
Science of Computer Programming 16 (1991) 207-249
Elsevier

207

Symbolic
approach

Ralf Kneuper”

execution: a semantic

Wilhelm-Leuschner-Strasse 2, 61OC Darmstadt, Germany

Communicated by M. Sintzoff
Received January 1989
Revised December 1990

Abstract

Kneuper, R., Symbolic execution: a semantic approach, Science of Computer Programming 16
(1991) 207-249.

This paper discusses symbolic execution from a semantic point of view, covering both programs
and specifications. It defines the denotational semantics of symbolic execution of specifications
and programs, and thus introduces a notion of correctness of symbolic execution which applies
not just to an individual language but to a wide class of languages, namely those whose semantics
can be described in terms of states and state transformations. Also described are the operational
semantics of a language as used for symbolic execution.

This work also provided the basis of the prototype symbolic execution system SYMBEX which
was developed at the University of Manchester as part of the mural project. However, this paper
only covers the theoretical foundations used by SYMBEX, but not the system itseif.

1. Introduction

1.1. Symbolic execution

Symbolic execution is a technique that allows the user to handle a whole range
of input values at a time, rather than just a single value as in actual execution. This
is done by allowing identifiers (symbols) as input in addition to the usual “actual”
values. It was first introduced by King (cf. [22]) who was mainly interested in its
use for program validation and verification [141. Others later used it for a variety
of purposes, such as test case generation [4,17] and specification validation (GIST

project, cf. [2,7]). With the exception of GIST and the work done by Kemmerer
[21], symbolic execution has so far only been applied to programs, as opposed to
specifications.

* Most of the work described here was done while the author was working on the APSE 2.5 project
at the University of Manchester, England.

0167-6423/91/$03.50 @ 1991-Elsevier Science Publishers B.V.

208 R. Kneuper

Techniques related to symbolic execution are partial evaluation (e.g. [4]) and
abstract interpretation (e.g. [10,9,25]). They differ from symbolic execution in that
the result of partial evaluation of a program, given some input data, is a new
program. In abstract interpretation, one analyses the relationship between sets (or
domains) of input and output data, abstracting away from the relationships between
the individual values within those sets. In this sense, abstract interpretation is more
abstract than symbolic execution, since symbolic execution tries to capture this
information as well.

Complexity analysis can also be done using techniques similar to symbolic
execution, see for example [30]. For a more detailed survey of the different
approaches to symbolic execution and related techniques see [24, Chapter 21.

The purpose of this paper is to define precisely what is meant by symbolic
execution, independent of the language used, and provide a semantic framework
for it. As a result, it is not concerned with using symbolic execution for any of the
practical purposes described above, or with any particular system for symbolic
execution.

The framework described was, however, introduced as one step towards the overall
aim of developing a system for symbolic execution of specifications which can help
to validate them, and thus support the first step in a formal software development
process. How such a system could be used is described in [23].

Symboli, execution can be considered as a technique for “executing” programs
or specifications when some of the information normally needed is not available.
In this sense, symbolic execution allows one to handle partial information about:

l Input data: the input values are not determined (or at least not uniquely); this
means one has to handle a whole range of input values at once, not just a
single value.

l Aigorithm: the algorithm for computing the output value for any given input
value is not provided (or is at least incomplete). In this case one usually talks
about a speciJication rather than a program.

l Output data: the output values are not determined uniquely by the input values,
i.e. the specification is nondeterministic.

In order to describe this variation of execution, one first has to define what exactly
is meant by “interpretation “, “execution” and “executable”. Unless otherwise stated,
a program will in future be considered as a special kind of specification. The
differences between the two are discussed in Section 2.2. Furthermore, I shall
distinguish between interpreting a specification and executing it. Interpreting a
specification transforms one state into another according to the meaning of the
specification. Executing it additionally requires that one has an algorithm for
performing this transformation. When interpreting or executing a specification, one
interprets or executes a term in the appropriate language. Obviously, it does not
make sense to talk about interpretation or execution if only the syntax of this
language is known, e.g. if one only knows its grammar from some production rules.

Symbolic execution 209

Interpretation and execution of a language clearly depend on its semantics. There-
fore, Section 2.1 will discuss the relevant aspects of language semantics that will be
needed later. Section 2.2 briefly discusses the notions of execution and interpretation,
and compares specification and programming languages.

The main body of this paper starts in Section 3, which investigates the denotational
semantics of symbolic execution. These will be expressed in terms of the denotational
semantics of the specification language used. This is followed in Section 4 with a
discussion of the operzlional semantics of symbolic execution.

The notation used in this paper for describing functions, data types, etc., is based
on VDM [20]. A short summary of it is given in Appendix A.

1.2. Scope and structure of this paper

This paper defines the denotational and operational semantics of symbolic execu-
tion in a formal way independent of the specific language under consideration. This
distinguishes it from other papers on symbolic execution which only consider one
particular language and only give an intuitive description of the notion of symbolic
execution itself.

The work described in this paper provided the framework for a language-generic
symbolic execution system called SYMBEX, a prototype of which was developed as
part of the muraZ/IPsE 2.5 project. However, this paper concentrates on the semantic
aspects of symbolic execution and does not try to describe SYMBEX. For more
information on the system SYMBEX itself see [18,241.

The ideas in this paper are intended to apply to any specification or programming
language that is based on the notions of states and state transitions or, more precisely,
whose semantics can be expressed in terms of states and state transitions. Therefore,
most of the ideas described are not appropriate for algebraic specification languages,
for functional or logic programming languages, or for languages such as CCS or
CSP which are based on the concept of processes. However, within these restrictions
the ideas described are intended to be fully generic. Note that on a very low level
this implies that the concepts apply to all programming languages, since programs
are eventually translated into state transformations in a computer. However, this
very low-level view will in general not be very useful.

The concept of symbolic execution in the sense described here and in the previous
literature relies heavily on the concept of variables and their (changing) values, SO
that it is difficult to imagine what symbolic execution of a language not using states
and state transitions should be. Languages such as PROLOG or LISP support a
considerable amount of symbol processing in ordinary execution, so that an addi-
tional concept of symbolic execution might not be needed.

For a more detailed discussion of the range of languages covered see [24, Sect. 4.31.
Furthermore, this paper ignores the problems arising from rounding errors in

floating point arithmetic and from over- and underflow on computers with bounded
storage capacity. The latter could be dealt with by introducing parameters expressing

210 R. Kneuper

these bounds into the semantics of the language, using the “clean termination”
approach described in [8].

