The intersection of essential approximate point spectra of operator matrices

Yuan Li *, Hongke Du

College of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710062, PR China

Received 20 May 2005
Available online 27 December 2005
Submitted by J.H. Shapiro

Abstract

When $A \in B(\mathcal{H})$ and $B \in B(\mathcal{K})$ are given, we denote by M_C the operator acting on the infinite-dimensional separable Hilbert space $\mathcal{H} \oplus \mathcal{K}$ of the form $M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$. In this paper, it is shown that there exists some operator $C \in B(\mathcal{K}, \mathcal{H})$ such that M_C is upper semi-Fredholm and $\text{ind}(M_C) \leq 0$ if and only if there exists some left invertible operator $C \in B(\mathcal{K}, \mathcal{H})$ such that M_C is upper semi-Fredholm and $\text{ind}(M_C) \leq 0$. A necessary and sufficient condition for M_C to be upper semi-Fredholm and $\text{ind}(M_C) \leq 0$ for some $C \in \text{Inv}(\mathcal{K}, \mathcal{H})$ is given, where $\text{Inv}(\mathcal{K}, \mathcal{H})$ denotes the set of all the invertible operators of $B(\mathcal{K}, \mathcal{H})$. In addition, we give a necessary and sufficient condition for M_C to be upper semi-Fredholm and $\text{ind}(M_C) \leq 0$ for all $C \in \text{Inv}(\mathcal{K}, \mathcal{H})$.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Essential approximate point spectrum; 2×2 operator matrix; Perturbations of spectra

1. Introduction

The study of upper triangular operator matrices arises naturally from the following fact: if T is a Hilbert space operator and M is an invariant subspace for T, then T has the following 2×2 upper triangular operator matrix representation:

$$T = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} : \mathcal{M} \oplus \mathcal{M}^\perp \to \mathcal{M} \oplus \mathcal{M}^\perp,$$

* Corresponding author.
E-mail address: liyuan0401@yahoo.com.cn (Y. Li).

0022-247X/S – see front matter © 2005 Elsevier Inc. All rights reserved.
and one way to study operator is to see them as entries of simpler operators. Recently, many authors have paid much attention to 2×2 upper triangular operator matrices (see [2–5,7,9,10]). For a given pair (A, B) of operators, Du and Pan (see [5]) give a necessary and sufficient condition for which M_C is invertible for some $C \in B(K, \mathcal{H})$, Han et al. (see [9]) extended the result for operators A, B, C on Banach space. For the essential spectrum $\sigma_e(T)$, the Weyl spectrum $\sigma_w(T)$ and the Browder spectrum $\sigma_b(T)$ of T, analogous results have been obtained in many literature (see [2,3,5,7]).

Throughout this paper, let \mathcal{H} and \mathcal{K} be complex separable Hilbert spaces, let $B(\mathcal{H}, \mathcal{K})$, $B_l(\mathcal{H}, \mathcal{K})$ and Inv$(\mathcal{H}, \mathcal{K})$, respectively, denote the set of bounded linear operators, left invertible bounded linear operators and invertible bounded linear operators from \mathcal{H} to \mathcal{K}, respectively, and abbreviate $B(\mathcal{H}, \mathcal{H})$ to $B(\mathcal{H})$. If $A \in B(\mathcal{H})$, $B \in B(\mathcal{K})$ and $C \in B(\mathcal{K}, \mathcal{H})$, we define an operator M_C acting on $\mathcal{H} \oplus \mathcal{K}$ by the form

$$M_C := \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}.$$

For an operator T, we use $N(T)$ and $R(T)$ to denote the null space and the range of T, respectively. Let $n(T)$ be the nullity of T which is equal to $\dim N(T)$, and let $d(T)$ be the deficiency of T which is equal to $\dim N(T^*)$. An operator $T \in B(\mathcal{H}, \mathcal{K})$ (or $B(\mathcal{H})$) is said to be upper semi-Fredholm if $R(T)$ is closed and $N(T)$ has finite dimension and lower semi-Fredholm if $R(T)$ is closed and $N(T^*)$ has finite dimension. An operator T is called Fredholm if it is both upper semi-Fredholm and lower semi-Fredholm. Let $\Phi_+(H)$ ($\Phi_-(H)$) denotes the set of all upper (lower) semi-Fredholm operators. For an operator T, the left (right) essential spectrum $\sigma_{le}(T)$ ($\sigma_{re}(T)$) is defined by

$$\sigma_{le}(T)(\sigma_{re}(T)) = \{\lambda \in \mathbb{C}: T - \lambda \text{ is not upper (lower) semi-Fredholm}\}.$$

If T is a semi-Fredholm operator, we define the index of T by $\text{ind}(T) = n(T) - d(T)$. An operator $T \in B(\mathcal{H}, \mathcal{K})$ is called Weyl if it is a Fredholm operator of index zero.

Let $\Phi_+(H)$ ($\Phi_+(H, K)$) (introduced in [11]) be the class of all $T \in \Phi_+(H)$ ($T \in \Phi_+(H, K)$) with $\text{ind}(T) \leq 0$ for any $T \in B(\mathcal{H})$ ($T \in B(\mathcal{H}, \mathcal{K})$), let $\Phi^+(H)$ ($\Phi^+(H, K)$) be the class of all $T \in \Phi^-(H)$ ($T \in \Phi^-(H, K)$) with $\text{ind}(T) \geq 0$ for any $T \in B(\mathcal{H})$ ($T \in B(\mathcal{H}, \mathcal{K})$), let

$$\sigma_{ea}(T) = \{\lambda \in \mathbb{C}: T - \lambda \text{ is not in } \Phi_+(H)\},$$

$$\sigma_{SF^+}(T) = \{\lambda \in \mathbb{C}: T - \lambda \text{ is not in } \Phi^+(H)\},$$

$$\sigma_w(T) = \sigma_{ea}(T) \cup \sigma_{SF^+}(T).$$

Cao and Meng (in [2]) give a necessary and sufficient condition for which $M_C \in \Phi_+(H)$ for some $C \in B(\mathcal{K}, \mathcal{H})$ and characterize the set of $\bigcap_{C \in B_l(\mathcal{K}, \mathcal{H})} \sigma_{ea}(M_C)$. In this paper, our main goal is to characterize the intersection of $\bigcap_{C \in B_l(\mathcal{K}, \mathcal{H})} \sigma_{ea}(M_C)$ and $\bigcap_{C \in \text{Inv}(\mathcal{K}, \mathcal{H})} \sigma_{ea}(M_C)$. This paper is organized as follows. In Section 2, we give a necessary and sufficient condition for which $M_C \in \Phi_+(H)$ for some $C \in B_l(\mathcal{K}, \mathcal{H})$ and get

$$\bigcap_{C \in B_l(\mathcal{K}, \mathcal{H})} \sigma_{ea}(M_C) = \bigcap_{C \in B_l(\mathcal{K}, \mathcal{H})} \sigma_{ea}(M_C).$$

