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Abstract

We establish two new q-analogues of a Taylor series expansion for polynomials using special Askey–Wilson
polynomial bases. Combining these expansions with an earlier expansion theorem we derive inverse relations
and evaluate certain linearization coe4cients. Byproducts include new summation theorems, new results on a
q-exponential function, and quadratic transformations for q-series.
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1. Introduction

The Taylor theorem for polynomials f(x) evaluates the coe4cients fk in the expansion

f(x) =
∞∑
k=0

fk(x − c)k ; fk =
f(k)(c)

k!
: (1.1)

It is possible to generalize (1.1) by considering other polynomial bases and suitable operators. One
such example, which has been previously considered [5], replaces (x − c)k by

�k(x; a) = (aei
; ae−i
; q)k =
k−1∏
i=0

(1 − 2axqi + a2q2i):
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Since

lim
q→1

�k(x; a) = (1 − 2ax + a2)k ;

we can consider �k(x; a) as a q-analogue of (x−c)k for c=a+1=a. The Taylor theorem for �k(x; a)
is stated as Theorem 1.1. In this paper, we consider two other q-analogues of (1.1): Theorem 2.1
which has a q-analogue of (x − 1)k and Theorem 2.2 for a q-analogue of xk . We shall follow the
notations and terminology in [1,4].

All three theorems use polynomial bases and the Askey–Wilson operator. We Hrst deHne the
Askey–Wilson operator Dq. Given a function f we set Jf(ei
) := f(x); x = cos 
, that is

Jf(z) = f((z + 1=z)=2); z = ei
:

In other words, we think of f(cos 
) as a function of ei
. In this notation, the Askey–Wilson divided
diKerence operator Dq is deHned by

(Dqf)(x) =
Jf(q1=2ei
) − Jf(q−1=2ei
)
(q1=2 − q−1=2) i sin 


; x = cos 
: (1.2)

It is easy to see that the action of Dq on Chebyshev polynomials is given by

DqTn(x) =
qn=2 − q−n=2

q1=2 − q−1=2 Un−1(x);

hence Dq reduces the degree of a polynomial by one and

lim
q→1

Dq =
d

dx
:

In the calculus of the Askey–Wilson operator [3, p. 32] the basis {�n(x; a) : n¿ 0} plays the role
played by the monomials {(1 − 2ax + a2)n : n¿ 0} in the diKerential and integral calculus. In fact,

Dq(aei
; ae−i
; q)n = −2a(1 − qn)
1 − q

(aq1=2ei
; aq1=2e−i
; q)n−1: (1.3)

Ismail [5] proved the following Taylor theorem for polynomials f(x).

Theorem 1.1. If f(x) is a polynomial in x of degree n, then

f(x) =
n∑

k=0

fk�k(x; a);

where

fk =
(q− 1)k

(2a)k(q; q)k
q−k(k−1)=4(Dk

qf)(xk)

and xk is given by

xk := 1
2 (aqk=2 + q−k=2=a):



M.E.H. Ismail, D. Stanton / Journal of Computational and Applied Mathematics 153 (2003) 259–272 261

In our recent work [7], it was realized that the basis {�n(x) : n¿ 0},

�n(cos 
) = (q1=4ei
; q1=4e−i
; q1=2)n; (1.4)

plays an important role in the calculus of the Askey–Wilson operators and basic hypergeometric
functions. Rahman [11] (see also [3, p. 23]) had previously used this basis for expressing continuous
q-Jacobi polynomials [3] in the basis {�n(x)}. Since

lim
q→1

�n(x) = 2n(1 − x)n;

we consider �n(x) as a q-analogue of (x − 1)n. We shall also see that the basis { n(x) : n¿ 0},

 n(cos 
) = (1 + e2i
)(−q2−ne2i
; q2)n−1e−in
; (1.5)

has a nice relationship to the Askey–Wilson operator. Since

lim
q→1

 n(x) = 2nxn;

we consider  n(x) as a q-analogue of xn. Note that as functions of 
 the polynomials { n(cos 
)}
are essentially partial theta functions since

