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a b s t r a c t

Analytic solutions to similarity boundary layer equations are given for boundary layer flows
of Newtonian fluid over a stretchingwall with power law stretching velocity. The existence
of analytic solutions is proven. The Crane’s solution is generalized and recurrence relations
are obtained for the determination of coefficients of the exponential series.
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1. Governing equations for boundary layers

The problem considered here is the steady boundary layer flow due to a moving flat surface in an otherwise quiescent
Newtonian fluid medium moving at a speed of Uw(x). In the absence of body force and an external pressure gradient,
laminar boundary layer equations expressing conservation of mass and the momentum boundary layer equations for an
incompressible fluid are written as

∂u
∂x

+
∂v

∂y
= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2

, (2)

where (x, y) are the respective streamwise and plate-normal directionswith (u, v) the corresponding velocities, and ν is the
kinematic viscosity of the ambient a fluid which will be assumed constant. We consider the boundary-layer flow induced
by a continuous surface stretching with velocity Uw(x). The surface is assumed in general to be permeable and a lateral
suction/injection with a certain velocity distribution Vw(x) is applied. Accordingly, the boundary conditions are

u (x, 0) = Uw(x), v (x, 0) = Vw(x), lim
y→∞

u (x, y) = 0. (3)

The streamfunction ψ is formulated by

u =
∂ψ

∂y
, v = −

∂ψ

∂x
.

Eq. (2) reduces to

∂ψ

∂y
∂2ψ

∂y∂x
−
∂ψ

∂x
∂2ψ

∂y2
= ν

∂2ψ

∂y
. (4)

Assume the velocity of the plate is the form

Uw(x) = Axκ , Vw(x) = Bx(κ−1)/2
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where A, B and κ are constants, A > 0. The case B < 0 corresponds to the suction and B > 0 to the injection of the fluid. If
the wall is impermeable then B = 0. Under transformation

ψ =


2ν

A(κ + 1)
Ax

κ+1
2 f (η), η =


A(κ + 1)

2ν
yx

κ−1
2 .

Eq. (4) can be written

f ′′′
+ ff ′′

−
2κ
κ + 1

f ′2
= 0, (5)

and the boundary conditions (3) become

f (0) = fw, f ′(0) = 1, lim
η→∞

f ′(η) = 0, (6)

where

fw = −B
[
νA
κ + 1

2

]−
1
2

.

Now, the velocity components are given by

u(x, y) = Axκ f ′(η),

v(x, y) = −


2νA
κ + 1

1/2

x(κ−1)/2
[
κ + 1

2
f (η)+

κ − 1
2

ηf ′(η)

]
.

We note that the same boundary value problem appears for the steady free convection flow over a vertical semi-infinite
flat plate embedded in a fluid saturated porous medium of ambient temperature T∞, and the temperature of the plate is
Tw = T∞+Āxκ . There is difference in the region of κ between the two physical problem. For flows in a porousmedium, there
is a physical meaningwhen−1/2 < κ < +∞ (see [1]), and for boundary layer flows over a stretchingwall−∞ < κ < −1,
and −1/2 < κ < +∞ [2].

Banks [2] has proved if the wall is impermeable then the boundary value problems (5)–(6) does not admit a similarity
solution when −1 < κ ≤ −1/2. Numerical solutions were given in papers [2,1]. For some special cases of κ problems
(5)–(6) are exactly solvable. These particular cases are κ = 1 and κ = −1/3. For the impermeable case with κ = 1 we
refer to the exact solution by Crane [3] and for the permeable case [4]. For an impermeable case with κ = −1/3 the exact
solution is in [2] and the exact analytic solution for the permeable case by Magyari and Keller [5].

In this paper our goal is to prove the existence of the exponential series solution to the nonlinear boundary value
problems (5)–(6). Both for permeable and impermeable cases we give a method for the determination of the coefficients
and parameters. Numerical results are also presented.

2. Exact solutions

The exact solutions for some special values of κ are known. These are κ = 1 and κ = −1/3.

2.1. κ = 1

The solution of the boundary-value problems (5)–(6) for the velocity Uw(x) = Ax, (κ = 1) of an impermeable surface,
Vw(X) = 0, has been reported by Crane [3]. Thus, the stream function of Crane’s problem has the form

ψ =


ν

A
Axf (η), η =


A
ν
y,

where f (η) is the solution of the ordinary differential equation

f ′′′
+ ff ′′

− f ′2
= 0,

subject to the boundary conditions

f (0) = 0, f ′(0) = 1, lim
η→∞

f ′(η) = 0.

Crane’s well known solution for f (η) and for the corresponding velocity field reads

f (η) = 1 − e−η, (7)

and the velocity components are

u(x, y) = Axe−η,

v(x, y) = − (νA)1/2 (1 − e−η).

For that solution one gets f ′′(0) = −1.
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For the permeable case the solution has been given by Gupta and Gupta [4]

f (η) = fw −
1
f0


1 − ef0η


, (8)

with

f0 = −
1
2

[
fw +


f 2w + 4

]
.