In Section 3, we give a necessary and sufficient condition for which $M_C \in \Phi_+(H)$ for some $C \in \text{Inv}(\mathcal{K}, \mathcal{H})$ and get

$$\bigcap_{C \in \text{Inv}(\mathcal{K}, \mathcal{H})} \sigma_{ea}(M_C) = \bigcap_{C \in B_l(\mathcal{K}, \mathcal{H})} \sigma_{ea}(M_C) \cup \{\lambda \in \mathbb{C}: B - \lambda \text{ is compact}\}.$$
In Section 4, we give a necessary and sufficient condition for which $M_C \in \Phi_+^-(H)$ for all $C \in \Inv(K, H)$. In addition, the idea in this paper is different from [2].

2. $\bigcap_{C \in B_r(K, H)} \sigma_{ea}(M_C)$

In order to prove our main results, we begin with some lemmas.

Lemma 2.1. Let $A \in B(H)$, $B \in B(K)$ and $C \in B(K, H)$. If C as an operator from $N(B) \oplus N(B)^\perp$ into $R(A)^\perp \oplus R(A)$ has the following operator matrix:

$$C = \begin{pmatrix} C_1 & C_2 \\ C_3 & C_4 \end{pmatrix},$$

then

(a) $M_C \in \Phi_+^-(H \oplus K)$ if and only if

(i) $A \in \Phi_+(H)$;

(ii) $M_1 \in \Phi_+^-(N(A) \oplus N(B) \oplus N(B)^\perp, R(A)^\perp \oplus R(B)^\perp \oplus R(B))$ where

$$M_1 := \begin{pmatrix} 0 & C_1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & B_1 \end{pmatrix} : N(A) \oplus N(B) \oplus N(B)^\perp \to R(A)^\perp \oplus R(B)^\perp \oplus R(B),$$

where B as an operator from $N(B) \oplus N(B)^\perp$ into $R(B)^\perp \oplus R(B)$ has the operator matrix $B = \begin{pmatrix} 0 & 0 \\ 0 & B_1 \end{pmatrix}$.

(b) If $R(B)$ is closed, then $M_C \in \Phi_+^-(H \oplus K)$ if and only if

(i) $A \in \Phi_+(H)$;

(ii) C_1 is an operator with $R(C_1)$ is closed, $n(C_1) < \infty$, and $n(C_1) + n(A) \leq d(C_1) + d(B)$.

Proof. (a) **Sufficiency.** Since $A \in \Phi_+(H)$, then $R(A)$ is closed. The space $H \oplus K$ can be decomposed as the following direct sums:

$$H \oplus K = N(A) \oplus N(A)^\perp \oplus N(B) \oplus N(B)^\perp = R(A)^\perp \oplus R(A) \oplus \overline{R(B)} \oplus R(B)^\perp.$$

Thus M_C as an operator from $N(A) \oplus N(A)^\perp \oplus N(B) \oplus N(B)^\perp$ into $R(A)^\perp \oplus R(A) \oplus \overline{R(B)} \oplus R(B)^\perp$ has the following operator matrix:

$$M_C = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} = \begin{pmatrix} 0 & 0 & C_1 & C_2 \\ 0 & A_1 & C_3 & C_4 \\ 0 & 0 & 0 & B_1 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

where A_1 is an operator from $N(A)^\perp$ onto $R(A)$ and B_1 is an operator from $N(B)^\perp$ into $\overline{R(B)}$.

By the assumption that $A \in \Phi_+(H)$, A_1 is an invertible operator. In this case, we have

$$\begin{pmatrix} 0 & 0 & C_1 & C_2 \\ 0 & A_1 & C_3 & C_4 \\ 0 & 0 & 0 & B_1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} I & 0 & 0 & 0 \\ 0 & I & -A_1^{-1}C_3 & -A_1^{-1}C_4 \\ 0 & 0 & I & 0 \\ 0 & 0 & 0 & I \end{pmatrix} = \begin{pmatrix} 0 & 0 & C_1 & C_2 \\ 0 & A_1 & 0 & 0 \\ 0 & 0 & 0 & B_1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$
where
\[
\begin{pmatrix}
I & 0 & 0 & 0 \\
0 & I & -A_1^{-1}C_3 & -A_1^{-1}C_4 \\
0 & 0 & I & 0 \\
0 & 0 & 0 & I
\end{pmatrix}
\]
is an invertible operator from \(N(A) \oplus N(A)^\perp \oplus N(B) \oplus N(B)^\perp\) onto \(N(A) \oplus N(A)^\perp \oplus N(B) \oplus N(B)^\perp\). Thus \(M_C \in \Phi_+^-(H \oplus K)\) if and only if
\[
\begin{pmatrix}
0 & 0 & C_1 & C_2 \\
0 & A_1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & B_1
\end{pmatrix}
\in \Phi_+^-(N(A) \oplus N(B) \oplus N(B)^\perp, R(A)^\perp \oplus R(A) \oplus R(B)^\perp \oplus \overline{R(B)}).
\]
It follows that if \(A \in \Phi_+(H)\) then \(M_C \in \Phi_+^-(H \oplus K)\) if and only if
\[
M_1 = \begin{pmatrix}
0 & C_1 & C_2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & B_1
\end{pmatrix}
\in \Phi_+^-(N(A) \oplus N(B) \oplus N(B)^\perp, R(A)^\perp \oplus R(A) \oplus R(B)^\perp \oplus \overline{R(B)}).
\]

Necessity. Clearly, \(A \in \Phi_+(H)\). From the discussion above, it is not difficult to get (ii).