 2n(cos 
) = qn(1−n)(−e2i
;−e−2i
; q2)n;

 2n+1(cos 
) = 2q−n2
cos 
(−qe2i
;−qe−2i
; q2)n:

In this paper, we give q-Taylor theorems for polynomials using {�n(x)} and { n(x)} in Theorems
2.1 and 2.2. We then explore consequences of these results to connection coe4cient problems. They
are applied to obtain connection coe4cient results in Theorems 2.3 and 2.4. These two theorems
are then used to give a simple proof of our new [7] representation (Corollary 2.5) for Eq, the
addition theorem for the q-exponential function Eq (Corollary 2.6) [6,13], and another new represen-
tation for Eq (Corollary 2.7). In Section 3, we explicitly evaluate the coe4cients in the expansion
of a product �m(x; a)�n(x; b) in terms of {�k(x; c)}. In Section 4 all three theorems are used to
derive expansions for the continuous q-ultraspherical polynomials (Propositions 4.1–4.3) which in-
clude known quadratic transformations. Section 5 contains remarks on representations of continuous
q-ultraspherical polynomials and implications of Theorems 1.1 and 2.1.

We note that the q-Taylor expansions derived and applied here are diKerent from the recent results
in [10,12].

2. More q-Taylor theorems

In this section, we give the version of Theorem 1.1 for {�n(x)} and { n(x)}, which are Theorems
2.1 and 2.2. We apply the resulting facts to the q-exponential function Eq, in Corollaries 2.5–2.7.

It is straightforward to see that

Dq�n(x) = −2q1=4 1 − qn

1 − q
�n−1(x): (2.1)
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Theorem 2.1. If f(x) is a polynomial in x of degree n, then

f(x) =
n∑

k=0

fk�k(x);

where

fk =
(q− 1)k

2kqk=4(q; q)k
(Dk

qf)(�0)

and �0 = (q1=4 + q−1=4)=2.

Proof. The proof is an immediate consequence of (2.1), since �n(�0) = 0 for n¿ 1.

It is important to contrast the series expansion of Theorem 1.1 with evaluations at variable points
xk and that of Theorem 2.1, where the coe4cients depend on evaluations at a Hxed point �0.

For { n(x)} we have the following result, which uses

Dq n(x) = 2q(1−n)=2 1 − qn

1 − q
 n−1(x): (2.2)

Theorem 2.2. If f(x) is a polynomial in x of degree n, then

f(x) =
n∑

k=0

fk k(x);

where

fk =
q(k2−k)=4(1 − q)k

2k(q; q)k
(Dk

qf)(0):

Proof. The proof is an immediate consequence of (2.2), since if e2i
 = −1, namely 
 = �=2;
cos 
 = 0;  n(0) = 0 for n¿ 1.

The Hrst application of Theorem 2.1 is to expand �n(x; a) in terms of {�k(x) : 06 k6 n}.

Theorem 2.3. The following summation theorem holds:

(aei
; ae−i
; q)n
(aq−1=4; q1=2)2n

= 4�3

(
q−n=2; −q−n=2; q1=4ei
; q1=4e−i


−q1=2; aq−1=4; q−n+3=4=a

∣∣∣∣∣ q1=2; q1=2

)
:

Proof. Use Theorem 2.1 and (1.3).

We now give a direct proof of Theorem 2.3.

