Finally, they show that persistent

hydrogen binding and electrostatics interactions between the

N-term and the first part of strand A of NGF and AB and EF

Submitted June 24, 2002, and accepted for publication November 19,

2002.

Address reprint requests to Prof. Paolo Carloni, International School for

Advanced Studies, via Beirut 2–4, 34100 Trieste, Italy. Tel.: 139-040-

3787-407; Fax: 139-040-3787-528; Email: carloni@sissa.it.

Giovanni Settanni’s present address is University of Zurich, Institute of

Biochemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.

� 2003 by the Biophysical Society

0006-3495/03/04/2282/11 $2.00

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82302432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


loop of TrkA play a role in the molecular recognition process

along with the long-range electrostatics.

METHODS

Structural model

Our starting model is based on the NGF-TrkA domain 5 complex from

Homo sapiens, whose x-ray structure has recently been solved at 2.2 Å

resolution (Protein Data Bank entry 1www (Wiesmann et al., 1999), Fig. 1).

In the structure, NGF subunits are named V and W and they are numbered

from 2 to 115, and 29 to 1159, respectively; TrkA subunits are named X and

Y and they range from 282 to 382 and from 2829 to 3829. Residues P61(619),
N62(629), P63(639), V64(649), D65(659), and S66(669), not present in the

x-ray structure, were added using the following procedure: first, the structure

of D61(619), P62(629), P63(639),V64(649), D65(659), and D66(669) were
extracted from the NGF-serine proteases complex from mouse (Protein

Data Bank entry: 1sgf (Bax et al., 1997)). Then, D61(619), P62(629), and
D66(669) side chains were replaced by P, P, N, N, D, and D, side chains,

respectively, using the Insight II molecular graphics program (Molecular

Simulations, San Diego, CA). Finally, the peptide segments were inserted in

the NGF structure.

As hydrogen atoms are not detected in the x-ray structure, all His rings

were considered as protonated in Ne on the basis of their putative H-bond

interactions. Acetyl and N-methyl groups were added at the N-termini and

the C-termini of each chain. The overall charge of the complex turned out

to be �2. Electroneutrality was insured by adding 2 Na1 ions, located to

D60(D609) carboxy. The system was immersed in a periodic box of 111 Å3
82 Å 3 50 Å containing 13,025 water molecules. The minimum distance

between images in neighboring cells was 16 Å.

MD simulations

The all-atom AMBER5 (Pearlman et al., 1995; Cornell et al., 1995; Case et

al., 1997) force field was used for the protein and Na1. The TIP3P model

was used for water (Jorgensen et al., 1983).

Periodic boundary conditions were applied. Long-range electrostatic

interactions were computed using the particle mesh Ewald method (Darden

et al., 1993). A residue-based cutoff of 10 Å was used for the short-range

electrostatics and van der Waals interactions. The dielectric constant was set

to 1.0. Bonds involving hydrogen atoms were constrained with the SHAKE

algorithm (Ryckaert et al., 1977). The time step was set to 1.5 fs. Constant

room temperature and pressure simulations were achieved by coupling the

systems with a Berendsen thermostat and barostat with 0.2 ps coupling time

constant (Berendsen et al., 1984).

The protocol adopted for the simulation was the following: i),

minimization of protein hydrogen atoms, sodium counterions, and water

molecules; ii), 3 ps MD at room temperature of the same atoms; iii),

minimization of the same atoms plus residues 61–66 and 619–669; iv), 24 ps
MD at room temperature of the same atoms; v) 15 ps MD from 0 K to 300 K

at 1 atm pressure of the entire system; and vi), 2.6 ns of MD at room con-

dition (300 K of temperature, 1 atm of pressure). The last 1.9 ns were

collected for analysis.

The following properties were calculated:

i. The all-atom root mean-square fluctuation RMSF.

ii. The crystallographic B-factors (Amadei et al., 1993), which were

calculated as Bi ¼ 8p2ðRMSiÞ2=3, where the RMSi is the RMSF for

atom i around its average position.

iii. The number of water molecules present in the ligand-receptor interface

was calculated by identifying the water oxygens located within 3.5 Å

from both receptor and protein ligand.

iv. The number of ordered water molecules at the ligand-receptor interface

was calculated as follows: each snapshot of the trajectory was roto-

translated so as to keep the protein complex fitted to its initial

conformation. Then, a 1 Å cubic grid was defined within the simulation

box. The population pj of each single grid cell j was calculated as

number of times nj a water oxygen was present during the dynamics

divided by the numberN of MD steps: pj ¼ nj/N. The averaged value of

pj turned out to be 0.013(0.009)Å
�3. The water molecules that occupied

the grid cells with MD-average population larger than the value (0.013

1 4 3 0.009) Å�3 were defined as ordered water molecules.

v. The H-bond pattern at the interfaces was calculated along the dynamics.