In this way the velocity field is obtained as

u(x, y) = Axef0η,

v(x, y) = − (νA)1/2
[
fw −

1
f0


1 − ef0η

]
,

and f ′′(0) = f0.

2.2. κ = −1/3

The exact solution for κ = −1/3 and fw = 0 can be given

f (η) =
√
2 tanh(η/

√
2), f ′′(0) = 0.

For that solution one obtains f ′′(0) = 0.

3. Existence of analytic solutions

The aim of this section is to show the existence of analytic solutions to the boundary value problems (5)–(6) and to
determine the approximate local solution f (η). We use the shooting method and replace the condition at infinity by one at
η = 0. Therefore, (5)–(6) is converted into an initial value problem of (5) with initial conditions

f (0) = fw, f ′(0) = 1, f ′′(0) = γ . (9)

We consider the nonlinear differential equation (5) as a system of certain differential equations, namely, the special
Briot–Bouquet differential equations. For this type of differential equations, we refer to the book by Hille [6], and by Ince [7].
In order to establish the existence of a series representation of f (η)we apply the following theorem:

Briot–Bouquet Theorem ([8]). Let us assume that for the system of equations

ξ
dz1
dξ

= u1(ξ , z1(ξ), z2(ξ)),

ξ
dz2
dξ

= u2(ξ , z1(ξ), z2(ξ)),

 (10)

where functions u1 and u2 are holomorphic functions of ξ, z1(ξ), and z2(ξ) near the origin, moreover

u1(0, 0, 0) = u2(0, 0, 0) = 0,

then a holomorphic solution of (10) satisfying the initial conditions z1(0) = 0, z2(0) = 0 exists if none of the eigenvalues of the
matrix

∂u1

∂z1


(0,0,0)

∂u1

∂z2


(0,0,0)

∂u2

∂z1


(0,0,0)

∂u2

∂z2


(0,0,0)


is a positive integer.

The Briot–Bouquet theorem ensures the existence of formal solutions

z1 =

∞−
k=1

akξ k, z2 =

∞−
k=1

bkξ k

to system (10), and also the convergence of formal solutions.
This theorem and the method presented here have been successfully applied to the determination of local analytic

solutions of different nonlinear initial value problems (see [9–11]).
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In view of the third of the boundary conditions (6), let us consider the initial value problems (5)–(9), and take its solution
in the form

f (η) = α

1 + S


ae−αη


, η ∈ I, (11)

where the function S ∈ C2(I) for some interval I and α > 0. Let us introduce the new variable Z such as Z = ae−αη and
functions U and T as follows

U(Z) = Z
dS
dZ
,

T (Z) =
dU
dZ
.

Then the differential equation (5) can be rewritten by the following system of differential equations

dS
dZ

=
U
Z
,

dU
dZ

= T ,

dT
dZ

=
S
Z
(1 + T )−

2κ
κ + 1

U2

Z2
.


(12)

One can restate the third order differential equation in (5) as a system of Briot–Bouquet differential equations

u1(Z, S(Z),U(Z), T (Z)) = ZS ′(Z),
u2(Z, S(Z),U(Z), T (Z)) = ZU ′(Z),
u3(Z, S(Z),U(Z), T (Z)) = ZT ′(Z),


such as

u1(Z, S(Z),U(Z), T (Z)) = U(Z),
u2(Z, S(Z),U(Z), T (Z)) = Z(1 + T (Z)),

u3(Z, S(Z),U(Z), T (Z)) = S (1 + T (Z))−
2κ
κ + 1

U2(Z)
Z

,

 (13)

with choosing

S(0) = 0,
U(0) = 0,
T (0) = 0,


one gets

u1(0, 0, 0, 0) = 0,
u2(0, 0, 0, 0) = 0,
u3(0, 0, 0, 0) = 0.


Since the conditions in the Briot–Bouquet theorem are satisfied and the eigenvalues of the matrix

∂u1

∂S
∂u1

∂U
∂u1

∂T
∂u2

∂S
∂u2

∂U
∂u2

∂T
∂u3

∂S
∂u3

∂U
∂u3

∂T


at (0, 0, 0, 0) are zero then referring to the theorem above we obtain the existence of unique analytic solutions S,U and T
near zero.

We note that system (13) for [9] was created similarly as in [12].

4. The exponential series solution of boundary layer problems

Applying the results of the previous section in order to find the solution of Eq. (5) with boundary conditions (6), we
assume

f (η) = α


A0 +

∞−
i=1

Aiaie−αiη


, (14)

where α > 0, A0 = 1, and Ai (i = 1, 2, . . .) are coefficients.
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The conditions (6) yield the following equations:

α


A0 +

∞−
i=1

Aiai


= fw, (15)

−α2
∞−
i=1

iAiai = 1. (16)

It is evident that the third of the boundary conditions is automatically satisfied.
Substituting (14) into (5) we have

−

∞−
i=1

i3AiZ i
+


A0 +

∞−
i=1

AiZ i


∞−
i=1

i2AiZ i
−

2κ
κ + 1


∞−
i=1

iAiZ i

2

= 0

or

−

∞−
i=1

i3AiZ i
+ A0

∞−
i=1

i2AiZ i
+

∞−
i=2

i−1−
k=1

k2AkAi−kZ i
−

2κ
κ + 1

∞−
i=1

i−1−
k=1

k(i − k)AkAi−kZ i
= 0.