As for the structure of this paper, Section 2 provides some of the theoretical
background that will be used later. In particular, it discusses the semantics of
specification or programming languages with an emphasis on denotational semantics.
Based on that, the notions of execution and executability and the differences between
specification and programming languages are examined.

The main body of the paper starts with Section 3, which gives a semantic definition
of symbolic execution. By expressing it in terms of the denotational semantics of
the language used, symbolic execution is defined generically over languages.

This denotational description is followed in Section 4 by a description of symbolic
execution from an operational semantics point of view, and a discussion of the
relationship between the two. Section 4 includes a number of rules that can be used
to describe symbolic execution of some common language constructs.

Finally, Section 5 provides a short summary of the ideas discussed in this paper
and assesses the achievements and limitations of this approach.

The appendices contain, apart from a few proofs that were too long to be included
in the text itself, a short summary of some of the VDM-notation used.

2. Specification and programming languages

2.1. Semantics

Consider a specification or programming language 2,. Unless otherwise stated,
I shall in future consider a program as a special kind of specification. The differences
between the two are discussed below. Specifications are a certain class of &terms,
usually containing free variables called input and output variables and state variables.

For simplicity, I shall from now on assume that specifications only use a single
state variable, but no other input or output variables. Since the state variable might
be of arbitrarily complex type, this is no real restriction of generality.

We now need to define the concept of “language”:

Definition 2.1 (Language). A language is defined by
l its syntax, expressed as a (usually context-free) grammar;
l well-formedness conditions (often expressed as static semantics or as context-

sensitive syntax);
l its semantics, which may be given in any of the styles described below.

The semantics of a programming or specification language describe the “meaning”
of terms of the language in some way. There are a number of different ways of
describing the semantics of a language, the most common ones are the following
(cf. [28, Section 21 or [113):

0 Operational semantics. The meaning of a construct of the language is given by
explicitly stating its effect, the operation that it evokes (see for example [26]).

Symbolic execution 211

Given an input state for a specification, the operational semantics of the
language provide an algorithm to find the appropriate output state.

Another way of describing operational semantics views only input variables
as free variables of a specification. In this case one substitutes the input data
for the free variables of the specification term, and then rewrites the resulting
ground term into normal form in a rewrite system which is given by the semantics
of the programming language. This normal form is then the output from
executing the specification. For example, the semantics of A-calculus can be
given this way, using p-reduction, etc. [11, Chapter 51.

@ Denotationalsemarrtics. The meaning of a construct of the language is described
by giving it a “denotation”, i.e. by translating it into a different structure which
is considered to be understood (usually but not necessarily a formalized
structure) and modelling the effect of statements of the language there. This
different structure is often based on domain theory as introduced by Scott
[27,28]. One possible alternative is to express the denotations in the language
of predicate calculus, this is called predicative semantics [15].

0 Axiomatic semantics. The meaning of a language is described by axioms that
can be used to prove theorems about (specification) terms in the language.
These axioms act as constraints on the relation between input and output
variables. The usual style for such axioms is Hoare logic [1,161, using input
and output assertions. A similar approach is the use of predicate transformers
and weakest preconditions, as introduced by Dijkstra [13].

The following is mainly based on denotational semantics. By giving a denotational
semantics to a language &, one translates it into another language &, called
semantic language, which is considered to be “understood”, i.e. the meaning of its
constructs is known. In other words, one explains the semantics of 9, in terms of
the semantics of .J&. The translation is given by a recursive function from terms in
the language .JZ’i to terms in .Z’*. This translation is called valuation function. Usually,
LZZ will have some theory associated with it, in that case it will be more adequate
to say that we understand the theory associated with L&, rather than the language
itself. Common choices for L& with an associated theory are the languages of Scott’s
domain theory, of predicate calculus, of partial recursive functions, or of A -calculus.

Definition 2.2 (Valuation functions). A valuation function Ju maps terms of a
language 2 to their meaning (denotation), an element or set of elements of the
abstract or semantic domain. We require that valuation functions are defined
structurally, i.e. the meaning of a term is defined in terms of the meaning of its
subterms. This property is sometimes called the “denotational rule”.

The valuation function may map to a set of elements of the abstract domain in
order to handle nondeterminism and underdeterminedness. Alternatively, power
domains may be used instead.

212 R. Kneuper

A valuation function may also take additional arguments such as the environment
or continuations, in order to handle more complicated language constructs. This
will in the following be handled by “currying” the valuation function and turning
the denotation of the construct itself into a function. In particular, the denotation
of a program term is usually defined as a function from states to states. Variation::
are used for nondeterministic programs, whose meaning may be given as a binary
relation between states or, equivalently, a function from states to sets of states, and
for underdetermined programs, whose meaning may be given as a set of functions
from states to states.

Usually, one introduces several different valuation functions for different classes
of terms, such as commands, Boolean expressions, etc. The valuation function for
terms in class C will be written as & c. Figure 1 describes the valuation functions
on predicates and specifications. Specifications are terms in the language that denote
a binary relation on states. The definitions in Fig. 1 only give those properties of

-4~ and J&~ that will be needed later. Obviously, for any given language one
will want to define these functions in muc more detail, and Pred and Spec should

probably allow expression of nonrecursive functions as well. The conditions on
these two valuation functions ensure that the languages of predicates and
specifications are “reasonably expressive”, at least they allow one to express all
(partial) recursive functions of the appropriate type, for example by expressing a
suitable recursion scheme for defining the function.

Given a set Name of identifiers (names) where each identifier has a type associated with it, and a set Vu1 of

values, a state is a map of type

C = Name 2 Vail

Define

C,=Cu{l)

The valuation function on predicates (over states) is some function

M&d: Pred + & + B

such that

Vf: {partial recursive functions CA + B} - 3[tpj: Pred - A&d(EqD =f

The valuation function on specifications Spec is some function

.UsPcC: Uspecj I-+ R; Spec + (CA x C+ + B)

where R is such that

and where

b”: {partial recursive functions CA x CA + B} - 3bpeclI: Spec . M~p,ITqW = f

Fig. 1. Valuation functions for specifications and predicates.

Symbolic execution 213

The valuation function ,ti S,,ec for specifications maps a specification to a binary
relation on states that is interpreted as the input/ou’_put relation induced by the
specification. Since the investigations in this paper are restricted to specification
languages that are based on the notions of state and state transitions (cf. Section
1.2), this seems the most appropriate approach.