Proof. Use the Sears transformation [4, (III.15)] with

A = −q−n=2; B = q1=4ei
; C = q1=4e−i
;

D = aq−1=4; E = −q1=2; F = q−n+3=4=a:
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Then use the quadratic transformation [4, (III.21)] with

C = q−n=2; D = −q−n=2; A2 = aq−1=2e−i
; B2 = aq−1=2ei
:

The result is that the right-hand side of the equation in Theorem 2.3 is

(q(n+1)=2;−q(−n+3=2)=2=a; q1=2)n
(−q1=2; q−n+3=4=a; q1=2)n

(−1)nq−n2=2
3�2

(
aq−1=2ei
; aq−1=2e−i
; q−n

a2q−1=2; q−n+1=2

∣∣∣∣∣ q; q
)

:

The 3�2 is balanced and its sum is (aei
; ae−i
; q)n=(a2q−1=2; q1=2; q)n, see [4, (II.12)].

Although Theorem 2.3 can be proved from the existing literature we, nevertheless, believe it is
interesting and is worth recording as a sum of a special balanced 4�3.

Since Theorem 2.2 is just an expansion of �n(x; a) in terms of {�k(x)}, it is natural to record
the inverse relation expanding �n(x) in {�k(x; a)}. The result is

(q1=4ei
; q1=4e−i
; q1=2)n
(q1=4a; q1=4=a; q1=2)n

= 3�2

(
q−n; aei
; ae−i


aq(1−2n)=4; aq(3−2n)=4

∣∣∣∣∣ q; q
)

: (2.3)

The 3�2 in (2.3) is balanced, hence it can be summed by Gasper and Rahman [4, (II.12)], proving
the result.

We next expand �n(x; a) in terms of { k(x) : 06 k6 n}.

Theorem 2.4. The following summation theorem holds:

(aei
; ae−i
; q)n =
n∑

k=0

[
n

k

]
q

q
(
k
2

)
(−a)k(−a2qk ; q2)n−k k(cos 
):

Proof. Use Theorem 2.2 and (1.3).

We next give several corollaries to Theorems 2.3 and 2.4, which concern the q-exponential func-
tions of [9]

Eq(cos 
; t) =
(t2; q2)∞

(qt2; q2)∞

∞∑
n=0

(−it)n

(q; q)n
qn2=4(−iq(1−n)=2ei
;−iq(1−n)=2e−i
; q)n; (2.4)

Eq(cos 
; cos�; t) =
(t2; q2)∞

(qt2; q2)∞

∞∑
n=0

(−ei(�+
)q(1−n)=2;−ei(�−
)q(1−n)=2; q)n

×(te−i�)n

(q; q)n
qn2=4: (2.5)

Note that (2.4) is an expansion for Eq(x; t) in terms of {�n(x;−iq(1−n)=2)}, so it reasonable to
Hnd the expansion in the bases {�n(x)} and { n(x)}. Corollary 2.5 gives the {�n(x)} expansion,
and Corollary 2.7 gives the { n(x)} expansion.
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Corollary 2.5. The function Eq(x; t) has the representations

Eq(cos 
; t) =
(−t; q1=2)∞
(qt2; q2)∞

2�1

(
q1=4ei
; q1=4e−i


−q1=2

∣∣∣∣∣ q1=2;−t

)

=
(t; q1=2)∞
(qt2; q2)∞

2�1

(−q1=4ei
;−q1=4e−i


−q1=2

∣∣∣∣∣ q1=2; t

)
:

Corollary 2.6. We have

Eq(cos 
; cos�; t) = Eq(cos 
; t)Eq(cos�; t):

Corollary 2.7. The function Eq(x; t) has the expansion formula

Eq(cos 
; t) =
∞∑
k=0

(1 + e2i
)(−e2i
q−k ; q2)k
(q; q)k(1 + e2i
q−k)

qk2=4tke−ik
:

It must emphasized that the Hrst equation in Corollary 2.5 says that the q-Taylor expansion of
Theorem 2.1 holds for the function f(x) = Eq(x; t) because

DqEq(cos 
; t) =
2tq1=4

1 − q
Eq(cos 
; t);

Eq(�0; t) =
(−t; q1=2)∞
(qt2; q2)∞

:

Similarly Theorem 2.2 holds for f(x) = Eq(x; t) because

Eq(0; t) = 1:

Corollary 2.5 is Corollary 4.3 in [7], where two other proofs are given. Corollary 2.6 is the addition
theorem for Eq [6,13]; and Corollary 2.7 is also given in [14, (7.56)].