(b) If \(R(B)\) is closed, then \(B_1\) as an operator from \(N(B)^\perp\) into \(R(A)^\perp\) is invertible. Thus
\[
\begin{pmatrix}
I & 0 & -C_2B_1^{-1} \\
0 & I & 0 \\
0 & 0 & I
\end{pmatrix}
\begin{pmatrix}
0 & C_1 & C_2 \\
0 & 0 & 0 \\
0 & 0 & B_1
\end{pmatrix} = \begin{pmatrix}
0 & C_1 & 0 \\
0 & 0 & 0 \\
0 & 0 & B_1
\end{pmatrix}.
\]
Since \(n(A) < \infty\) and \(B_1\) is invertible, we conclude that \(M_1 \in \Phi_+^-(N(A) \oplus N(B) \oplus N(B)^\perp, R(A)^\perp \oplus R(B)^\perp \oplus \overline{R(B)})\) if and only if \(R(C_1)\) is closed, \(n(C_1) < \infty\) and \(n(C_1) + n(A) \leq d(C_1) + d(B)\). \(\square\)

Corollary 2.2. Let \((A, B)\) be a given pair of operators. If \(A \in \Phi_+(H), R(B)\) is closed and \(d(A) + d(B) < n(A) + n(B)\), then for all \(C \in B(K, H)\), \(M_C \notin \Phi_+^-(H \oplus K)\).

Proof. Suppose that \(C\) has the operator matrix form (1) for all \(C \in B(K, H)\).

(i) \(n(B) = \infty\). Since \(d(A) < \infty\), then \(n(C_1) = \infty\) for all \(C\). By Lemma 2.1, \(M_C \notin \Phi_+^-(H \oplus K)\).

(ii) \(n(B) < \infty, n(A) < \infty, d(A) < \infty\) and \(d(B) < \infty\). Since \(C_1\) is an operator from \(N(B)\) into \(R(A)^\perp\), then
\[
n(B) = n(C_1) + \dim N(C_1)^\perp \quad \text{and} \quad d(A) = d(C_1) + \dim R(C_1).
\]
Thus \(n(C_1) + n(A) > d(B) + d(C_1)\) since \(n(B) + n(A) > d(A) + d(B)\) and \(\dim N(C_1)^\perp = \dim R(C_1)\). From Lemma 2.1, \(M_C \notin \Phi_+^-(H \oplus K)\) for all \(C\). \(\square\)

Corollary 2.3. If \(R(B)\) is closed, \(A \in \Phi_+(H)\) and \(n(B) + n(A) \leq d(B) + d(A)\), then \(M_C \notin \Phi_+^-(H \oplus K)\) for any \(C \in B(K, H)\) if and only if \(d(A) < \infty\) and \(n(B) = d(B) = \infty\).

Proof. Suppose that \(C\) has the operator matrix form (1).
Sufficiency is clear, since \(n(B) = d(B) = \infty \) and \(d(A) < \infty \), then \(n(C_1) = \infty \). By Lemma 2.1, \(M_C \notin \Phi_+^-(H \oplus K) \) for all \(C \).

Necessity. Suppose that \(d(A) < \infty \) and \(n(B) = d(B) = \infty \) are not satisfied. There are four cases to consider.

Case 1. \(n(B) = d(A) = \infty \).

Assume that \(n(A) \leq d(B) \). Let \(S \) be an unitary operator from \(N(B) \) onto \(R(A)^\perp \). Since \(A \in \Phi_+(H) \), \(\dim R(A) = \infty \), let \(S_1 \) be a left invertible operator from \(N(B)^\perp \) into \(R(A) \). Define an operator \(C_0 \) by

\[
C_0 = \begin{pmatrix} S & 0 \\ 0 & S_1 \end{pmatrix} : N(B) + N(B)^\perp \to R(A)^\perp + R(A)
\]

then \(MC_0 \in \Phi_+^-(H \oplus K) \) by Lemma 2.1.

If \(n(A) > d(B) \) and \(\{e_i\}_{i=1}^\infty \) and \(\{f_i\}_{i=1}^\infty \) are orthogonal bases of \(N(B) \) and \(R(A)^\perp \), respectively, denote \(n(A) - d(B) = m \), and define \(C_1 \) as an operator from \(N(B) \) into \(R(A)^\perp \) by

\[
C_1(e_i) = f_{m+i}, \quad i = 1, 2, \ldots
\]

Clearly, \(n(C_1) = 0 \) and \(n(C_1^*) = m \), then \(n(C_1) + n(A) = d(C_1) + d(B) \). Define an operator \(C_0 \) by \(C_0 = \left(\begin{array}{cc} C_1 & 0 \\ 0 & S_1 \end{array} \right) \). From Lemma 2.1, \(MC_0 \in \Phi_+^-(H \oplus K) \).

Case 2. \(n(B) < \infty \) and \(d(A) = \infty \).

It is easy to show that \(M_C \in \Phi_+^-(H \oplus K) \), for all \(C \in \mathcal{B}(\mathcal{K}, \mathcal{H}) \).

Case 3. \(n(B) < \infty \), \(d(A) < \infty \) and \(d(B) = \infty \).

It is clear that \(M_C \in \Phi_+^-(H \oplus K) \), for all \(C \in \mathcal{B}(\mathcal{K}, \mathcal{H}) \).

Case 4. \(n(B) < \infty \), \(d(A) < \infty \) and \(d(B) < \infty \).

As the similar way with the proof of Corollary 2.2(ii), we can prove that \(n(C_1) < \infty \) and \(n(C_1) + n(A) \leq d(C_1) + d(B) \) for all \(C \). \(\square \)

The following theorem is our main result in this section.

Theorem 2.4. For a given pair \((A, B)\) of operators, we have

\[
\bigcap_{C \in \mathcal{B}(\mathcal{K}, \mathcal{H})} \sigma_{\text{sc}}(MC) = \sigma_{\text{le}}(A) \cup \Phi_+\text{lw}(A, B) \cup \Upsilon_\text{lw}(A, B) \cup \Psi_1(A, B),
\]

where

\[
\Psi_1(A, B) = \{ \lambda \in \mathbb{C}: R(B - \lambda) \text{ is not closed and } d(A - \lambda) < \infty \},
\]

\[
\Phi_+\text{lw}(A, B) = \{ \lambda \in \mathbb{C}: R(B - \lambda) \text{ is closed and } n(B - \lambda) + n(A - \lambda) > d(B - \lambda) + d(A - \lambda) \},
\]

\[
\Upsilon_\text{lw}(A, B) = \{ \lambda \in \mathbb{C}: R(B - \lambda) \text{ is closed, } n(B - \lambda) = d(B - \lambda) = \infty \text{ and } d(A - \lambda) < \infty \}.
\]
Proof. For convenience, we divide the proof into two steps.