Note that the specification of C with fslnction Asper is su$iciently abstract in the
sense of [20, p. 2181. A model is sufficiently abstract if, for any two different states,
one can find a sequence of operations, in this case, of elements J&&pec],’ that
distinguishes them. This is very similar to full abstraction of the denotational
semantics of a language in relation to its operational semantics.

According to Fig. 1, the meaning of a specification I[specJJ is a relation R between
input and output states.

Nontermination or abortion is described by the output state I, i.e. R(a, I)
describes the fact that, starting from state a, execution of [specj may not terminate,
or it may abort. We require that R(& C), and R(I, o) only if a=&. This is done
in order to ease the description of composition. It essentially describes the fact that
if a specification never starts to be interpreted because the one interpreted previously
fails to terminate, then interpretation of this specification also will not terminate.
Equivalently this could of course be expressed as

R&a) H a=l.

It is also required that for every state g1 there exists at least one state 0, (possibly
L) such that R(a, , q).

For deterministic specifications, R will actually be a function from states to states
rather than a relation.

The reason for using L as a state ir: its own right, rather than for example
introducing a termination set T of states (as done in VDM), is that this will make
it easier to describe symbolic execution and to distinguish between nontermination
of symbolic execution itself and termination with the result “execution does not
terminate”. Additionally, composition is easier to describe this way. However,
provided two relations R are considered equivalent if they agree on all pairs of
states whose first element is in T (i.e. whenever they are guaranteed to terminate),
then this is only a matter of taste and the two models are isomorphic: given R as
above, (R,, Tl) can be defined as

&(a,, ~2) = R(cr, 4 c2) A u2 f L an::\ T, = {al~R(a, C)}.

Conversely, given (h, , T,) we can define

W-, , ~2) = R,((71, a2) v (a, E T, A (+2 = 1.).

’ Terms in the object (or specification or programming) language are written in Strachey brackets
[I. . .I, in order to distinguish them from terms in the (meta-) language used for describing the semantics
of the term.

214 R. Kneuper

The definition of &,,, in Figure 1 can easily be extended to cover sequences of

specification:

2.2. Execution and ehvcutability

We first discus:, the difference between execution and interpretation of a program.

Definition 2.3 (Execution and interpretation). Given a specification I[specl, interpreta-

tion of [specl is a state transformation from a state a to a state (+’ such that
&,,,I[specl)h, CT’). interpret is defined as an arbitrary function

interprel : Spec + Zc + CL

that satisfies

&&&pecj(a, interprerbspecjv j.

If this state transformation !s given by a (partial) recursive algorithm, then interpreta-
tion [spec] is called execution.

Note that in general the result interpret[spec]o is not defined uniquely by this
definition, since [specs may be underdetermined or nondeterministic. If this is the
case, one has to force the interpretation of [specjj into choosing a particulrr result
state out of the set of possible result states.

Definition 2.4 (Executable languages). A language 9 is executable if every
specification term in 9 can be executed in the sense of Definition 2.3, i.e. if all
specification terms in the language are recursive.

A special case of this is a language 9 with operational semantics. In this case,
the recursive algorithm is given explicitly by the operational semantics, and the
language is therefore executable. 1~ follows that a language is recursive if and only
if its operational semantics can be given. Executability of a language or term does
not (or at least not only) depend on its denotational semantics: two functions may
denote the same input/output relationship, but only one of them is executable, since
the other one is defined using properties of the result, without providing an algorithm
for it. E.g. sorting of a list could be defined as a procedure that takes a list of
elements and returns a list containing the same elements but where each element
is smaller than or equal to any following element. In this case, sorting would be
non-executable. Alternatively, sorting could be defined using a suitable algorithm,
such as bubble sort, in which case sorting would be executable.

Similarly, termination of a term clearly depends on its operational semantics,
since it refers to the length of the process of computation. It therefore does not
make sense to talk about termination of non-executable terms or languages.

Symbolic execution 215

A difficulty that arises in this context is that even though recursive functions do
model the hardware operations wiP”:* .

111111 5 computer ts a cctizin extec,, ____y + fh~ do not
take into account time and space restrictions that apply to any computer in the real
w0rh.l. Almost all language constructs are in some sense non-executable on real
computers, since for sufficiently large arguments, the capacity of any computer will
be exceeded. However, Definition 2.3 ignores such restrictions and says that a
specification is executable if it is executable given a large enough computer and
unlimited (but finitc) time.

To some extent, executability can be used to differentiate between specification
and programming languages: programming languages are always executable, while
specification languages in general are not. This implies that specification languages
can be more expressive. In particular one can use more abstract concepts for
specifications, such as more abstract types, or describing what the result of an
operation should be, as opposed to describing how it should be computed. From
this point of view, “executable specification languages” are programming languages
that usually allow more abstract constructs than the more common programming
languages, but nevertheless the fact that they are executable implies that they can
never be as abstract as a genuine specification language, and it therefore is at least
questionable whether they are suitable for actualiy specifying a system.

When one specifies a system before implementing it, the question of cc!urse arises
whether the implementation is correct, whether it “satisfies” the specification.
There are a number of different definitions of satisfaction, which differ mainly
in their treatment of undefinedness. These are discussed in more detail in [5] or
[24, Section 3.31.

In the following a specification [Spec,n will be called an implementation of [Spec,]
if it satisfies [Spec,] and is executable. [SpecJ is implementable if there exists an
implementation of it, i.e. if it can be defined as a recursive function.

3. Denotational semantics of symbolic execution

3.1. The semantic model

AS a first attempt at a formal description of symbolic executioin, one might try to
base it on the observation that in symbolic execution, the input to a specification
[spec]l can be considered as a set S 5 CL of states. As output, it returns the set of
states that can be reached from a state in S via J&,,,&~ec~. l-!owever, for describing
the denotational semantics of symbolic execution this is not sufficient, since it would
lose all the information about the relationship between input and output states
themselves, as opposed to the relationship between the sets of these states.(For
other purposes it can still be very useful to consider only these sets; this is essentially
what is done in abstract interpretation.) For example, given the specification

x=Ovx=x’+l

216 R. Kneuper

(where 2 denotes the “old” value of x before running the operation specified),
symbolic execution would map N to N and not really provide any information. To
get more useful information, one would have to restrict the set S, in this case
{a 1 a(x j E N}, to a small subset, which would be contrary to the ideas behind symbolic
execution and lead towards “testing” of specifications.