H-bonds were detected when the distance between donor and acceptor

TABLE 1 Experimentally observed effect of selected

interfacial point mutations on TrkA (Urfer et al., 1998)

and NGF (Guo et al., 1996) on IC50

TrkA mutant IC50(mutant)-IC50(TrkA)

Mutations that largely

decrease binding

T352A [100

H353A [100

P302E [100

H343A 78 6 21

H343E 68 6 26

Mutations that do not largely

affect binding

E324A 2.0 6 0.3

E331A 1.3 6 0.1

E334A 3.1 6 0.1

E339A 6.6 6 0.5

R342A 1.4 6 0.1

R347A 1.7 6 0.1

E295A 0.6 6 0.1

NGF mutant IC50(mutant)-IC50(TrkA)

Mutations that largely

decrease binding

F54A 36

H4D* [100

Mutations that do not largely

affect binding

Y52A 1.1

F86A 1.6

R103A 1.4

*Data from Wiesmann and de Vos (2000).

FIGURE 1 Three-dimensional structure of the complex formed by NGF

homodimers (red and blue) and two TrkA domain 5 (orange) (Wiesmann

et al., 1999). The encoding of the secondary structural elements (which is

that used by Wiesmann et al.) and the N- and C-termini are indicated. Two

ligand-receptor regions of contact can be identified. The first (common

patch) comprises the four central b-strands and L1 b-hairpin from NGF and

the AB, C9D, and EF loops and C-term from TrkA. The common patch

comprises residues well conserved in both the neurotrophin and Trk receptor

families (Wiesmann et al., 1999). The second region (specific patch, specific

for this complex) includes residues from the N-terminus of NGF and from

the ABED strand of TrkA.
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heavy atoms was shorter than 4 Å and the angle formed with the

hydrogen as vertex was larger than 1208. H-bond interactions at

interfaces were divided in three groups: a), direct H-bonds between

NGF homodimer and TrkA receptors; b), indirect H-bond interactions

between NGF and TrkAs mediated by ordered water, defined as pairs of

H-bonds involving a water molecule bridging an atom of the ligand and

an atom of the receptor; and c), indirect H-bond interactions between

NGF and TrkAs mediated by nonordered interface water. The

interactions present for more than half of the simulated time were

defined as persistent interactions (Tables 3 and 4, Fig. 6).

Large-scale motions

A principal component (or ‘‘essential dynamics’’) analysis has been

performed on the covariance matrix of the Ca’s (except those belong-

ing to the residues of chain terminus). The covariance matrix reads:

Cij ¼ hðxi � hxiiÞ � ðxi� hxiiÞi, where xi’s are the coordinates of the Ca

atoms (index I¼ 3n represents the x coordinate of the n–th Ca, index I¼ 3n

1 1 the y coordinate, and index I ¼ 3n 1 2 the z coordinate). The

diagonalization of the covariance matrix, obtained through the SSYEV

routine from the LAPACK package (Anderson et al., 1999), led to the

identification of the eigenvectors with the largest eigenvalues. Our analysis

is limited to the largest eigenvalue, which accounts as much as a third of the

total fluctuations. The large-scale motions identified with essential dynamics

analysis illustrate cooperative movements of groups of amino acids. These

motions can be described as rotations of amino acid domains with respect to

other domains according to defined hinge axes (Wriggers and Schulten,

1997). The program Hingefind was used to identify those domains of

motions and the hinge axes (Wriggers and Schulten, 1997). Two structures

have been provided to the program; the two conformations have been

extracted in correspondence of the minimal and maximal projection of the

trajectory along the first eigenvector. Only the component parallel to the first

eigenvector is kept. Then, the program has divided the amino acids of the

complex in optimal domains (the tolerance parameter has been set below the

total root mean-square deviation (RMSD) for the pair of structures)

(Wriggers and Schulten, 1997), and has identified the hinges of rotation

between the domains.

Electrostatics

Two methodologies are here used to identify the interactions that mostly

contribute to the electrostatic free energy of binding.

Residue contributions to electrostatic free energy were calculated by

solving the Poisson-Boltzmann (PB) equation through the DelPHi (Gilson

and Honig, 1988) program. The calculations have been performed on 61

structures extracted from the trajectory of the whole complex every 0.3 ns.

Three different calculations were performed for the free components of the

complex (TrkA, TrkA9, and NGF homodimer). Water molecules were

removed from all the PB calculations. The contributions to the overall

electrostatic free energy of binding related to each single amino acid R have

been computed as:

DGbindðRÞ ¼ 1

2
+
i2R

qiðVcomp
i � V free

i Þ;

where qi is the charge of atom i, and Vi
comp, Vi

free is the electrostatic

potential on the atom i in the complex and in the free components,

respectively. For these calculations we used a relative dielectric constant of

78.5 and of 2 for the solvent and the solute, respectively. Ionic strength was

set to 0. We have used a cubic grid of 251 points per edge. The PB equation

was solved first using a cell size of 4.5Å (10% filling) and Debye-Huckel

boundary conditions, followed by a refinement focusing using 0.45 Å cell

size (90% filling). Position and dimension of the grid have been kept the

same for the PB calculation of the whole complex and its free components to

remove the grid self-energy contributions.

The relative relevance of water-mediated residue-residue interactions

was estimated using the persistency of these interactions. This analysis,

although highly approximate, has been validated by comparisons with free-

energy data (see Discussion) and therefore it complements the information

derived from standard PB approaches, which do not take into account the

molecular nature of water.

RESULTS

In this section, we present our findings from a 2.6-ns MD

simulation of the NGF-TrkA complex in aqueous solution.