Step 1. If \(\lambda \in \Psi_l(A, B) \setminus \sigma_{le}(A) \), then for all \(C \in B(K, H) \), \(MC - \lambda \notin \Phi_\mp(H \oplus K) \).

Suppose that \(MC - \lambda \) has the operator matrix (3) and \(C \) has the operator matrix (1). By Lemma 2.1, for all \(C \in B(K, H) \), \(MC - \lambda \) is in \(\Phi_\mp+ (H \oplus K) \) if and only if

\[
\begin{pmatrix}
0 & C_1 & C_2 \\
0 & 0 & 0 \\
0 & 0 & B_1 - \lambda
\end{pmatrix}
\notin \Phi_\mp(N(A - \lambda) \oplus N(B - \lambda) \oplus N(B - \lambda)^\perp, R(A - \lambda)^\perp \oplus R(B - \lambda)^\perp \oplus \overline{R(B - \lambda)}),
\]

for all \(C_1 \in B(N(B - \lambda), R(A - \lambda)^\perp) \), \(C_2 \in B(N(B - \lambda)^\perp, R(A - \lambda)^\perp) \).

Conversely, assume that there exist \(C_0 \in B(N(B - \lambda), R(A - \lambda)^\perp) \) and \(C_2^0 \in B(N(B - \lambda)^\perp, R(A - \lambda)^\perp) \) such that

\[
\begin{pmatrix}
0 & C_1 & C_2 \\
0 & 0 & 0 \\
0 & 0 & B_1 - \lambda
\end{pmatrix}
\in \Phi_\mp(N(A) \oplus N(B) \oplus N(B)^\perp, R(A)^\perp \oplus R(B)^\perp \oplus \overline{R(B)}).
\]

Then it is upper semi-Fredholm. By the assumption that \(\lambda \in \Psi_l(A, B) \setminus \sigma_{le}(A) \), we have \(d(A - \lambda) < \infty \). It follows that \(C_0 \) and \(C_2^0 \) are compact operators. Using 3.11 in Chapter XI of [1], we conclude that

\[
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & B_1 - \lambda
\end{pmatrix}
\]

is upper semi-Fredholm. Thus \(R(B_1 - \lambda) \) is closed. But \(\lambda \in \Psi_l(A, B) \setminus \sigma_{le}(A) \) implies that \(R(B - \lambda) \) is not closed. This is a contradiction.

Step 2. If \(\lambda \in \{ \lambda \in \mathbb{C} : R(B - \lambda) \) is not closed, \(d(A - \lambda) = \infty \} \setminus \sigma_{le}(A) \), then there exists \(C_0 \in B_1(K, H) \), such that \(MC_0 - \lambda \notin \Phi_\mp(H \oplus K) \).

Let \(H_1 \) be a closed subspace of \(R(A - \lambda)^\perp \) with \(\dim H_1 = \dim N(B - \lambda) \) and \(\dim R(A - \lambda)^\perp \oplus H_1 = \dim N(B - \lambda)^\perp \). Let \(C_1 \) and \(C_2 \) be unitary operators from \(N(B - \lambda) \) onto \(H_1 \) and from \(N(B - \lambda)^\perp \) onto \(R(A - \lambda)^\perp \oplus H_1 \), respectively. Define

\[
C_0 = \begin{pmatrix}
C_1 \\
0
\end{pmatrix} : N(B - \lambda) \oplus N(B - \lambda)^\perp \to R(A - \lambda)^\perp \oplus R(A - \lambda).
\]

Clearly,

\[
\begin{pmatrix}
C_1^* & 0 \\
C_2^* & 0
\end{pmatrix} \begin{pmatrix}
C_1 & C_2 \\
0 & 0
\end{pmatrix} = \begin{pmatrix}
I & 0 \\
0 & I
\end{pmatrix},
\]

where

\[
\begin{pmatrix}
C_1^* & 0 \\
C_2^* & 0
\end{pmatrix} : R(A - \lambda)^\perp \oplus R(A - \lambda) \to N(B - \lambda) \oplus N(B - \lambda)^\perp.
\]

Thus \(C_0 \) is left invertible. Since

\[
\begin{pmatrix}
I & 0 & 0 \\
0 & I & 0 \\
-(B_1 - \lambda)C_2^* & 0 & I
\end{pmatrix} \begin{pmatrix}
0 & C_1 & C_2 \\
0 & 0 & 0 \\
0 & 0 & B_1 - \lambda
\end{pmatrix} = \begin{pmatrix}
0 & C_1 & C_2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]

for all \(C \in B(K, H) \), it follows that \(MC_0 - \lambda \) is in \(\Phi_\mp(H \oplus K) \) if and only if

\[
\begin{pmatrix}
0 & C_1 & C_2 \\
0 & 0 & 0 \\
0 & 0 & B_1 - \lambda
\end{pmatrix}
\notin \Phi_\mp(N(A - \lambda) \oplus N(B - \lambda) \oplus N(B - \lambda)^\perp, R(A - \lambda)^\perp \oplus R(B - \lambda)^\perp \oplus \overline{R(B - \lambda)}),
\]

for all \(C_1 \in B(N(B - \lambda), R(A - \lambda)^\perp) \), \(C_2 \in B(N(B - \lambda)^\perp, R(A - \lambda)^\perp) \).

Conversely, assume that there exist \(C_0 \in B(N(B - \lambda), R(A - \lambda)^\perp) \) and \(C_2^0 \in B(N(B - \lambda)^\perp, R(A - \lambda)^\perp) \) such that

\[
\begin{pmatrix}
0 & C_1 & C_2 \\
0 & 0 & 0 \\
0 & 0 & B_1 - \lambda
\end{pmatrix}
\in \Phi_\mp(N(A) \oplus N(B) \oplus N(B)^\perp, R(A)^\perp \oplus R(B)^\perp \oplus \overline{R(B)}).
\]