In addition to the requirement :hat the semantic model should support the use
of (fairly arbitrary) sets of input states, we therefore need that the semantic model
describes the relationship between individual input and output states (and not just
the relationship between the set of UN input states and the set of all output states).
other requirements on the model are:

I; should allow composition of two (or more) symbolic execution steps. In
particular, this implies that input and output must be of the same type.

l It should be possible to make assumptions on the set of input states (as described
above) not only at the beginning of a sequence of symbolic execution steps,
but also at an intermediate stage. In this case, assumptions may be expressed
in terms of the values of variables in earlier states. (Cf. the assume command
in SYMBEX [24, pp. 4Of, 85, HO].)

As a result, the model of symbolic execution used is based on a “symbolic
execution state” called SEStuteDen which contains sets of sequences of states. The
definition of §EStateDen is given in Fig. 2. The name SEStuteDen stands for
Symbolic Execution State as used for Denotational semantics. similarly, Section
4 will introduce SEStateOp for states in operational semantics.

In addition to the set of sequences of states, §EStuteDen contains a field LEN
which stores the number of symbolic execution steps performed, plus 1 for the

symbolic execution is given by

SESlar&en :: SE@ : P((ZJ’)

LEN : N

where

inv-SEStuteDen(mk-SES~afeDen(set, I)) &

Vu-seq 6 set - len U-seq I 1

A VU-seq!, U-se42 E set . VU-seq: (&J’ - a-seql = u-seq2 Tc U-seq * a-seq = []

A set S c X+ of staiees (or, similarly, a predicate on states) can be represented by the SESlureDen

z(S) 2 mk-SE%teDen({ Ial I U E S}, 1)

The function yield exvacts the input/output relationship from the sequences in SESfafeDen.

yie!d(z) & la: I+ - {d: C+ I3u-seq E SEQS(T) -

hd a-seq = u A last a-seq = u’ A len a-seq = LEN(?))

Fig. 2. Denotational semantics of symbolic execution: state.

Svnbolic cwecufion 217

initial state (see Fig. 2) At ahe same tim 2, this is the number of actual execution
steps modelled in any sequence of states in the field 5SEQS plus 1, which leads to
the first conj-net in the invariant. In this model, assumed restrictions are modelled
by “cutting off” as much as necessary from the end of all sequences of states until
the condition is satisfied. This intuition explains the second conjunct of the invariant
on SEStateDm, which demands that no seqc lence in SEStateDen is an initial segment
of another such sequence. The LEN field idthen needed to recognize if all sequences

. ”
in SEQS have been cut off.

As a convention , T will be used to denote elements of SEStateDen, while a denotes
elements of CL, as before.

Symbolic execution of a specification is modelied by adding another state to all
those sequences that have not been “cut off”, see Fig. 3. Just as interpretation or
execution, given a . g- ;cification, maps states to states, so symbolic execution, given
a specification, maps SEStateDens to SEStateDens.

The functions froct and last used in Figs. 2 and 3 are defined is

front = rev 0 tl 0 rev,

last = hd 0 rev,

where the function rev reverses a list.
Doing symbolic execution in the way described here and storing all possible

sequences of states allawed by a sequence of specifi :ations requires a fairly rich
language for expressing the results of symbolic execution, whic’n might not always
be available. For example, the result of executing a while-loop will often not be
expressible in the language available. Therefore, in addition to such fulZ symbolic
execution Fig. 3 also defines weak symbolic execution, where :he result includes the

[Full) symbolic execution is given by the function

symbolic-ex : Spec + SESiateDen -+ SEStareDen

symbolic-ex[spezjr h

mk-SEStateDen(

{ 6-seq 1 len a-seq = LEN(?) + 1 A front a-seq E SEQS(r)

A ,bf~pcc(rspec](lastfront cweq, last a-seq)

v lein a-seq c LEN(t) A 6-seq E SEQS(7)) ,
r r?aII-\ I 1, &L‘.(‘, T A)

Weak symbolic execution is zilly function

w-symbolic-ex: Spec x SESlaleDen + SESrateDen; (I[specD, TI) ++ 72

which satisfier

SEQS(~252) I> SEQS(symbolic-ex[specl]?l) A LEN(?d = LEN(symbolic-exUspecD rl)

Fig. 3. Denotational semantics of symbolic execution: functions.

218 R. Kneuper

set of all possible sequences of states. This ensures that the properties one gets as
a result of weak symbolic execution still hold for the denotation of the full result,
they just do not in general give a complete description.

Since in many cases one is really interested in the relationship between input and
output states and less in the intermediate states, a function called yield for extracting
this relationship from an SEStateDen is also provided (in Fig. 2). This can be
considered as extracting from an SEStateDen the map from initial states to possible
resulting states, the possible data model for symbolic execution rejected above. It
thus is quite similar to the yield operator + introduced in [121.

Note that there is a distinction between symbolic execution of the composition
of specifications and the composition of symbolic execution steps. As Lemma 3.4
will show, they give rise to SEStateDens that describe the same relationship between
initial and final states, but the SEStateDens themselves are different. They lead to
SEStateDens of different lengths, since symbolic execution of the composition of
specifications is considered as a single step, while a sequence of symbolic executions
in general consists of several steps.

3.2. Some properties of symbolic execution

It is not immediately obvious that symbolic-ex as defined is a totaZ function.
Although a result is constructed for any input value, this result might not be of type
SEStateDen. The following lemma shows that this case does not arise.

Lemma 3.1. symbolic-ex is total.

Roof. We have to show that for any [specj’J: Spec and T: SEStateDen

inv-SEStateDen (symbolic-ex[specj 7).

The first condition of the invariant is obviously true. Now let

u-seq, , u-seq2 E SEQS(symbolic-ex[specl r)

and c+-seq: (Cc)*, wseq # [] be such that

o-seq, = a-seq, n cr-seq.

The definition of symbolic-ex then implies that a-seq, E SEQS(7).

Case 1: len a-seq, = LEA/(7) + 1. Then

o-seq, n f ront a-seq = front a-seq, E SEQS(T)

and inv-SEStateDen(7) implies that front u-seq = [1, i.e. len a-seq = 1. But then
len a-seq, = EEN(T), therefore a-seq, cannot be in SEQS(symbolic-ex[speclT)-
contradiction.