The naming convention for the components of the complex

has been defined in Methods.

Structural properties

The overall structure of the complex and of the single

subunits appear to be equilibrated after �0.7 ns, as shown by

a plot of the RMS deviations from the energy-minimized

structures of the single chains and of the whole complex

(Fig. 2 A). The average RMSD of TrkA and NGF subunits,

calculated over the last 1.9 ns, are 1.5 Å and 2.0 Å,

respectively, underlining the larger flexibility of the ligand

relative to that of the receptor. Consistently, the distances

between NGF and TrkA centers of mass oscillate around

an equilibrium conformation after 0.7 ns (Fig. 2 B). The
secondary structure elements are well conserved during the

dynamics, as showed by a comparison between x-ray and

MD-averaged structures (Fig. 2 C). The final MD confor-

mation exhibits a good Ramachandran plot (Laskowski et al.,

1993), except for few residues belonging to loops regions of

NGF far from the NGF-TrkA interface (Asp 66, Asp 669,
Asn 46, and Asn 469), which exhibited u and c angles in

relatively high-energy regions.

The structural diversity of the symmetry-related subunits,

present in the x-ray structure (Wiesmann et al., 1999) is

maintained during the dynamics. The largest discrepancies

involve charged groups present in the loops (Table 2 and Fig.

2D), namely: i), the L4 loops, in which Asp 93 interacts with

Arg 100 in one subunit and with Lys 34 in the other; ii), the

N-term of NGF, in which Arg 9 residue interacts with Glu

334 backbone only in one subunits; and iii), the DE loop, in

which Arg 342 interacts toward Glu 339 and Thr 348

carboxyl oxygen in one subunit whereas it interacts with Phe

332 ring in the other.

The TrkA subunits turn out to be much more mobile in our

simulation of the complex in water solution than in the

crystalline phase: the B-factors calculated along the MD

trajectory are larger than those derived by x-ray data (Fig. 3).

This difference in mobility and in RMSD (Fig. 1) pre-

sumably arises from the absence of packing forces on

passing from the crystalline phase, where the TrkA subunits

are in close contact with the molecules in neighboring cells,

to the aqueous solution.
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The residue-residue contacts involved in ligand-receptor

interactions are well conserved during the dynamics (the

final MD structure is available at http://www.sissa.it/sbp/bc).

The ligand-receptor interfaces are highly hydrated. As

many as 55 6 4(56 6 5) water molecules are present at the

interface between TrkA(TrkA9) and NGF homodimer. Of

these water molecules, 20 6 3(17 6 3) occupy well-defined

and conserved positions during the entire dynamics (ordered

FIGURE 2 MD of NGF-TrkA complex. (A) RMSDs from the initial conformation of the entire complex (red line), of the TrkA subunits (blue line), of NGF

(magenta line), and NGF9 (cyan line). (B) Distances between the centers of mass between TrkA and NGF (red line), TrkA9 and NGF (green line), TrkA and

NGF9 (blue line), and TrkA9 and NGF9 (orange line). (C) Comparison between x-ray (red) and MD-averaged (cyan) structures. Only the backbone of one NGF

and one TrkA subunit is shown. (D) Comparison between the NGF-TrkA9 (red) and the NGF9-TrkA (cyan) MD-averaged structures. Only the backbone is

shown. Regions exhibiting large discrepancies (green circles) are shown at the atomic level (TrkA9, NGF, TrkA, and NGF9 are shown in green, dark green,

yellow, and dark yellow, respectively).
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water molecules, see Methods for definition). Most of these

water molecules were already detected in the x-ray structure

as highly ordered water molecules (Wiesmann et al., 1999).

Both direct and water-mediated H-bond interactions were

detected at the interfaces between ligand and receptor

subunits along the trajectory (Table 3). 11 6 3 (8 6 2)

ordered water molecules and 9 6 3(9 6 3) nonordered

interface water molecules have been mediating H-bond in-

teractions, on average along the trajectory at the TrkA

(TrkA9)-NGF homodimer interfaces. No relevant drift was

detected in their numbers. At least 10 direct H-bond in-

teractions per interface turned out to be persistent, i.e.,

they were present for more than half of the total simulation

time (Table 3). Only four of the persistent water-mediated

interactions are present at both interfaces, connecting

symmetric atoms (Table 4). The persistent H-bond inter-

actions are located in several regions of the TrkA(TrkA9)-
NGF homodimer interface (Fig. 6):

1. A large cluster of direct H-bond interactions is located

between the EF loop of TrkA(TrkA9) and the strands A,

B, C, and D of NGF9(NGF). This cluster connects res-

idues Asn 349(3499) and Gln 350(3509) of TrkA(TrkA9)
to residues Arg 103(1039) and His 84(849) on the NGF

homodimer. These direct H-bonds are accompanied by

ordered water-mediated interactions involving these res-

idues (except Gln 350), as well as Ser 199(19) of NGF,
Thr 1069, His 84, THR 82, Arg 103 (solely at the TrkA-

NGF interface), and Thr 839 (solely at the TrkA9-NGF9
interface).

2. A cluster of direct H-bond interactions is located between

the N-terminus of NGF9(NGF) and B and E strands of

TrkA(TrkA9). It involves residues Phe 303(3039) and Gly
344(3449) from TrkA(TrkA9) and residues His 49(4) from
NGF homodimer.