Then it is upper semi-Fredholm. By the assumption that \(\lambda \in \Psi_l(A, B) \setminus \sigma_{le}(A) \), we have \(d(A - \lambda) < \infty \). It follows that \(C_0 \) and \(C_2^0 \) are compact operators. Using 3.11 in Chapter XI of [1], we conclude that

\[
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & B_1 - \lambda
\end{pmatrix}
\]

is upper semi-Fredholm. Thus \(R(B_1 - \lambda) \) is closed. But \(\lambda \in \Psi_l(A, B) \setminus \sigma_{le}(A) \) implies that \(R(B - \lambda) \) is not closed. This is a contradiction.
and
\[
\begin{pmatrix}
0 & C_1 & C_2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} \in \Phi_+\left((N(A - \lambda) \oplus N(B - \lambda)) \oplus N(B - \lambda)^\perp, R(A - \lambda)^\perp \oplus R(B - \lambda)^\perp \oplus R(B - \lambda)\right),
\]
\[M_{C_0} - \lambda \in \Phi_+(H \oplus K), \text{ by Lemma 2.1(a)}.\]
Finally, by Step 1, we can conclude that
\[
\bigcap_{C \in B_1(K, H)} \sigma_{\text{ca}}(M_C) \supseteq \Psi_{l}(A, B) \setminus \sigma_{\text{le}}(A).
\]
By Corollaries 2.2 and 2.3, it is easy to see that
\[
\bigcap_{C \in B_1(K, H)} \sigma_{\text{ca}}(M_C) \supseteq \left(\Psi_{l}(A, B) \setminus \sigma_{\text{le}}(A)\right) \cup \sigma_{\text{le}}(A) \cup \Phi_{\text{lw}}(A, B) \cup \Upsilon_{\text{lw}}(A, B)
\]
\[= \sigma_{\text{le}}(A) \cup \Phi_{\text{lw}}(A, B) \cup \Upsilon_{\text{lw}}(A, B) \cup \Psi_{l}(A, B).\]
By Corollary 2.3 and Step 2, we get that
\[
\bigcap_{C \in B_1(K, H)} \sigma_{\text{ca}}(M_C) \subseteq \sigma_{\text{le}}(A) \cup \Phi_{\text{lw}}(A, B) \cup \Upsilon_{\text{lw}}(A, B) \cup \Psi_{l}(A, B).
\]
Combining the two inclusions above, we obtain
\[
\bigcap_{C \in B_1(K, H)} \sigma_{\text{ca}}(M_C) = \sigma_{\text{le}}(A) \cup \Phi_{\text{lw}}(A, B) \cup \Upsilon_{\text{lw}}(A, B) \cup \Psi_{l}(A, B). \quad \square
\]
The following corollaries are immediate from Theorem 2.4.

Corollary 2.5. (See [2].) For given \(A \in B(H), B \in B(K)\), we have
\[
\bigcap_{C \in B_1(K, H)} \sigma_{\text{ca}}(M_C) = \sigma_{\text{le}}(A) \cup \Phi_{\text{lw}}(A, B) \cup \Upsilon_{\text{lw}}(A, B) \cup \Psi_{l}(A, B).
\]

Corollary 2.6. (See [2].) For a given pair \((A, B)\) of operators, we have
\[
\bigcap_{C \in B_1(K, H)} \sigma_{\text{SF}^+}(M_C) = \bigcap_{C \in B(K, H)} \sigma_{\text{SF}^+}(M_C)
\]
\[= \sigma_{\text{re}}(B) \cup \Phi_{\text{rw}}(A, B) \cup \Upsilon_{\text{rw}}(A, B) \cup \Psi_{r}(A, B),\]
where
\[
\Phi_{\text{rw}}(A, B) = \{ \lambda \in \mathbb{C}: R(A - \lambda) \text{ is closed}, \ n(B - \lambda) + n(A - \lambda) < d(B - \lambda) + d(A - \lambda) \},
\]
\[
\Upsilon_{\text{rw}}(A, B) = \{ \lambda \in \mathbb{C}: R(A - \lambda) \text{ is closed, } n(A - \lambda) = d(A - \lambda) = \infty, n(B - \lambda) < \infty \},
\]
\[
\Psi_{r}(A, B) = \{ \lambda \in \mathbb{C}: R(A - \lambda) \text{ is closed, } n(B - \lambda) < \infty \}.
\]
It is a natural question that whether the equation
\[\bigcap_{C \in \text{Inv}(\mathcal{K}, \mathcal{H})} \sigma_{ea}(M_C) = \bigcap_{C \in B(\mathcal{K}, \mathcal{H})} \sigma_{ea}(M_C) \]
holds?

3. \(\bigcap_{C \in \text{Inv}(\mathcal{K}, \mathcal{H})} \sigma_{ea}(M_C) \)

In this section, our main result is:

Theorem 3.1. For given pair of operators \((A, B)\), we have
\[\bigcap_{C \in \text{Inv}(\mathcal{K}, \mathcal{H})} \sigma_{ea}(M_C) = \bigcap_{C \in B(\mathcal{K}, \mathcal{H})} \sigma_{ea}(M_C) \cup \{ \lambda \in \mathbb{C} : B - \lambda \text{ is compact} \}. \]

We need the following lemmas.

Lemma 3.2. Let \(A \in B(\mathcal{H}) \), \(B \in B(\mathcal{K}) \) and \(C \in B(\mathcal{K}, \mathcal{H}) \). If \(C \) has the operator matrix (1), then \(MC \) is invertible if and only if \(A \) is left invertible, \(B \) is right invertible and \(C_1 \) is invertible.

Proof. *Sufficiency.* Since \(A \) is left invertible, \(A_1 \) is invertible. Then
\[
\begin{pmatrix}
0 & C_1 & C_2 \\
A_1 & C_3 & C_4 \\
0 & 0 & B_1
\end{pmatrix}
\begin{pmatrix}
I & -A_1^{-1}C_3 & -A_1^{-1}C_4 \\
0 & I & 0 \\
0 & 0 & I
\end{pmatrix}
= \begin{pmatrix}
0 & C_1 & C_2 \\
A_1 & 0 & 0 \\
0 & 0 & B_1
\end{pmatrix}.
\]
Since \(B \) is right invertible, \(B_1 \) is invertible. Then
\[
\begin{pmatrix}
I & 0 & -C_2B_1^{-1} \\
0 & I & 0 \\
0 & 0 & I
\end{pmatrix}
\begin{pmatrix}
0 & C_1 & C_2 \\
A_1 & 0 & 0 \\
0 & 0 & B_1
\end{pmatrix}
= \begin{pmatrix}
0 & C_1 & 0 \\
A_1 & 0 & 0 \\
0 & 0 & B_1
\end{pmatrix}.
\]
Therefore, if \(C_1 \) is invertible, then \(MC \) is invertible.