Case 2: len a-seq, < LEN(7). In this case a-seq = [] follows immediately from
inv-SEStateDen (7). 0

Symbolic execution 219

Example 3.2. Let Name = {x, y}. We want to symbolically execute the VDM operation

op,
ext wr x: P

wry:N
prexW
posty2~XL/\x=XL+1

Then

&p,cuoP,n!~~ 4 H

if a(x) B o then a,(~)~ S CT(X) A al(x) = u(x)+ 1 else true

Now the user assume s that the precondition of OP, is true. This means that OP,
is to be symbolically executed in the SEStateDen 71 which represents the predicate
x30:

r1 = mk-SEStateDen(([u] IJXpred[x 3 Ona}, 1)

= mk-SEStateDen(([o] 1 CT(X) 3 0), I).

Then symbolic execution of the specification OP, starting in the SEStateDen r1
results in the SEStateDen

symbolic-ex[OPJ r1

= mk-SEStateDen({c+-seq 1 len a-seq = LEN(rl) + 1

A front cweq E

A A,,,[OP,](last front a-seq, last u-seqjl

v len a-seq < LEN(T,)

A c+-seq E SEQS(rl)},

LEN(r,)+lj

= mk-SEStateDen ({ a-seq 1 len r--scq = 2

= mk-SEStateDen(([a, T a23 Icr,(x) 2 8

Strictly speaking, Op, is the name oi the oper&Dn (or specigIicaGon) rather than
the operation itself. For the time b&g, I shalI ;srse names of specifications to denote
both the name itself and ths spMdicaQon referred to by it, until in Section 4.3 a
mapping from specificatial: narr~s ro specifications is introduced.

220 R. Kneuper

‘The following lemma states that the result of interpreting a specification in a state
u can also be achieved ‘by symbolically executing the specification in a SEStateDen T
which represents a set of states including U, and then selecting a sequence starting
with (+ in the result. This is a property that one would “obviously” want to hold,
and it thus serves to validate the model.

Lemma 3.3. Let [specj : Spec, let r1 , r2: SEStateDen be such that

symbolic-ex[[specl r1 = r2.

Then for all states a, u1 : CA

o1 E yield(r,)(o) a interpret[specla, E yield (TV).

In particular if q represents a set S of states, i.e.

71 = mk-SEStateDen(([o] 1 a E S}, l),

then for all cr E S

[a, interpret[spec]lcr] C-T SEQS(TV).

3.3. Assignment statement

The denotational semantics of the assignment statement can be described as
follows:

Ok = .k[ejj A Vy E dom ul l y # x + u2(y) = q(y).

The denotational semantics of symbolic execution of the assignment statement can
now be calculated as

symbolic-ex[x := en T

= mk-SEStateDen({ cr-seq 1 len o-seq = LEN(7) + 1

A front o-seq E SEQS(T)

A last a-seq(x) = Jld[[en

A !/ye y f x 3 last cr-seq(y) = last front a-seq(y)

v len a-seq < LEN(7) A o-seq E SEQS(T)},

2).

As a simple example, consider the case where we start with the SEStateDen that
represents CL, that is, no restriction has been placed on the starting state and no
other statement has been symbolically executed:

T= mk-SEStateDen(([a]IoE&}, 1).

Symbolic execution 221

We then get

symbolic-ex[[x := en T

= mk-SEStuteDen ({ wseq 1 len o-seq = 2 A u-seq[l] E SEQS(7)

A a-seq[2](x) = A[ej/

A Vy l y # x * a-seq[Tj(y) = a-seq[l](y)}, 2)

= mk-SESta teDen ({ [cl 9 4 Iv1 E 2~ A 44 = 4kll

AvY*Y f x * U*(Y) = cQ(Y)I, 2)

which expresses, as one would expect, that all sequences of states of length 2 are
included for which the value in the pzecond state of x is (the denotation of) e, and
the values of all other variables are the same as in the first state.

3.4. Composition of specijica tions

Let ; denote sequential composition of specifications, and let symbolic-ex-s be the
obvious generalisation of symbolic-ex that symbolically executes a sequence of
specifications instead of just a single one. Then:

Lemma 3.4 (Composition). For all spezijications [specil, [spec& Spec,

yield (symbolic-ex[spec, ; spec,i = yield (symbolic-ex-slj[spec, , specJj).

Proof. See Appendix B. Cl

Note that we do not have

symbolic-ex[spec, ; spec,] = symbolic-ex-s[[[spec, , SpecJn

since [spec , ; spec,Jj is regarded as a single specification, while [[spec, , specJj is a
sequence of two specifications. Therefore symbolic execution of the two leads to
SEStateDens of different lengths.

Example 3.5. Given the operation specification

m
ext wr x: Z

rdy: N
pre -lOO~x~+lOO
post3Z:Z.y*Z+X=x’A06X<y

222 R. Kneuper

we want to symbolically execute OP, starting in the SEStateDen 72 resulting from
symbolically executing OP,, as given in Example 3.2. From the specification it
follows that

J&pecuoP,llb, 4

W if -lOOSa(x

then 32: Eol(y)*z+q(x) =a($

A 0s dx) < 4Y) A al(y) = O(Y)

else true.

Then symbolic execution of OP, starting in r2 results in the r3: SEStateDen with

LEN(r3) = 3 and

SEQS(symbolic-ex[0P21 TV)

= (cr-seq 1 len a-seq = LEN(TV) + 1 A front a-seq E SEQS(r2)

A As,,[OP,~(last front a-seq, last cr-seq)

v len a-seq < LEN(r,) A a-seq E SEQS(r2)}

= {o-seq 1 len a-seq = 3

A cT-seq[l](x) 3 0 A (r-seq[2](y)‘s a-seq[l](x)

A o-seq[2](x) = a-seq[l](x) + 1

A &pecUOP211b-=Wl, ~-seqW)I

={[~1,~2,~311~,(X)30A~2(Y)24~1(X)A(TZ(X)=~,(X)+1

A if -1OOS 4X) S +100

then 32: Z - c3(y) * z+ q(x) = a,(x)

A 0 s 03(X) <= a,(Y) A g3(Y) = g2(Y)

else true}.

Note that the restriction on the set of starting states for the resulting set of state
sequences (i.e. V&X) 2 0) was explicitly introduced by the user, before symbolically
executing OP, . This is the reason why, in spite of the second precondition, -100 s
x Q + 100, the result still considers all a-seq such that u,(x) 2 0. Instead, the result
itself contains a conditional. It is only for practical reasons that the user will often
assume that the precondition is true, so as to keep the resulting expression reasonably
simple.