Proof. We prove Corollaries 2.5 and 2.6 simultaneously form Theorem 2.3. We rewrite Theorem
2.3 as

�n(x; a) =
n∑

k=0

akqk(k−2)=4(q; q)n
(q; q)k(q; q)n−k

(aq(2k−1)=4; q1=2)2n−2k�k(x):

Thus

∞∑
n=0

qn2=4tnan

(q; qn)
�n(x; aq(1−n)=2) =

∞∑
n=0

n∑
k=0

an+k tnq(n−k)2=4

(q; q)k(q; q)n−k
(aq(k−n+1=2)=2; q1=2)2n−2k�k(x):
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After replacing n by n + k the n-sum is

∞∑
n=0

a2ntn(−1)n

(q; q)n
(aq1=4; q1=4=a; q1=2)n:

Therefore

(t2; q2)∞
(qt2; q2)∞

∞∑
n=0

qn2=4tnan

(q; q)n
�n(x; aq(1−n)=2)

=
(t2; q2)∞
(qt2; q2)∞

[ ∞∑
n=0

(−a2t)n

(q; q)n
(aq1=4; q1=4=a; q1=2)n

][ ∞∑
k=0

a2k tk

(q; q)k
�k(x)

]
: (2.6)

Eq. (2.6) proves both Corollaries 2.5 and 2.6. If a = ±i, the left-hand side of (2.6) is deHnition
(2.4) of Eq(cos 
; t), while the n-sum on the right-hand side is evaluable to inHnite products by the
q-binomial theorem. The k-sum is the 2�1 for both equations in Corollary 2.5. For Corollary 2.6,
replace a by −ei� and t by −e−2i�t in (2.6) and use Corollary 2.5.

The identical steps may be performed using Theorem 2.4 to Hnd the { n} analogue of (2.6)

(t2; q2)∞
(qt2; q2)∞

∞∑
n=0

qn2=4tnan

(q; q)n
�n(x; aq(1−n)=2)

=
(t2; q2)∞
(qt2; q2)∞

[ ∞∑
k=0

(−a2t)kqk2=4

(q; q)k
 k(x)

][ ∞∑
n=0

(−a2q1−n; q2)n
(q; q)n

antnqn2=4

]
: (2.7)

This time the choice a = ±i in (2.7) allows the n-sum to be evaluated, and the result is Corollary
2.7. As before putting a = −ei� and t = −e−2i�t gives Corollary 2.6 and as bonus Eq(0; cos 
; t) =
Eq(cos 
; t).

Corollary 2.7 may be also proven by splitting deHnition (2.4) into the even and odd terms, applying
a 2�1 transformation to each, and recombining the terms.

Because the polynomials {�n(x; aq(1−n)=2)} are fundamental to the study of Eq(cos 
; t), it is
worthwhile to record another connection coe4cient result which is equivalent to the addition theorem
in Corollary 2.6.

Corollary 2.8. The polynomials {�(x; aq(1−n)=2)} satisfy the connection relation

�n(x; aq(1−n)=2) =
n∑

k=0

[
n

k

]
q

1 + a2

1 + a2q−k (−a2q−k ; q2)kq−k(n−k)=2(ia)n−k�n−k(x;−iq(1−n+k)=2):
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Proof. If a = ei�; �n(x; aq(1−n)=2)=an is a polynomial in y = cos� of degree n due to

�n(cos 
; ei�q(1−n)=2)e−in� = (−1)n�n(cos�; ei
q(1−n)=2)e−in
: (2.8)

The result then follows from Theorem 2.2 applied to a function of y; y = cos�.