Necessity. If \(MC \) is invertible, then \(A \) is left invertible, \(B \) is right invertible. By the proof of sufficiency, we have that \(C_1 \) is invertible. \(\square \)

Lemma 3.3. If \(A \in \Phi_+(H), n(B) + n(A) \leq d(A) + d(B) \) and \(R(B) \) is closed, then \(MC \notin \Phi_-(H) \) for any \(C \in \text{Inv}(\mathcal{K}, \mathcal{H}) \) if and only if one of the following conditions holds:

(i) \(\dim N(B)^{\perp} < \infty \),
(ii) \(n(B) = d(B) = \infty \) and \(d(A) < \infty \).

Proof. *Necessity.* Assume that (ii) is not satisfied. To show that (i) holds, we will prove that \(\dim N(B)^{\perp} = \infty \) then there exist some \(C \in \text{Inv}(\mathcal{K}, \mathcal{H}) \) such that \(MC \in \Phi_-(H \oplus K) \). By Corollary 2.3, we only need to show that if \(n(B) = d(A) = \infty \) and \(\dim N(B)^{\perp} = \infty \) then there exist some \(C \in \text{Inv}(\mathcal{K}, \mathcal{H}) \) such that \(MC \in \Phi_-(H \oplus K) \).

Case 1. \(n(A) \leq d(B) \). Let \(S \) be an unitary operator from \(N(B) \) onto \(R(A)^{\perp} \) and \(S_1 \) an invertible operator from \(N(B)^{\perp} \) onto \(R(A) \), since \(\dim R(A) = \infty \). Set
\[
C_0 = \begin{pmatrix} S & 0 \\ 0 & S_1 \end{pmatrix} : N(B) \oplus N(B)^{\perp} \rightarrow R(A)^{\perp} \oplus R(A)
\]
then \(MC_0 \in \Phi_-(H \oplus K) \) by Lemma 2.1.
Lemma 3.6. Let w_1 be a left invertible operator from $N(B)$ into $R(A) \perp$ with $n(w_1^\perp) = 2n$, w_3 be a right invertible operator from $N(B) \perp$ into $R(A)$ with $n(w_3) = 2n$, and w_2 be an invertible operator from $N(B)^\perp$ into $R(A) \perp$ such that $P_{N(w_1^\perp)}w_2|_{N(w_3)}$ is an invertible operator from $N(w_3)$ onto $N(w_1^\perp)$, respectively, where $P_{N(w_1^\perp)}$ is the orthogonal projection onto $N(w_1^\perp)$. Clearly, $n(w_1) + n(A) \leq d(w_1) + d(B)$. Set
\[
C_0 = \begin{pmatrix}
w_1 & w_2 \\
0 & w_3
\end{pmatrix}: N(B) \oplus N(B)^\perp \to R(A) \perp \oplus R(A).
\]
It is easy to see that C_0 is invertible, by Lemma 3.2. From Lemma 2.1, $M_{C_0} \in \Phi_+^-(H \oplus K)$.

Sufficiency. By Corollary 2.3, we only need to show that if $\dim N(B)^\perp < \infty$, then $M_C \notin \Phi_+^-(H)$ for all $C \in \text{Inv}(K, \mathcal{H})$. Since $A \in \Phi_+(H)$, $\dim R(A) = \infty$. By the contrary, assume that $M_C \in \Phi_+^-(H \oplus K)$, where $C \in \text{Inv}(K, \mathcal{H})$. We have that C_1 is an operator with $R(C_1)$ is closed, $n(C_1) < \infty$, by Lemma 2.1. Suppose that $C_1^+C_1 = I_{N(B)} + K_0$ (see [8], Atkinson’s theorem), where K_0 is a compact operator from $N(B)$ into $N(B)$. Thus
\[
\begin{pmatrix}
I & 0 \\
-C_3C_1^+ & I
\end{pmatrix}
\begin{pmatrix}
C_1 & C_2 \\
C_3 & C_4
\end{pmatrix}
= \begin{pmatrix}
C_1 & C_2 \\
-C_3K_0 & C_4 - C_3C_1^+C_2
\end{pmatrix}
\]
is invertible. Using 3.11 in Chapter XI of [1], we get that
\[
\begin{pmatrix}
C_1 & 0 \\
0 & 0
\end{pmatrix}
: N(B) \oplus N(B)^\perp \to R(A)^\perp \oplus R(A)
\]
is Fredholm. But this is a contradiction with the fact that $\dim R(A) = \infty$. \hfill \Box

Lemma 3.4. If $A \in \Phi_+(H)$ and B is compact, then for all $C \in \text{Inv}(K, \mathcal{H})$, $M_C \notin \Phi_+^-(H \oplus K)$.

Proof. Suppose, contrary to the assertion, that $M_{C_0} \in \Phi_+^-(H \oplus K)$, for some $C_0 \in \text{Inv}(K, \mathcal{H})$.
\[
\begin{pmatrix}
I & 0 \\
-BC_0^{-1} & I
\end{pmatrix}
\begin{pmatrix}
A & C_0 \\
0 & B
\end{pmatrix}
\begin{pmatrix}
I & 0 \\
-C_0^{-1}A & I
\end{pmatrix}
= \begin{pmatrix}
0 & C_0 \\
-BC_0^{-1}A & 0
\end{pmatrix},
\]
then $-BC_0^{-1}A \in \Phi_+(H, K)$. This is a contradiction with compactness of $-BC_0^{-1}A$. Hence, for all $C \in \text{Inv}(K, \mathcal{H})$, $M_C \notin \Phi_+^-(H \oplus K)$. \hfill \Box

Lemma 3.5. [6] Let V be a linear subspace of \mathcal{H}. These are equivalent:

(1) Any bounded operator A on \mathcal{H} with $R(A) \subseteq V$ is compact;
(2) V contains no closed infinite-dimensional subspace.

Lemma 3.6. If $A \in \Phi_+(H)$, $R(B)$ is not closed and $d(A) = \infty$, then B is not compact if and only if there exists $C \in \text{Inv}(K, \mathcal{H})$ such that $M_C \in \Phi_+^-(H \oplus K)$.

Proof. Sufficiency. If B is compact, by Lemma 3.4, $M_C \notin \Phi_+^-(H \oplus K)$, for any $C \in \text{Inv}(K, \mathcal{H})$.