3.5. Nondeterminism and underdeterminedness

In symbolic execution, the effects of underdeterminedness and nondeterminism
are captured by the state rather than by making symbolic execution itself nondeter-
ministic--the reason being that one wants to check that UN outputs allowed by the
specification or program are correct, and not just one of them.

Symbolic execution 223

As an example, consider the command (from Dijkstra’s language of guarded
commands [131)

IF 4 if b, + spec, /j b2 + sgecz f i

The meaning of IF is given by

J&eeu~Fll((+1~ 4

= Jtlf+t?duhn~* A &.&P4K~19 4

v &‘red I[b,b, A &&p%bl9 ‘d

Since we are interested in the nondeterministic case, we let r1 : SEStateDen represent

i.e.

and the nondeterminism has been transferred inside the SEStateDen T?.

4. Operational semantics of specifications as used for symbolic execution

This section describes a model of symbolic execution based on the operational
semantics approach. The style of operational semantics used is based on that of
Plotkin’s “Structured Operational Semantics” [26], but of course the transitions
themselves are rather different since they describe symbolic rather than actual
execution. However, if there is no danger of confusion, I shall in future not explicitly
mention that I am dealing with the particular version of operational semantics used
for symbolic execution, but just talk about operational semantics.

In Section 4.1, the data structure (or state) used is defined. Sections 4.2-4.5
introduce some general ideas about symbolic execution. After that, the state transi-
tions used for symbolic execution of some specific language constructs are intro-
duced. These include block structures, variable declarations, operation definitions

224 R. Kneuper

in terms of pre- and postconditions, deterministic and nondeterministic conditionals,
and loops. Note that this paper does not try to provide the complete operational
semantics for any one language, but it does show the rules for a number of important
language constructs.

There is an important difference between the descriptions of the denotational and
operational semantics of symbolic execution. While it is possible to explicitly define
the denotational semantics of symbolic execution itself by expressing them in terms
of the denotational semantics of the language used, this is not possible for the
operational semantics. Instead, one here has to provide a different version of the
operational semantics of the language, specifically for symbolic execution.

There is a similarity here between operational semantics as used for symbolic
execution, and the axiomatic semantics of the same language. Both are essentially
concerned with what properties are provable about a given specification term.
However, in axiomatic semantics such properties are expressed as a logical
expression in a suitable theory, usually making reference to the values of variables
before and after interpreting the specification. In operational semantics as used for
symbolic execution a similar logical expression is constructed. However, it is
expressed as a predicate on a sequence of states (called a PredS, see below) or
“description value”, and used as the value of the appropriate variable in a suitably
defined “symbolic execution state” (SEStuteOp, see below).

4.1. The data structure

States as used on the operational level will be called SEStateOps-Symbolic
Execution States as used for Operational semantics. In SEStateOps, the information
derived using symbolic execution should get associated with those identifiers whose
values are described by it. For this reason, SEStateOps use maps from Name to
the relevant information. The easiest way to model this relevant information seems
to be as predicates. These predicates must be predicates on sequences of states rather
than single states, since they should model the relationship between different states.
These are the predicates the user should actually get to see in description values of
variables at any stage in the symbolic execution. A PredS then is any expression
whose semantics can be given as

Ju heds : PredS + StateSeq + B

where StateSeq is defined as

C teSeq = (& 1 StateSeq)“.

StateSeq is defined recursively rather than just as a sequence of states in order
to be able to handle blocks and loops, as described below.

The language of PredS has to include constant symbols true and false, and
operator symbols A, ==$, and N (all with their standard interpretation).

Symbolic execution 225

The only condition on the internal structure of preds is that it must be possible
to define a function

mention : PredS + 9(Name)

which collects the identifiers mentioned in a given PredS into a set. No other
conditions are needed since symbolic execution itself makes almost no use of the
information contained in the PredS, it mainly stores it in a suitable way. Only
simplification will need to know about the syntax and semantics of PredS. (In
particular, it needs to know when two PredS are equivalent.) The definitions of the
syntax and semantics of PredS are therefore given in a theory which is used to
instantiate symbolic execution for a particular specification language (and thus for
a particular language of PredS), but not as part of the model of symbolic execution
itself. Simplification theories are described in Section 4.5.

We now need to define the structure of the states SEStateOp which should store
the information contained in the Reds. Since allowing sets of PredS rather than
only individual PredS as description values makes it easier to combine different
PredS and, when needed (for example for simplification), split the resulr again to
get its components, SEStateOps are modelled using maps from Name to g(PredS).

Each symbolic execution step gives rise to a new predicate (or set of predicates)
on sequences of states, and obviously each such predicate may provide valuable
information that should be associated with the appropriate identifier and the
appropriate execution step. Therefore, SEStateOps will be defined as sequences of
maps from identifiers to sets of predicates on sequences of states. An SEStateOp

thus stores a history of the results of symbolic execution.
In this history a loop should be considered as a single step, even though it may

really consist of any number of steps (including 0). Therefore, the result of the loop
is modelled as an SEStateOp itself, which is then considered as one step in the
original SEStateOp. Similarly, blocks should be considered as a single step and are
therefore also modelled as an SEStateOp themselves. This leads to the recursive
definition of SEStateOp given in Fig. 4. One might thus consider an SEStateOp as
a tree, where the leaves of the tree are maps and the inner nodes are SEStateOps.
R-e-order traversal of this tree describes the execution sequence modelled by the
(root) SESta teOp.

In addition to the sequence described above, SEStateOp contains a field INDEX
which stores the index or position of this SEStateOp in the recursive definition.
Without this, one would not be able to recognize whether an SEStateOp is itself an
element in another SEStateOp, or whether it is a top-level state. However, one needs
to know this in order to get the right description values in the SEStateOp. Since
these description values express properties of sequences of states, they need to know
which sequence of states they should refer to.