3. A cluster of direct H-bond interactions is located between

EF loop of TrkA(TrkA9) and strand A of NGF9(NGF)
and involves Trp 21(219) and His 3539(353). It is ac-

companied to water-mediated interactions involving Thr

3529(352) and Ile 31(319) on both interfaces.

4. A cluster of direct H-bond interactions is located between

AB loop and F strand of TrKA(TrKA9) and N-term of

NGF. It involves residues His 297(2979) and Arg

347(3479) on TrkA(TrkA9), and Glu 119(11) on

NGF9(NGF). It is accompanied by water-mediated

interactions involving all of these residues except Arg

347(3479).

Electrostatics

The electrostatic contribution to the overall free energy of

formation of the complex (DGbind), here estimated by using

the PB equation (Gilson and Honig, 1988), is �116 6 14

kcal/mol. This high value is expected to be smaller if one

uses a nonzero ionic strength in the PB calculations (See

Methods).

This stabilizing contribution may arise from both long-

range interactions between the NGF and TrkA, and local

interactions between residues directly interacting at the

ligand-receptor interface. Here we provide a description of

these contributions.

TABLE 2 Selected distances between residues of the complex

in the MD-average and in the x-ray structures (see Fig. 2 D)

Pairs of atoms

MD-average

distance (Å)

X-ray

distances (Å)

ARG 342 CZ-PHE 332 Cg 4.1 4.2

ARG 3429 CZ-PHE 3329 Cg 9.1 4.4

ARG 342 CZ-THR 340 O 7.3 6.9

ARG 3429 CZ-THR 3409 O 4.0 7.6

ARG 342 CZ-LEU 333 O 5.9 6.7

ARG 3429 CZ-LEU 3339 O 7.3 3.6

ASP 93 Cg-ARG 100 CZ 5.1 6.5

ASP 939 Cg-ARG 1009 CZ 6.7 7.2

ASP 93 Cg-LYS 34 NZ 8.7 4.9

ASP 939 Cg-LYS 349 NZ 3.5 4.0

ARG 9 CZ-GLU 3349 CD 4.7 7.8

ARG 99 CZ-GLU 334 CD 5.5 6.6

ARG 9 CZ-GLU 3349 O 7.1 6.0

ARG 99 CZ-GLU 334 O 4.7 3.7

FIGURE 3 Comparison between x-ray derived B-factors (A) and those

calculated on the basis of the MD simulation (B). The most flexible regions

are depicted in green, the most rigid in red. As the color scale is normalized

to the range of B-factors, it is different in the two cases.
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Long-range electrostatic interactions between the subunits

highly stabilize the adduct: each TrkA subunit is negatively

charged (�4) and each NGF is positively charged (13).

Our calculations show that ligand and receptor are fur-

ther stabilized by a dipolar coupling (Fig. 4 A). Notably, the
NGF homodimer is stabilized by dipole-dipole interactions,

whereas charge-charge interactions between the two subunits

are unfavorable. The global dipolar interactions are fully

maintained during the dynamics as the complex is conforma-

tionally very stable (see above section).

Short-range electrostatics also plays a role. The electro-

static potentials on the contact surface of ligand and receptor,

calculated with the PB equation, are clearly complementary

(Fig. 4 B): the NGF surface of contact with TrkA is mostly

positively charged, with a negative potential region around

Glu 11(119). The TrkA surface of contact with NGF is

mostly negatively charged, except for a positive potential

region located around Arg 347(3479). These Arg and Glu

residues form salt bridges in the x-ray structure, which are

maintained during the dynamics (Table 4). The two residues

involved in these salt bridges provide highly favorable

contributions to the electrostatic free energy of binding

DGbind (Fig. 4 C). Notice that Glu 11(119) forms persistent

H-bonds also to His 297(2979) and His 298(2989) (Table 4).
Other two pairs of salt bridges are present at the ligand-

receptor interface. One pair involves Glu 295(2959) from

TrKA(TrkA9) and Arg 599(59) from NGF9(NGF), which
form direct H-bonds (Table 4). The other pair involves Glu

334(3349) of TrkA(TrkA9) and Arg 99(9) of NGF(NGF9),
which do not form persistent direct H-bonds (in particular,

the Glu 334-Arg 99 salt bridge is mediated by a water

molecule in more than half of the trajectory, Table 4). The

residues involved in these interactions provide highly neg-

ative contributions to DGbind with very large fluctuations

along the trajectory (Fig. 4 C), in agreement with their

relatively lower persistency (Table 4).