3. Linearization of products

In this section, we use Theorem 1.1 to evaluate the linearization coe4cients ck;m;n(a; b; c) in

�m(x; b)�n(x; c) =
m+n∑
k=0

ck;m;n(a; b; c)�k(x; a); (3.1)

our main result in Theorem 3.1.
We shall use the q-Leibniz rule [5]

Dn
q(fg) =

n∑
k=0

[
n

k

]
q

qk(k−n)=2 (�k
qD

n−k
q f

) (
�k−n
q Dk

qg
)
; (3.2)

where

(�a
q)f(x) = Jf(qa=2ei
); x = cos 
: (3.3)

We see that to apply Theorem 1.1, we need to evaluate �s
qD

k−s
q �m(x; b) and �s−k

q Ds
q�n(x; c) at x=xk .

It is easy to see from (1.3) that if x = cos 


�s
qD

k−s
q �m(x; b) =

(2b)k−s(q; q)mq
(
k−s

2

)
=2

(q− 1)k−s(q; q)m+s−k
(bqk=2ei
; bq−s+k=2e−i
; q)m+s−k ;

�s−k
q Ds

q�n(x; c) =
(2c)s(q; q)nq

(
s
2

)
=2

(q− 1)s(q; q)n−s
(cqs−k=2ei
; cqk=2e−i
; q)n−s:

This leads to

ck;m;n(a; b; c) =
bk(q; ab; q)m(q; ac; q)n

ak(ab; q)k

k∑
s=0

cs(abqm; q)s
bs(q; ac; q)s

(c=a; q)n−s(bq−s=a; q)s+m−k

(q; q)k−s(q; q)n−s(q; q)m+s−k
qs(s−k):

(3.4)

Thus we have proved the following theorem.

Theorem 3.1. We have the summation identity

(bei
; be−i
; q)m(cei
; ce−i
; q)n
(q; ab; q)m(q; ac; q)n

=
∑
k; s¿0

bk−scs(abqm; q)s(c=a; q)n−s(bq−s=a; q)s+m−k

ak(ab; q)k(q; ac; q)s(q; q)k−s(q; q)n−s(q; q)m+s−k
qs(s−k)(aei
; ae−i
; q)k :

The sum is so that 06 s6min{n; k}; 06 k6 s + m.
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We now give another proof of Theorem 3.1. First compute the k sum by replacing k by k + s
then observe that the right-hand side becomes∑

s¿0

cs(abqm; q)s(c=a; q)n−s

as(ab; q; ac; q)s(q; q)n−s
�s(cos 
; a)

×
∑
k¿0

bka−k(bq−s=a; q)m−k

ak(abqs; q)k(q; q)k(q; q)m−k
q−sk(aqsei
; aqse−i
; q)k :

=
∑
s¿0

cs(abqm; aei
; ae−i
; q)s(c=a; q)n−s(bq−s=a; q)m
as(ab; q; ac; q)s(q; q)n−s(q; q)m

3�2

(
q−m; aqsei
; aqse−i


abqs; aqs+1−m=b;

∣∣∣∣∣ q; q
)

:

The 3�2 is now summable by the q-PfaK-SaalschNutz theorem [4, (II.12)] and the result is that each
side in the above expression equals

�m(x; a)
(ab; q)m

n∑
s=0

cs(aei
; ae−i
; q)s(c=a; q)n−s

as(q; ac; q)s(q; q)n−s(q; q)m
;

which is again summable by the q-PfaK-SaalschNutz theorem and Theorem 3.1 follows.
In terms of basic hypergeometric functions, Theorem 3.1 can be restated as

ck;m;n(a; b; c) =
bk(q; ab; q)m(ac; c=a; q)n(b=a; q)m−k

ak(q; ab; q)k(q; q)m−k

× 4�3

(
q−n; q−k ; abqm; qa=b

ac; q1−na=c; qm−k+1

∣∣∣∣∣ q; q
)