Necessity. If B is not compact, by Lemma 3.5, $R(B)$ contains a closed infinite-dimensional subspace. No loss of generality, suppose that K_1 is closed subspace of $R(B)$ with $\dim K_1 = \infty$ and $\dim K_1^\perp = \infty$. Let $H_1 = \{x \in N(B)^\perp: Bx \in K_1\}$. Thus H_1 is a closed subspace of
$N(B)\perp$ and $\dim H_1 = \infty$. Denote $H_1\perp = N(B)\perp \ominus H_1$. No loss of generality, we may assume that $\dim H_1\perp = \infty$. (Otherwise, suppose that $\{e_n\}_{n=1}^{\infty}$ is an orthonormal basis of H_1. Denote $H_0 = \text{span}\{e_n: n = 2, 4, 6, \ldots\}$ and $K_0 = \{Bx: x \in H_0\}$, then H_1 and K_1 can be instead by H_0 and K_0, respectively.) Since $d(A) = \infty$, let $R(A)^* = H_2 \ominus H_2\perp$ with $\dim H_2 = \dim N(B)$ and $\dim H_2\perp = \infty$. Define an operator $C: \mathcal{K} \to \mathcal{H}$ by

$$C = \begin{pmatrix} V_1 & 0 & 0 \\ 0 & V_2 & 0 \\ 0 & 0 & V_3 \end{pmatrix}: N(B) \ominus H_1\perp \ominus H_1 \to H_2 \ominus H_2\perp \ominus R(A),$$

where V_1, V_2 and V_3 are unitary operators. Obviously, C is invertible. Suppose that $B_1 = B|_{N(B)\perp}$, then

$$B_1 = \begin{pmatrix} B_{11} & B_{12} \\ B_{13} & 0 \end{pmatrix}: H_1\perp \ominus H_1 \to K_1 \ominus K_1\perp,$n

where B_{12} is an invertible operator from H_1 onto K_1. Hence M_1 (as Lemma 2.1) has the following operator matrix form:

$$M_1 = \begin{pmatrix} 0 & V_1 & 0 & 0 \\ 0 & 0 & V_2 & 0 \\ 0 & 0 & B_{11} & B_{12} \\ 0 & 0 & B_{13} & 0 \end{pmatrix}: N(A) \ominus N(B) \ominus H_1\perp \ominus H_1 \to H_2 \ominus H_2\perp \ominus K_1 \ominus K_1\perp.$n

Let

$$W = \begin{pmatrix} I & 0 & 0 & 0 \\ 0 & I & 0 & 0 \\ 0 & -B_{11}V_2^* & I & 0 \\ 0 & -B_{13}V_2^* & 0 & I \end{pmatrix}: H_2 \ominus H_2\perp \ominus K_1 \ominus K_1\perp \to H_2 \ominus H_2\perp \ominus K_1 \ominus K_1\perp.$n

Then

$$WM_1 = \begin{pmatrix} I & 0 & 0 & 0 \\ 0 & I & 0 & 0 \\ 0 & -B_{11}V_2^* & I & 0 \\ 0 & -B_{13}V_2^* & 0 & I \end{pmatrix} \begin{pmatrix} 0 & V_1 & 0 & 0 \\ 0 & 0 & V_2 & 0 \\ 0 & 0 & B_{11} & B_{12} \\ 0 & 0 & B_{13} & 0 \end{pmatrix} = \begin{pmatrix} 0 & V_1 & 0 & 0 \\ 0 & 0 & V_2 & 0 \\ 0 & 0 & B_{11} & B_{12} \\ 0 & 0 & 0 & 0 \end{pmatrix}.$n

It is easy to show that

$$\begin{pmatrix} 0 & V_1 & 0 & 0 \\ 0 & 0 & V_2 & 0 \\ 0 & 0 & 0 & B_{12} \\ 0 & 0 & 0 & 0 \end{pmatrix} \in \Phi_+^-(N(A) \ominus N(B) \ominus H_1\perp \ominus H_1, H_2 \ominus H_2\perp \ominus K_1 \ominus K_1\perp).$$

Therefore, $M_1 \in \Phi_+^-(N(A) \ominus N(B) \ominus H_1\perp \ominus H_1, H_2 \ominus H_2\perp \ominus K_1 \ominus K_1\perp).$ By Lemma 2.1, $M_C \in \Phi_+^-(H \ominus K)$. \square

Proof of Theorem 3.1. By Lemma 3.4, it is clear that

$$\bigcap_{C \in \text{Inv}(\mathcal{K}, \mathcal{H})} \sigma_{ea}(M_C) \supseteq \bigcap_{C \in B(\mathcal{K}, \mathcal{H})} \sigma_{ea}(M_C) \cup \{\lambda \in \mathbb{C}: B - \lambda \text{ is compact}\}.$$n

For the converse, let $\lambda \notin \bigcap_{C \in B(\mathcal{K}, \mathcal{H})} \sigma_{ea}(M_C) \cup \{\lambda \in \mathbb{C}: B - \lambda \text{ is compact}\}$. \square

Case 1. $R(B - \lambda)$ is not closed. Then $d(A - \lambda) = \infty$, $A - \lambda \in \Phi_+(H)$ and $B - \lambda$ is not compact. By Lemma 3.6, there exists $C \in \text{Inv}(\mathcal{K}, \mathcal{H})$ such that $M_C - \lambda \in \Phi_+^-(H \ominus K)$.
Case 2. \(R(B - \lambda) \) is closed. Since \(B - \lambda \) is not compact, then \(\dim N(B - \lambda) = \infty \). By Lemma 3.3, there exists \(C \in \text{Inv}(K, H) \) such that \(M_C - \lambda \in \Phi_+ (H \oplus K) \), since \(A - \lambda \in \Phi_+ (H) \) and \(d(A - \lambda) + d(B - \lambda) \geq n(A - \lambda) + n(B - \lambda) \). \(\square \)

In the similar way, we have

Corollary 3.7. For a given pair of operators \((A, B)\), we have

\[
\bigcap_{C \in \text{Inv}(K, H)} \sigma_{SF}^+(M_C) = \bigcap_{C \in B(K, H)} \sigma_{SF}^+(M_C) \cup \{\lambda \in \mathbb{C} : A - \lambda \text{ is compact}\}.
\]

Theorem 3.8. For a given pair of operators \((A, B)\), we have

\[
\bigcap_{C \in \text{Inv}(K, H)} \sigma_{w}^+(M_C) = \bigcap_{C \in B(K, H)} \sigma_{w}^+(M_C) \cup \{\lambda \in \mathbb{C} : A - \lambda \text{ or } B - \lambda \text{ is compact}\}.
\]

4. \(\bigcup_{C \in \text{Inv}(K, H)} \sigma_{ea}(M_C) \)

Theorem 4.1. For a given pair of operators \((A, B)\), \(M_C \in \Phi_+^-(H \oplus K) \) for all \(C \in \text{Inv}(K, H) \) if and only if the following conditions hold:

(i) \(A \in \Phi_+ (H) \);
(ii) \(B \in \Phi_+ (H) \);
(iii) \(\text{ind}(A) + \text{ind}(B) \leq 0 \).