Other contributions involving charged residues are those

of Glu 331(3319), Glu 324(3249), Glu 339(3399), Arg

342(3429) of TrkA, and Arg 103(1039) of NGF(NGF9).
The contributions of the first eight residues show large

fluctuations (Fig. 4 C), and they are not involved in

TABLE 4 Persistent hydrogen bond interactions at the

ligand-receptor interface

Pair of atoms

(TrkAs, NGF)

% of conser-

vation during

the dynamics

TrkA-NGF homodimer

interface—direct

interactions

GLN 350 Oe1-HIS 84 N 100

ARG 347 NH2-GLU 119 Oe1 100

ARG 347 NH1-GLU 119 Oe1 100

GLN 350 Ne2-HIS 84 O 98

ASN 349 O-ARG 103 NH2 96

ASN 349 Od1-ARG 103 NH1 92

HIS 353 N d1-TRP 219 Ne1 90

GLU 295 Oe2-ARG 599 NH2 90

PHE 303 O-HIS 49 Ne2 87

GLU 295 Oe2-ARG 599 NH1 87

HIS 297 N-GLU 119 O 81

ASN 349 O-ARG 103 NH1 81

GLU 295 Oe1-ARG 599 NH2 80

GLU 295 Oe1-ARG 599 NH1 80

GLN 350 O-ARG 103 NH2 62

GLY 344 O-HIS 49 Ne2 56

TrkA9-NGF homodimer

interface—direct

interactions

GLN 3509 Oe1-HIS 849 N 100

GLN 3509 Ne2-HIS 849 O 100

PHE 3039 O-HIS 4 Ne2 98

ASN 3499 O-ARG 1039 NH2 98

ARG 3479 NH1-GLU 11 Oe2 98

ARG 3479 NH2-GLU 11 Oe2 98

ASN 3499 Od1-ARG 1039 NH1 96

GLU 2959 Oe2-ARG 59 NH2 96

GLU 2959 Oe1-ARG 59 NH1 96

GLU 2959 Oe2-ARG 59 NH1 90

GLY 3449 O-HIS 4 Ne2 85

HIS 3539 Nd1-TRP 21 Ne1 83

GLU 2959 Oe1-ARG 59 NH2 75

ASN 3499 O-ARG 1039 NH1 71

HIS 2979 N-GLU 11 O 69

GLN 3509 O-ARG 1039 NH2 56

TrkA-NGF homodimer

interface—indirect

interactions mediated

by ordered water

molecules

ASN 355 Od1-ILE 31 O 92

THR 352 Og1-ILE 31 O 90

HIS 298 N-GLU 119 O 90

HIS 297 N-GLU 119 O 81

HIS 297 Nd1-CYS 110 O 77

GLN 350 Ne2-THR 1069 O 73

GLN 350 Ne2-HIS 84 O 73

THR 352 N-ILE 31 O 71

ASN 349 Nd2-THR 82 O 69

GLN 350 O-ARG 103 NH2 52

GLN 350 Ne2-SER 199 Og 52

TrkA9-NGF homodimer

interface—indirect

interactions mediated

by ordered water

molecules

HIS 2989 N-GLU 11 O 94

GLN 3509 Oe1-THR 839 Og1 73

THR 3529 Og1-ILE 319 O 58

THR 3529 Og1-LYS 329 O 52

HIS 2989 N-GLU 11 Oe2 52

HIS 2979 N-GLU 11 O 52

GLN 3509 Ne2-SER 19 Og 52

TrkA-NGF homodimer

interface—indirect

interactions mediated

by non-ordered water

GLU 295 Oe2-ARG 599 NH2 62

ARG 347 NH1-GLU 119 Oe2 60

ARG 347 NH2-TYR 79 OH 52

TrkA9-NGF homodimer

interface—indirect

interactions mediated

by nonordered water

GLU 3349 Oe2-ARG 9 NH1 52

TABLE 3 Direct and water-mediated indirect hydrogen bond

interactions at the ligand-receptor interfaces

TrkA-NGF

homodimer

interface

TrkA9-NGF
homodimer

interface

Direct hydrogen bond 12.2 6 1.5 (10) 12.3 6 1.8 (10)

Indirect interactions mediated

by ordered water

24 6 7 (11) 17 6 5 (7)

Indirect interactions mediated

by nonordered water

19 6 7 (3) 16 6 7 (1)

Averages and standard deviations are computed along the equilibrated part

of the MD trajectory (See Methods). The number of persistent interactions

is reported in parentheses. See Methods for the definitions adopted.
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persistent H-bond interactions. We further notice that the

contribution of Glu 331(3319) is positive. The contribution

of Arg 103(1039) is large and exhibits small fluctuations

(Fig. 4 C), presumably because of their persistent H-bond

interactions with Asn 349(3499) and, to a smaller extent, to

Gln 350(3509) of TrkA(TrkA9) (Table 4).
Also other few interactions are present that involve

noncharged residue(s) providing stabilizing electrostatic

binding free energy (Fig. 4 C): i), His 49 (4) from NGF

(NGF9), which form persistent H-bonds both with Phe 303

(3039) and (to a lesser extent) with Gly 344(3449) backbone
oxygen atoms from TrkA(TrkA9) (Table 4); and ii), Trp

21(219) from NGF, which form a persistent H-bond to His

3539 (353) Nd1 from TrkA9(TrkA) (Table 4).

Water-mediated H-bonds

Herewe use our structural analysis ofH-bond pattern to detect

the persistency of these interactions. Our analysis shows that

Thr 352(3529), Ile 31(319), Lys 32(329), and Thr 83(839) form

only water-mediated interactions (Table 4), and do not show

relevant contributions to the electrostatic free energy (Fig. 4

C). Furthermore, several residues that form direct H-bond

interactions also form water-mediated H-bonds: His 297

(2979)-Glu 119(11), Gln 350(3509)-His 84(849), Glu 295-Arg
599, and Arg 347-Glu 119 (Table 4).