; m¿ k: (3.5)

For k ¿m the s-sum is now over s; min{k; n}¿ s¿ k − m, so we replace s by s + k − m. The
result is

ck;m;n(a; b; c) =
bmck−m(q; ac; q)n(c=a; q)m+n−k

ak(q; ac; q)k−m(q; q)n+m−k

× 4�3

(
q−m; qk−m−n; abqk ; q1+k−ma=b

acqk−m; q1−n−m+ka=c; qk−m+1

∣∣∣∣∣ q; q
)

; m6 k: (3.6)

These 4�3’s are terminating and balanced and are in general form because they depend on six
parameters. This is an interesting observation because the coe4cients must possess the symmetry
relation ck;m;n(a; b; c)=ck;n;m(a; c; b). This symmetry leads to the Sears transformation as follows. Fix
k as a positive integer and a terminating parameter, then observe that ck;m;n(a; b; c) = ck;n;m(a; c; b)
is a rational function identity valid for inHnitely many integer values of m and n. This allows us to
replace qm and qn by two general parameters M and N , respectively, and we see that the right-hand
side of (3.5) is

bk(q; ab; ac; q1−kM; b=a; c=a; q)∞
ak(q; ab; q)k(abM; acN; cN=a; bq−kM=a; q)∞

4�3

(
q−k ; 1=N; abM; qa=b

ac; qa=(Nc); Mq1−k

∣∣∣∣∣ q; q
)

;
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which must be symmetric under the exchange (a;M) and (c; N ), hence

bk(q1−kM ; q)k
(ab; q)k(bq−kM=a; q)k

4�3

(
q−k ; 1=N; abM; qa=b

ac; qa=(Nc); Mq1−k

∣∣∣∣∣ q; q
)

=
ck(q1−kN ; q)k

(ac; q)k(cq−kN=a; q)k
4�3

(
q−k ; 1=M; acN; qa=c

ab; qa=(Mb); Nq1−k

∣∣∣∣∣ q; q
)

: (3.7)

Eq. (3.7) is the version in [4, (III.16)] of the Sears transformation and iterating it leads to the
standard form of the Sears transformation [4, (III.15)].

When c = a (3.4) implies

�m(x; b)�n(x; a) =
(q; q)m(ab; q)m+n

(ab; q)n

m∑
k=0

bkq−nk(bq−n=a; q)m−k

ak(q; abqn; q)k(q; q)m−k
�k+n(x; a): (3.8)

This result is not new since [5, (2.2)] is

�m(x; b) = (q; ab; q)m
m∑

k=0

bk(b=a; q)m−k

ak(q; ab; q)k(q; q)m−k
�k(x; a); (3.9)

so we can replace a by aqn, multiply by �n(x; a) and apply the identity �n+k(x; a)=�k(x; a)�n(x; aqk).
This yields (3.8). This indicates that (3.8) is equivalent to the connection coe4cients between two
�n’s with diKerent a’s, which was shown to be equivalent to the q-PfaK SaalschNutz theorem [5].
Having said that (3.8) is not new, nevertheless, the special case m = n and b = −a gives the useful
connection coe4cient formula

(a2e2i
; a2e−2i
; q2)n = (a; q)n(−a2; q)2n

n∑
k=0

(−1)n+kqn(k−n)(−q−n; q)k
(q; q)k(q; q)n−k(−a2; q)2n−k

×(aei
; ae−i
; q)2n−k : (3.10)

4. q-Ultraspherical polynomials

In this section, we apply Theorems 1.1, 2.1 and 2.2 to the q-ultraspherical polynomials which
have the closed form [2,4].