The invariant on SEStateOp ensures that every SEQ(S) has a first element which
defines the allowed parameter states. An SEStateOp itself would not be allowed as
first element because it should only arise as a result of symbolically executing a

226 R. Knetaper

lefine

Index = I+!;
--

4 state a used for &scribing the operational semantics of a language for symbolic execution is defined recur-

,ively as

SE-map = Name -% P(Pred.9

SE-elem = SE-map 1 SEStateOp

SEStateOp : : SEQ : SE-elem’

INDEX : Index

where

inv-SEStateOp(mk-SEStateOp(Seq, ix)) 2

Seq#Il

A hd Seq: SE-map

AVkIlenSeq-

Seq[k]: SEStateOp =j INDEX(Seq[k]) = cons(k, ix)

Fig. 4. Operational semantics of symbolic execution: state,

specification (usually a loop or alock). Additionally, the invariant ensures that
SEStateOp describes the intuition behind INDEX as described above-the INDEX
of any SEStateOp which is the kth element of SEQ of the SEStateOp S is the
INDEX ix of S with k added at the front, or cons(k, ix).

The valuation function ASESlareOp in Fig. 5 maps an SEStateOp to an SEStareDen,
where the resulting SEStateDen contains those sequences of states that satisfy all
the predicates in the SEStateOp. This is expressed using the following notation and
auxiliary functions:

l satisfies-restriction takes a sequence of states wseq and a PredS ps and c!lecks
whether a-seq satisfies ps. Any restriction on a state a-seq[k], where len u-seq c
k, is considered as satisfied. The detailed definition of this function depends
on the language of PredS under discussion, it would have to be defined formally
by recursion over the syntax of PredS. C? returns a name for the value of an
identifier nm at some stage k in an actual execution sequence and is used to
refer to that value in a PredS (cf. Section 4.5).

satisfies-restriction : (&)* x Z+edS x Index + IEB.

satisfies-restriction(u-seq, ps, ix) 111
(1) replace any G(cons(k, ix), nm) in ps by

u-seq[k](nm)(k < len a-seq),
(2) in the result, replace any atomic formula still containing 6 by true

and evaluate.

Symb& execution 227

The denotation of an SEStuteOp is given by

MS&,&@: SESuw-Gp -+ SEStateDen

mk-SEStuteDen({ [a] 1 satisfies-alhestricfions([0], S, 1))) 1)

pre lenSEQ(S) = 1

MsEs,M&mk-SEStateOp(Seq @ e, ind)l &

let S1 = mk-SEStateOp(Seq @ e, ind) in

let S2 = mk-SEStateOp(Seq, ind) in

mk-SEStateDen (
{ a-seq: (&)’ 1 sufisfies-all-restrictions(a-seq. S1, ten Seq + 1)

A (front a-seq E SEQS(MSES,~~~&~) A len o-seq = len Seq + 1

v 0-q E SE~~~(MSESWO~I[&~)

A len a-seq = len Seq

A 46: CA - safisfes-all-restrictions(a-seq @ 6. SI , len Seq + 1)

v a-seq E SEQS(hfs~s~,~&%j) A len a-seq c len Seq) } ,

lenSeq+ 1)

Fig. 5. Denotation of SEStateOp.

l The function satisfies-restrictions checks that a-seq satisfies all the restrictions
imposed by S at level i:

satisfies-restrictions : (&)* x SEStateOp x N, + B.

satisfies-restrictions (a-seq, S, i) n

if SEQ(S)[i]: SE-map

then A A satisjes-restriction(u-seq, ps, INDEX(S))
nEdom SEQ(S)[i] pscSEQ(S)[i](n)

else 3u-seq’ l satisjes-all-restrictions(u-seq’, SEQ(S)[i], len SEQ(SEQ(S)[i]))

A len a-seq’ = len SEQ(SEQ(S)[i])

A u-seq[i - l] = hd u-seq’ A u-seq[i] = last u-seq’

pre i G len SEQ(S).

The function satis$es-all-restrictions is defined below. As will be seen, the two
functions are mutually recursive.

0 The function is-legal-sequence arises from the conditions on A&,,, and is a
(very weak) check that a-seq can actua5 arise from a sequence of executions.

is-legal-sequence(u-seq) A

Vi < len a-seq. u-seq[i] =I * u-seq[i+l]=L.

228 R. K netzper

l Finally, satisJies-all-restrictions checks that ail restrictions imposed by S up to

level j are satisfied and the sequence “is legal”:

satisfies-all-restrictions : (EC)* x SEStateOp x N, + B.

sa tis@es-all-restrictions (a-seq, S, j) A

i satisfies-restrictions(a-seq, S, i)
i-l

/\ is-legal-sequence (a-seq).

pre j Q lens SEQ(S).

We now discuss some of the properties of AsEsroreop. The first one follows
immediately from the definitions:

Lemma 4.1. For all S: SEStateOp

LEN(&,,,,,, [Sg) = len SEQ(S).

Theorem 4.2. The valuuiion function &ESrareOP is total.

Proof. One needs to show that, for any S: SEStateOp,
exists. To do so, one needs to show that &sEs,a,,,[Sg
SEStateDen. This is done in Appendix B. Cl

A SESrrr,oOPISJJ: SEStateDen
satisfies the invariant inv-

A SEStateDen can represent a predicate on states. Similarly, one can represent
such predicates by SEStateOps. Given p : Pred, let @ be the PredS

~~edd~n~~(~ll, 4 1 n: Name)

and let

S(q) A mk-SEStateOp([(n+P~ 1 n: Name)], [I).

Then Jt sEs,,,,OPl[S(p)n is the SEStateDen that represents p, and we say that S((9)
is the SEStateOp that represents p. Of course, @ does not have to be associated
with each Name n, one could alternatively only associate it with those n that are
mentioned in @, or even only with one arbitrary n.

The valuation function of SEStateOp, like the others defined before, could also
be considered as a retrieve function [20, pp. 18 1 ff]. In this case, it has an adequacy
proof obligation associated with it: a representation Rep is adequate with respect
to a retrieve function retr : Rep + Abs iff va E Absm 3r E Rep* retr(r) = a. If Val is
finite, then it depends on the expressiveness of PredS whether ~&~,~,~o~ satisfies
this obligation. For infinite Val, however, there are uncountably many sets of state
sequences and therefore uncountably many SEStateDen. On the other hand, there
are only countably many SEStateOp and therefore SEStateOp cannot be adequate
with respect to &ES,a,eOP.

Symbolic execution 229

So far we have always allowed the PredS-conditions inside an SEStateOp to refer
to any element of a state sequence, including future ones. This will cause some
problems when adding another element to the sequence SEStateOp, for example in
the transition for VDM-operations in Section 4.8. Earlier conditions on the current
state u may destroy the faithfulness (see Definition 4.6) of that transition. We
therefore define .he following property which ensures that this problem does not
arise. The definition uses the auxiliary function

highest-index : PvedS + Index

which finds the highest index ix such that for some n: Name and some ixseq: N*
with hd ixseq = ix, 6(ixseq, n) occurs in a PredS. This function has to be defined
recursively over the syntax of PredS.