Large-scale motions

The long time fluctuations can be probed as eigenvectors

associated to the covariance matrix of the Ca atoms (Amadei

et al., 1993). Within our timescale, the largest collective

motion, associated to the largest eigenvector of the co-

variance matrix, involves a rotation of the TrkA subunits

around the NGF homodimer (Fig. 5 A). A projection of the

components of the motion onto the Ca shows that the largest

components are localized on TrkA and TrkA9 domains and

on the N- and C-termini of NGF and NGF9. The latter strictly
follow the motion of the TrkA subunits (Fig. 5 B). A plot of

the distribution of the conformations as a function of their

FIGURE 4 Ligand-receptor electrostatic interactions. (A) Stabilizing long-range interactions are provided by the opposite charges on the receptor (green)

and ligand (yellow) (in atomic units). The calculated gas phase values of the dipoles are reported. The effective values of the dipoles are expected to be much

smaller because of the screening of the protein complex. (B and C) Electrostatic potential and potential energy obtained by solving the Poisson-Boltzmann

equation (Gilson and Honig, 1988). Calculations are carried out on 61 equally spaced conformations from the trajectory and the results are averaged. (B)

Electrostatic potential on the NGF and TrkA van der Waals surfaces involved in the formation of the complex. Blue and red represent regions of negative and

positive potential, respectively. (C) Electrostatic free energies of binding (DGbind) of residues at the NGF-TrkA (upper graph) and NGF-TrkA9 (lower graph)
interfaces. Left: Residues belonging to the receptor; right: residues belonging to the ligand.
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projection on this eigenvector (Fig. 5 C) suggests that the

motion samples two distinct ensembles of conformations.

Analysis of the conformations carried on with the program

Hingefind (Wriggers and Schulten, 1997) indicates that the

main difference consists in the rotation of the TrkA subunits

(relative to NGF) around the hinge axis of the complex (Fig.

5D). The angular difference between the two positions is 108
for both TrkA subunits. The residues lying close to the hinge

axis are mostly involved in the motion because of their action

as a fulcrum for the rotation. They comprise residues 297–

299, 336–339, 348, and 350–355 on both TrKA and TrkA9;
and residues 3–11, 46, 93–96, and 112–114 on both NGF

and NGF9. Interestingly, some of these residues also show

relevant interfacial electrostatic or hydrogen bond interac-

tions (Fig. 6).

DISCUSSION

We have investigated structural, energetic and dynamical

aspects of the NGF-TrkA complex in aqueous solution by

theoretical methods.

Our MD-averaged structural properties of NGF-TrkA

complex in aqueous solution are similar to those emerging

from the x-ray structure (Wiesmann et al., 1999). As

expected, however, the TrkA subunits are more mobile than

in the crystalline phase, where the TrkA subunits are in close

contact with the molecules in neighboring cells (Figs. 1 A
and 2).

The structural differences between NGF-TrkA and NGF-

TrkA9 interfaces, already detected in the x-ray structure, are

fully maintained (Fig. 2).

Our electrostatic analysis suggests that long- and short-

range electrostatic interactions provide significant contribu-

tions to the overall affinity of the complex. Long-range

electrostatics, such as charge-charge, charge-dipole, and di-

pole-dipole TrkA-NGF interactions, stabilizes the complex

(Fig. 4 A). Furthermore, the shape of the electrostatic po-

tential, calculated with the PB equation (Gilson and Honig,

1988) at the surfaces of contact between ligand and receptor

is complementary, and provides highly stabilizing direct

H-bonding and salt bridge interactions (Fig. 4 B).
In addition, our calculations suggest that the ligand-

receptor surface is highly hydrated by the presence of �20

ordered water molecules and 35 nonordered water mole-

cules. We found that, on average, more than 30 pairs of

atoms are linked at each interface by bridging water mol-

ecules. Only a fraction of these water-mediated interac-

tions are nonpersistent (i.e., they are only present in a small

fraction of the trajectory, Table 3). On the other hand,

ordered water molecules mediate interactions between the

surface of the ligand and the receptor.

An accurate estimate of the energetics associated to these

water-mediated H-bond interactions cannot be obtained

using standard PB approaches, which consider implicitly

the presence of the solvent. Attempts have been made to

explicitly consider mediating water molecules in PB

calculations (see, e.g., Langen et al., 1992; Yang et al.,

1993; Fitch et al., 2002). Here we attempt to use an alter-

native approach to these electrostatic analyses by estimat-

ing the strength of water-mediated H-bonds based on our

structural analysis. To validate this approach, comparison

is first made between the persistency of direct H-bond in-

teractions and the contributions of these interactions to the

FIGURE 5 Large-scale motions of the complex. Several properties of the

largest eigenvector of the covariance matrix are represented. (A) The

eigenvector is represented as a vector field on the Ca atoms of the MD-

averaged structure. The red-ended stick departing from every Ca atom is

proportional (both in length and direction) to the component of the

eigenvector along that atom. Large arrows (blue, NGF; green, TrkA)

pictorially represent the sum of the motion of the amino acids of each

domain. (B) The moduli of the components represented in (A) are plotted as

function of the Ca atoms. b-strand and a-helix conformations are depicted in

blue and green, respectively. The labels on the x axis indicate the secondary

structure elements and the loops of NGF (Wiesmann et al., 1999). (C)Right:

Projection of the trajectory along the eigenvector as a function of time. The

nonmonotonic behavior indicates a good sampling of the conformational

space and the absence of slow drifts in the simulation. Left: Distribution of

the projection. The presence of a double peak suggests the existence of two

well-separated ensembles of conformations. (D) According to the analysis of

Wriggers and Schulten (1997), this large-scale motion can be visualized as

a rotation of the TrkA subunits (in red and gray) around the hinge axis of the

complex (also in gray and red ).
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total electrostatic free energy of binding. Table 4 shows that

the direct H-bonds exhibiting high persistency mainly take

place between the N-terminus of NGF9(NGF) and AB loop

of TrKA(TrkA9) and the interactions between strand A of

NGF(NGF9) and EF loop of TrkA9(TrkA), and involve His

4(49), Glu11(119), Trp 21(219), Arg 59(599), and Arg

103(1039) of NGF, and Glu 295(2959), Phe 303(3039), Arg
347(3479), Asn 349(3499), and Gln 350(3509). These resi-

dues also provide large electrostatic free-energy contribu-

tions (Figs. 4 C and 6). Based on the correlation between

persistency and free-energy data, we now use our structural

analysis to provide a qualitative estimation of the relative

strength of persistent, water-mediated H-bond interactions.

Our approach suggests therefore that residues Glu 295, His

297(2979), His 298(2989), Arg 347, Asn 349, Gln 350(3509),
Thr 352(3529), Asn 355 on TrkAs and Arg 9, Glu 11, Ser

19(199), Ile 31(319), Lys 329, Arg 599, Thr 82, Thr 839, His
84, Tyr 79, Arg 103, and Thr 1069 on NGF (Table 4) are

expected to provide significant contributions to the affinity

of the complex as they form persistent, water-mediated,

H-bond interactions. Thus, based on our analysis, the binding

affinity in this complex is not only achieved through direct

protein-protein interactions, but also by exploiting the water

molecules located at the interface, which act as a sort of glue

between ligand and receptor.

Finally, our calculations provide information on the large-

scale motions of the complex. They suggest that the complex

undergoes a well-defined motion on the nanosecond time

scales, involving an oscillation of the TrkAs around the NGF

homodimer (Fig. 5). The motion occurs as a coordinated

rotation of the TrkA subunits around the NGF homodimer

(Fig. 5 A). The rotation involves residues of the NGF

homodimer, (particularly from N-terminus and from L1 and

L4 loop) and of TrkA (residues from 348 to 355, Fig. 6). The

latter also form persistent direct and water-mediated H-bond

interactions, which might provide the contact surface

flexibility that is needed for this motion to occur.

Comparison with biological data

In this section, we use our calculations to interpret some of

the mutagenesis data by (Urfer et al., 1998) and (Guo et al.,

1996) presented in Table 1. Because of the simplicity of the

analysis used here, we focus only on residues forming

electrostatic and/or H-bonding interactions.

Explanations for the large effects on the affinity upon

mutating polar residues into neutral or charged residues may

be offered based on our simulation-analysis. His 4(49) and
His 353(3539) side chains form direct H-bond interactions

with Phe 3039(303) and Trp 219(21), respectively. These
interactions are highly persistent (Table 4) and, accordingly,

residues His 4(49) Phe 303(3039), and Trp 21(219) provide
highly stabilizing electrostatic free energy of binding (Figs. 4

C and 6). Thus, the mutations of His 4(49) and His 353(3539)
in Asp and Ala, respectively (Table 1), may cause the

disruption of such stabilizing interactions, which in turn

could be a key factor for the experimentally observed large

decrease in binding activity of NGF (Wiesmann and de Vos,

2001). In addition, the introduction of a net charge in the His-

4-Asp mutant could also affect the binding. The side chain of

residues Thr 352(3529) form water-mediated, highly persis-

tent H-bond interactions with Ile 31(319) (Table 4). Thus,

their mutation to Ala could disrupt the H-bond interactions,

causing the decrease in binding affinity experimentally

observed (Table 1). Finally, the mutations involving Pro 302

and His 343 on TrkA (Table 1) may affect the persistent

direct H-bonds formed by the backbone atoms of Phe

303(3039) and Gly 344(3449) (Table 4), which in turn may

alter the binding affinity, as experimentally observed.

The mutation of His 353(3539) and Thr 352(3529) might

also affect the molecular recognition by altering the mech-

anical properties of the complex. Indeed, because of the

proximity of these residues to the hinge axes (Fig. 6), their

mutation might affect the large-scale motions of the pro-

tein, which in turn might be important for the function of the

FIGURE 6 Selected biological and calculated properties of TrkA (top) and of NGF (bottom). (Top) (0) Primary sequences. Residues within 5 Å from the

hinge axes in the MD-averaged structure have been marked with black background. This set comprises residues from the N- and C-terminus of NGF

homodimer, from L1 and L4 loops of NGF and from the AB and EF loops of TrkA. (I) Residues involved in direct (d ) or water-mediated indirect (w) hydrogen

bond interactions with residues on the opposite surface. (II) Residues characterized by markedly favorable (V) electrostatic free energies (DGbind in Fig. 4 C).