Equating the coefficients of like powers of Z , we get recurrence relations for A2, A3, . . . and we obtain

A2 = −
1
4
A2
1
κ − 1
κ + 1

,

A3 =
1
72

A3
1
(κ − 1) (3κ − 5)

(κ + 1)2
,

A4 = −
1

864
A4
1
(κ − 1)


6κ2

− 19κ + 17


(κ + 1)3
,

A5 =
1

86400
A5
1
(κ − 1)


93κ3

− 464κ2
+ 783κ − 484


(κ + 1)4

,

A6 = −
1

2592000
A6
1
(κ − 1)


432κ4

− 2889κ3
+ 7461κ2

− 8759κ + 4139


(κ + 1)5
,

A7 =
1

4572288000
A7
1
(κ − 1) P5(κ)

(κ + 1)6
,

P5(κ) = 115839κ5
− 983892κ4

+ 3399550κ3
− 6012140κ2

+ 5447171κ − 2081728

A8 = −
1

64012032000
A8
1
(κ − 1) P6(κ)

(κ + 1)7

P6(κ) = 44854κ6
− 2521077κ5

+ 10974320κ4
− 25899165κ3

+ 35072231κ2
− 25921218κ + 8309255

A9 =
1

9217732608000
A9
1
(κ − 1) P7(κ)

(κ + 1)8

P7(κ) = 5288733κ7
− 64112391κ6

+ 337072482κ5
− 997781298κ4

+ 1799062257κ3
− 1980424339κ2

+ 1236353168κ − 341103412
....

The coefficients A2, A3, A4, . . . are expressed as functions of κ . We note that our computations indicate that the
coefficients obtained above can be written in the form

An = An
1

κ − 1
(κ + 1)n−1

Pn−2 (κ) ,

where Pn−2 is a polynomial of κ of order n − 2. When κ = 1 is substituted then we get that each coefficient Ak, k > 1 is
equal to zero. This case results in Crane’s solution (7) or (8) for impermeable or permeable cases, respectively.

The shear stress at the surface is given by f ′′(0) and

f ′′(0) = α3
∞−
i=1

i2Aiai.

From system (15)–(16) with coefficients A2, A3, A4, . . . and with the choice of A1 = 1 one can obtain the values of
parameters a and α. Tables 1 and 2 representing the numerical results for some values of κ ∈ (−∞,−1) ∪ (−1/2,+∞) ,
fw = 0 and fw = 1 on the base of the first 10 terms in the series.
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Table 1
fw = 0.

κ a α f ′′(0)

−5 −0.7410 0.8687 −1.4033
−4 −0.7207 0.8575 −1.4417
−3 −0.6831 0.8364 −1.5156
−2 −0.5915 0.7826 −1.7166
−1.5 −0.4678 0.7040 −2.0337

−1/3 −1.5919 0.7957 −5.2423
−1/6 −1.5089 1.1868 −1.1407
−1/8 −1.4521 1.1859 −0.7543
−1/10 −1.4207 1.1786 −0.6684
0 −1.3186 1.1419 −0.6433
1/3 −1.1358 1.0628 −0.8300
1/2 −1.0864 1.0403 −0.8896
3/4 −1.0351 1.0166 −0.9540
1 −1 1 −1

Table 2
fw = 1.

κ a α f ′′(0)

−5 −0.3195 1.5663 −1.9547
−4 −0.3140 1.5615 −1.9883
−3 −0.3036 1.5523 −2.0538
−2 −0.2765 1.5279 −2.2376
−1.5 −0.2359 1.4889 −2.5620

−1/3 −0.5357 1.7320 −1.0014
−1/6 −0.4753 1.6890 −1.2179
−1/8 −0.4656 1.6819 −1.2553
−1/10 −0.4604 1.6781 −1.2757
0 −0.4433 1.6654 −1.3445
1/3 −0.4099 1.6400 −1.4878
1/2 −0.4000 1.6323 −1.5325
3/4 −0.3985 1.6240 −1.5820
1 −0.3820 1.6180 −1.6180

The radius of the convergence of the series can be found by applying the ratio test and the series converges absolutely
for

η > −
1
α

[
ln


lim
n→∞

 An

An+1

− ln |a|
]
.

Wenote that the sequence of terms An/An+1 converges very slowly, and for the determination of the convergence interval
an alternative method was given by Samuel and Hall [13].

5. Conclusion

In this paper the existence of the exponential series solution to the boundary value problem describing the boundary
layer flows of Newtonian fluids has been given. The Crane’s solution is generalized for stretching walls with a power law
stretching velocity. A method is given for the determination of the coefficients Ai (i = 0, 1, 2, . . .) and parameters a, α in
(14). The shear stress at the surface and the radius of convergence are also discussed.
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