Proof. Sufficiency is clear, since \(M_C = \begin{pmatrix} I & 0 \\ 0 & B \end{pmatrix} \begin{pmatrix} I \\ C \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & I \end{pmatrix} \).

Necessity. It is clear that \(A \in \Phi_+ (H) \) and \(n(B) < \infty \). We firstly show that \(R(B) \) is closed. Assume to the contrary that \(R(B) \) is not closed. By Theorem 2.4 and Lemma 3.4, \(d(A) = \infty \) and \(B \) is not compact. Thus \(R(B) \) contains a closed infinite-dimensional subspace \(K_1 \) with \(\dim K_1 = \infty \). Let \(H_1 = \{ x \in N(B) : Bx \in K_1 \} \). Using the same technique as Lemma 3.6, we may assume that \(H_1 \) is a closed subspace of \(N(B) \), \(\dim H_1 = \infty \) and \(\dim H_1 = \infty \). Since \(d(A) = \infty \), set \(R(A) = H_2 \oplus H_2 \) with \(\dim H_2 = \dim N(B) \) and \(\dim H_2 = \infty \). Thus

\[
M_C = \begin{pmatrix} 0 & 0 & C_{11} & C_{12} \\ 0 & A_1 & C_{21} & C_{22} \\ 0 & 0 & B_1 & B_2 \\ 0 & 0 & 0 & B_4 \end{pmatrix} : N(A) \oplus N(A) \oplus H_1 \oplus H_1 \rightarrow R(A) \oplus R(A) \oplus K_1 \oplus K_1,
\]

where \(B_1 \) is an invertible operator from \(H_1 \) into \(K_1 \). Since \(A_1 \) is invertible, \(M_C \in \Phi_+^-(H \oplus K) \) if and only if

\[
\begin{pmatrix} 0 & C_{11} & C_{12} \\ 0 & B_1 & B_2 \\ 0 & 0 & B_4 \end{pmatrix} \in \Phi_+ (N(A) \oplus H_1 \oplus H_1, R(A) \oplus K_1 \oplus K_1).\]
Since
\[
\begin{pmatrix}
I & -C_{11}B_1^{-1} & 0 \\
0 & I & 0 \\
0 & 0 & I
\end{pmatrix}
\begin{pmatrix}
0 & C_{11} & C_{12} \\
0 & B_1 & B_2 \\
0 & 0 & B_4
\end{pmatrix}
\begin{pmatrix}
I & 0 & 0 \\
0 & I & -B_1^{-1}B_2 \\
0 & 0 & I
\end{pmatrix}
= \begin{pmatrix}
0 & 0 & -C_{11}B_1^{-1}B_2 + C_{12} \\
0 & B_1 & 0 \\
0 & 0 & B_4
\end{pmatrix},
\] (4)

\[MC \in \Phi_+^-(H \oplus K)\] if and only if
\[
\begin{pmatrix}
0 & 0 & -C_{11}B_1^{-1}B_2 + C_{12} \\
0 & B_1 & 0 \\
0 & 0 & B_4
\end{pmatrix} \in \Phi_+^-(N(A) \oplus H_1 \oplus H_1^\perp, R(A)^\perp \oplus K_1 \oplus K_1^\perp).
\]

Since \(d(A) = \infty\), define an operator \(C_0 : K \rightarrow \mathcal{H}\) by
\[
C_0 = \begin{pmatrix}
V_2 & V_2B_1^{-1}B_2 \\
0 & V_1
\end{pmatrix} : H_1 \oplus H_1^\perp \rightarrow R(A)^\perp \oplus R(A),
\]
where \(V_1\) and \(V_2\) are unitary operators. It is easy to show that \(C_0\) is invertible. By Eq. (4), \(MC_0 \in \Phi_+^-(H \oplus K)\) if and only if
\[
M_0 := \begin{pmatrix}
0 & 0 & 0 \\
0 & B_1 & 0 \\
0 & 0 & B_4
\end{pmatrix} \in \Phi_+^-(N(A) \oplus H_1 \oplus H_1^\perp, R(A)^\perp \oplus K_1 \oplus K_1^\perp).
\]

Thus \(B_4 \in \Phi_+(H_1^\perp, K_1^\perp)\). It follows from \(\begin{pmatrix} B_1 & 0 \\
0 & B_4 \end{pmatrix} \in \Phi_+(K)\) that \(R(B)\) is closed. This is a contradiction. Thus \(R(B)\) is closed.

Since \(n(M_0) = n(A) + n(B_4) < \infty\) and \(d(M_0) = d(A) + d(B_4)\), we get that
\[
n(M_0) - d(M_0) = n(A) - d(A) + n(B_4) - d(B_4) = \text{ind}(A) + \text{ind}(B),
\]
the last equation follows from that \(B_1\) is invertible. Thus \(\text{ind}(A) + \text{ind}(B) \leq 0\). \(\Box\)

Corollary 4.2. For a given pair of operators \((A, B)\),
\[
\bigcup_{C \in \text{Inv}(K, \mathcal{H})} \sigma_{ea}(MC) = \sigma_{ea} \begin{pmatrix} A & 0 \\
0 & B \end{pmatrix}.
\]

In a similar way, we may obtain the next corollaries.

Corollary 4.3. For given pair of operators \((A, B)\),
\[
\bigcup_{C \in \text{Inv}(K, \mathcal{H})} \sigma_{SF}^+(MC) = \sigma_{SF}^+ \begin{pmatrix} A & 0 \\
0 & B \end{pmatrix}.
\]

Corollary 4.4. For given pair of operators \((A, B)\),
\[
\bigcup_{C \in \text{Inv}(K, \mathcal{H})} \sigma_w(MC) = \sigma_w \begin{pmatrix} A & 0 \\
0 & B \end{pmatrix}.
\]
Acknowledgments

The authors thank the referees for valuable suggestions. The first author expresses gratitude to the graduate innovating foundation item of Shaanxi Normal University.

References