(III) Residues numbering according to Wiesmann et al. (1999). (IV) Residues belonging to the specific (s) or to the common patch (c) of TrkA, as defined in

Wiesmann et al. (1999). (V) Residues whose mutations are known that affect slightly (-) or largely (¼, IC50[ 100) the binding constant (Urfer et al., 1998).

(Bottom) (I–IV) Same asA. (V–VI) The residues whose mutations are known to increase (V) or to disrupt the biological function (VI) of NGF are marked with

‘‘-’’ (Ibanez, 1995).
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complex (Wriggers and Schulten, 1998). That is, the flex-

ibility of the H-bond network formed by these residues might

be an important ingredient for the motion to occur and their

mutation may eventually lead to an impairment of the

function of the complex.

The small effect on the binding affinity observed upon

charged to neutral mutations (except for Glu 11(119), Arg
347(3479), and Arg 103(1039)) (Table 1) may be interpreted,

at least in part, in terms of their electrostatic free energies of

binding calculated with the PB equation. Indeed, the latter

are relatively small and/or exhibit large fluctuations (Fig. 4

C), suggesting that the destabilization due to the mutations

might be small with respect to the large stabilizing con-

tributions deriving from long-range electrostatics as well as

from hydrophobic interactions or water-mediated interac-

tions (see above). In addition, this mutation-induced desta-

bilization may also be smaller than the large stabilizing

contributions from electrostatics interactions of Arg

347(3479) on TrkA, and Arg 103(1039) and Glu 11(119) on
NGF; thus, it may not be sufficient to significantly affect the

binding affinity of the complex. On the other hand, the

simulation-analysis we performed do not allow to explain the

small effect on binding affinity upon mutation of Arg

347(3479) and Arg 103(1039); this limitation of our approach

may be due to a structural relaxation of the complex upon

mutation; this process is neglected in our calculations that are

based on the wild-type complex and it could be described by

simulations of the mutated system.

The nonpolar solvation contributions are not included in

our calculations. Thus, the effect of mutations of the NGF-

TrkA complex involving aromatic residues Tyr 52 and Phe

86 (Table 1), which form hydrophobic interactions (Wies-

mann and de Vos, 2001), and are not involved in H-bonding

interactions, cannot be rationalized based on our simple

analysis. Also, our simple analysis does not take into account

the van der Waals and the internal energy and the entropic

contributions due to conformational changes and loss of

mobility of the bound proteins (Srinivasan et al., 1998; Kuhn

and Kollman, 2000). Indeed, it is well known that PB

electrostatic free energy of binding of ligand-receptor com-

plexes may also result positive (i.e., unfavorable to binding)

(Sheinerman and Honig, 2002), indicating that, in such

cases, complex stabilization comes from the other men-

tioned contributions. Finally, our estimate of the relative

strength of water-mediated interactions is rather approxi-

mate, as it is based on structural data. Nevertheless, we show

here that our simple simulation-analysis provides a qualita-

tive explanation for most of the data presented in Table 1.

Quantitative estimations require more sophisticated ap-

proaches, such as MD-based free-energy calculations.

Implications for the design of a peptide mimic

Our calculations, along with mutagenesis data, allow for

drawing a feasible strategy for the design of NGF mimetic

peptides. Indeed, our results suggest that the NGF residues

His 4, Glu 11, and Trp 21 in the specific patch (Figs. 4 C and

6) and in the first part of strand A of NGF provide highly

persistent H-bond interactions to the complex (Figs. 4 C and

6) along with large favorable electrostatic free-energy

contributions. This is consistent with mutagenesis data,

which show that mutations on residues belonging to this part

of the complex (such as His 4 on NGF, and Met 296, His

297, and Gln 350 on TrkA) largely affect its affinity (Table 1,

Fig. 6, and references therein). Besides these favorable

electrostatic interactions, the hydrophobic interactions be-

tween residues Ile 6 and Phe 7 from NGF and Val 294, Met

296, Pro 302, and Leu 333 (Wiesmann and deVos, 2001)

stabilize even more the binding of the N-term of NGF to

TrkA. On the other hand, these residues are not conserved

along the neurotrophin family or Trk receptor family

(Wiesmann and de Vos, 2001); thus they provide particular

specificity for the NGF-TrkA binding. A peptide consisting

of the N-terminal part of NGF is expected to have high

affinity for the receptor. Furthermore, it is expected to be

highly specific for this complex, as the N-term NGF-TrkA

interactions are not present in other neurotrophin-receptor

systems (Wiesmann et al., 1999).

CONCLUSIONS

Our calculations help clarify the functional role of some

amino acids playing a crucial part in NGF-TrkA binding

(Table 1, Fig. 6), not emerging from visual inspection of the

x-ray structure of the NGF-TrkA complex. This work has

also provided the basis for the design of new peptides that

mimic NGF in TrkA binding function. These should exploit

the interactions present at the specific patch and between the

beginning of NGF strand A and AB loop of TrkA that in-

volve both hydrophobic burial, hydrogen bonding, and elec-

trostatics. Work is in progress in our laboratory to test these

proposals.
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