Cn(cos 
; $|q) =
n∑

k=0

($; q)k($; q)n−k

(q; q)k(q; q)n−k
ei(n−2k)
 =

($; q)n
(q; q)n

ein

2�1

(
q−n; $

q1−n=$

∣∣∣∣∣ q; qe−2i


$

)
(4.1)

and satisfy

DqCn(x; $|q) =
2(1 − $)

1 − q
q(1−n)=2Cn−1(x; q$|q): (4.2)

Furthermore the Cn’s have the generating function [2]
∞∑
n=0

Cn(cos 
; $)tn =
($tei
; $te−i
; q)∞

(tei
; te−i
; q)∞
: (4.3)
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We Hrst expand Cn(x; $|q) in terms of {�k(x)}. It is clear from (4.3) that

Cn(�0; $|q) =
($; q1=2)n

(q1=2; q1=2)n
q−n=4: (4.4)

Thus Theorem 2.1, (4.2) and (4.4) imply the following proposition, which is in [4, (7.5.34)].

Proposition 4.1. The continuous q-ultraspherical polynomials have the basic hypergeometric
representation

Cn(cos 
; $|q) = q−n=4 ($; q1=2)n
(q1=2; q1=2)n

4�3

(
q−n=2; $qn=2; q1=4ei
; q1=4e−i


−q1=2; $1=2q1=4;−$1=2q1=4

∣∣∣∣∣ q1=2; q1=2

)
:

We next apply Theorem 2.2 using

Cn(0; $|q) =




0 if n is odd;

($2; q2)n
(q2; q2)n=2

(−1)n=2 if n is even:

The result is the following proposition.

Proposition 4.2. We have

Cn(cos 
; $|q) =
($; q)n
(q; q)n

(−e2i
q2−n; q)n−1(1 + e2i
)e−in


× 4�3

(
q−n; q1−n;−q1−n=$;−q2−n=$

q2−2n=$2;−e2i
q2−n;−e−2i
q2−n

∣∣∣∣∣ q2; q2

)
:

Finally we apply Theorem 1.1 to Cn(x; $|q). Let

Cn(x; $|q) =
n∑

k=0

bn;k(a; $)�k(x; a): (4.5)

This time (4.1) and (4.2) give

bn;k(a; $) =
($; q)k
(q; q)k

q(1−n)k=2

ak (−1)kCn−k(xk ; $qk |q)

=
(−1)k($; q)nan−2k

(q; q)k(q; q)n−k
qk(1−k)=2

2�1

(
qk−n; qk$

q1−n=$

∣∣∣∣∣ q; q
1−2k

a2$

)
: (4.6)

The 2�1 in (4.6) may be summed by the q-Gauss theorem [4] if $ = a2 to obtain a quadratic
transformation (see [2] or [4, (7.5.33)]).
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Proposition 4.3. We have

Cn(x; $|q) =
($2; q)n

$n=2(q; q)n
4�3

(
q−n; $2qn;

√
$ei
;

√
$e−i


$
√
q;−$

√
q;−$

∣∣∣∣∣ q; q
)

:

For our last expansion we invert (4.5), let

�n(x; a) =
n∑

j=0

an;jCj(x; $|q): (4.7)

We shall Hnd an;j using the orthogonality relation of the continuous q-ultraspherical polynomials∫ �

0
Cm(cos 
; $|q)Cn(cos 
; $|q)

(e2i
; e−2i
; q)∞
($e2i
; $e−2i
; q)∞

; d


=
2�($; q$; q)∞

(q; $2; q)∞
($2; q)n(1 − $)

(q; q)n(1 − $qn)
&m;n: (4.8)

From (4.8) we get

2�($; q$; q)∞
(q; $2; q)∞

($2; q)j(1 − $)
(q; q)j(1 − $qj)

an;j

=
∫ �

0
(aei
; ae−i
; q)nCj(cos 
; $|q)

(e2i
; e−2i
; q)∞
($e2i
; $e−2i
; q)∞

d
:

By writing (aei
; ae−i
; q)n as quotients of inHnite products then applying (4.3) to expand it in powers
of a, we see that the above expression is

=
∞∑
m=0

amqmn
∫ �

0
Cm(cos 
; q−n|q)Cj(cos 
; $|q)

(e2i
; e−2i
; q)∞
($e2i
; $e−2i
; q)∞

d


=
∞∑
m=0

amqmn
[m=2]∑
k=0

$k(q−n=$; q)k(q−n; q)m−k

(q; q)k(q$; q)m−k

1 − $qm−2k

1 − $

×
∫ �

0
Cm−2k(cos 
; $|q)Cj(cos 
; $|q)

(e2i
; e−2i
; q)∞
($e2i
; $e−2i
; q)∞

d
:

Therefore

(1 − $)
(1 − $qj)

an;j = ajqnj
∞∑
k=0

$k(q−n=$; q)k(q−n; q)k+j

(q; q)k(q$; q)k+j
a2kq2kn

that is

an;j = ajqnj (q−n; q)j
($; q)j

2�1

(
qj−n; q−n=$

$qj+1

∣∣∣∣∣ q; a2$q2n

)
: (4.9)
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The 2�1 can be summed if a2 = q$ in which case we get

�n(x;
√

q$) =
($2qn+1; q)n

(q$; q)n

n∑
j=0

(q−n; q$; q)j
($2qn+1; $; q)j

$j=2qj(n+1=2)Cj(x; $|q): (4.10)

As another example, if a2 = $ the 2�1 is a sum of two terms and the result becomes

�n(x;
√

$) =
(1 − $qn)($2qn; q)n
(1 − $2qn)(q$; q)n

n∑
j=0

(1 − $2q2j)(q−n; q)j
(1 − $)($2qn+1; q)j

$j=2qnjCj(x; $|q): (4.11)

5. Remarks

It is natural to ask if Theorems 1.1, 2.1, and 2.2 hold for a class of non-polynomial functions. In
[8] such theorems are given for entire functions which satisfy growth conditions.

Theorems 1.1 and 2.1 give two alternative forms for the coe4cients fk of �k(x), what results is

(−q1=2; q1=2)kq−k(k−1)=8(Dk
q1=2f)(�k) = (q1=2 + 1)k(Dk

qf)(�0); (5.1)

where

�k = (q(k+1)=4 + q−(k+1)=4)=2:

We do not have basic hypergeometric proofs of Theorem 2.4 and Corollary 2.8. It is likely that
Theorem 2.4 could be proven by splitting the sum into even and odd terms as a sum of two balanced
4�3’s. Applying the Sears transformation to each sum could then lead to a recombined single sum
that is evaluable—this type of proof establishes Corollary 2.7. Nonetheless, these proposed details
contrast with the ease of use of Theorems 1.1, 2.1, and 2.2.

The coe4cient an;j in (4.9), the inverse to (4.6), can also be written as a multiple of the
q-ultraspherical polynomial

Cn−j(cos�; q−n=b|q); a = q(1−n)=2e−i�:

Even polynomials in x may be expanded as functions of cos 2
=2x2−1, for example [4, (7.5.40)]
is

C2n(cos 
; $|q) = q−n=2 ($; q1=2)2n

(q1=2; q1=2)2n
4�3

(
q−n; $qn; q1=2e2i
; q1=2e−2i


$q1=2;−q1=2;−q

∣∣∣∣∣ q; q
)

: (5.2)

However it can be shown that (5.2) is equivalent to the reversal of Proposition 4.2, which is

C2n(cos 
; $|q) = (−1)n
($2; q2)n
(q2; q2)n

4�3

(
q−2n; $2q2n; e2i
;−e−2i


−$;−$q; q

∣∣∣∣∣ q2; q2

)
: (5.3)

Apply Singh’s quadratic 4�3 transformation [4, (III.21)] followed by the 1-balanced 4�3 transfor-
mation [4, (III.15)] to show that (5.3) and (5.2) are equivalent.
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