Definition 4.3. mk-SEStateOp(Seq, ind) is well-behaved iff

Vi S len Seqm Seq[i]: SE-map A A highest-index(ps) d i.
nsdomSeq[i] pscSeq[i](n)

The main motivation for the definition of well-behaviour is captured by the
following lemma:

Lemma 4.4. Let len o-seq 2 i. Zf S: SEStateOp is weN-behaved, then for all CT: XL

satisjies-restrictions(u-seq, S, i) H satisjies-restrictions(o-seq 0 a, S, i).

Proof. (+ Follows from the well-behaviour of S.
(+) Follows directly from the definition of satisjes-restrictions. Cl

4.2. A syntactic view of symbolic execution

It is not immediately clear from the above how SEStateOps relate to the conven-
tional concept of symbolic execution, where identifiers take symbolic values. Con-
sider an identifier int x. Possible kinds of values of x include:

l Actual values (ground terms). These are the “usual” values as used in actual
execution. The identifier x has value c for some c E VaZ at stage i of the
SEStateDen r iff

Vu-seq E SEQS(7) l o-seq[i](x) = c.

Accordingly, this is represented by the Z+edS c?([i], x) = c. In the appropriate
S: SEStateOp we then get that the PredSG([i], x) = c is in S[i](x).

l Symbolic values (terms containing symbols denoting identifiers). For example
x = 2 * y - I is a possible symbolic value of the identifier x. Symbolic values
denote a whole range of input values but possibly restricted to those of a
particular form (odd numbers for x in the above example). They are distingus-
ished by the fact that they express the value of an identifier (x in the above

230 R. Kneuper

example) as an explicit function of the values of other identifiers (y in the
example). The identifier x has value f(y) at stage i of the SEStuteDen 7 iff

Vu-seqe SEQS(r)-cr-seq[i](x) =f(cr-seq[i](y)).

These two kinds of values in symbolic execution are the ones used in most symbolic
execution systems. However, they are too restricted for dealing with specifications,
since they cannot deal with values that are defined implicitly, or underdefined.
Therefore we introduce:

0 Description values. A variable, and in particular the output variable, may have
a predicate as a value, which describes the value implicitly, rather than a term
describing it explicitly. A set of such predicates is called a description value,
it may describe a set of states as associated with an identifier in a SEStateDen.

These description values are general predicates of type Pre&, while both actual
values and symbolic values can be considered as special cases of description values.

The most general results would be achieved by letting S: SEStateOp describe the
results of (actual) execution starting with the set XL of all states. For practical
reasons, however, one will usually have to cut down the complexity of the output
term by (interactively) restricting the admissible universes of the variables used, in
extreme cases even restricting it to just one element, i.e. to mix symbolic and actual
execution. In S, such a restriction just has the effect of adding another constraint
ps: PredS at the last element of S. Although in theory it does not matter for which
n: Numeps is added to S[i](n), in practice one will probably want to add it to all
those n which are mentioned in the constraint ps.

In some cases, it might be more useful to show only part of the information
gained from symbolic execution, for example to ignore a more general description
such as an invariant and only show those parts of the information about the output
that arise &om the execution itself. In this case, the information that is not shown
should be hiddepl behind “. . .“, so that the user can always get to it again and
“unhide” it. Eliminatiug the information rather than just hiding it would lead to
weak symbolic execution.

4.3. Transitions and rules

In the following I am going to define the kind of transitions and rules used for
describing the operational semantics of language constructs in general, and then
give the appropriate transitions and rules for various coi%structs. In many cases (e.g.
the rule for if-then-else), the transitions and rules of the oFerationa1 semantics of
various language constructs are defined by translating them into an equivalent
construct in the language used for describing the results (the language of Reds),
and then simplying the result whenever possible. This simplification will hopefully
help to eliminate the construct from the description.

Symbolic execution 231

From the point of view of their purpose, one can therefore distinguish three
different kinds of transitions:

Transitions describing (state-changing) specifications, like the one in Section
4.8. describing the effect of VDrvt-operations. Since such operations actually
lead to a new state, they are described by transit:ons that extend a S: SESateOp
by adding another element to the sequence SEQ(S).
Transitions that eliminate combinators for specifications by translating them
into equivalent constructs used inside PredS expressions. As an example,
consider the rule for if-thcn- e given in Section 4.9 (Rule 6).
Simplification transitions derived from the theory for PredS, as discussed in
Section 4.5. The transition S, - S2 is allowed if S2 can be derived from S, by
simplification of PredS only.

\Ve now define the various co ponents that are needed to express transitions.
SpecName is the type of specification names, and SpecMap associates specification
names with specifications:

SpecMap = SpecName 5 Spec.

Configurations consist of a sequence of SpecNames (which may be empty) and an
SESta teOp :

Conf:: SNSEQ : SpecName*
STATE : SEStateQp

A configuration mk-Conf (snseq, S) will be writlzn as (snseq, S).
The configuration (snseq, S): Conf describes the fact that the sequence of

specifications given by snseq is to be applied to S. Given some sm : SpecMap, the
denotation of a configuration is therefore defined as below, using the auxiliary
function evalseq which, given a sequence aseq and a function f on its elements,
applies f to all the elements of aseq:

A cO,,f : Conf + SEStateDen,

JUcoJbseq, SNI 4

symbolic-ex-s[evalseq (snseq, sm)](JtlSESlareOp[S]) .

Transitions are defined as

Trans=IfjExE
E

where u denotes disjoint union, and E ranges over Conf and the different syntactic
categories of the specification language such as Expr. A transition mk-Trans(e, , e,)
will be written as el L) e2.

232 R. Kneuper

(Opl , S,) - (0p2, SJ denotes the fact that one symbolic execution step transforms

(0~~ , Sh into (OPZ, Sd, but - will also be used to denote its transitive-reflexive

closure.
Rules take the form

Rule :: hyps : !P(Trans v PredS),
cone : Trans.

This fits with the definition of rules (or rule statements) in mural [181, sine; both
Trans and Be& are special forms of Assertions.

Definition 4.5 (Operational semantics). The operational semantics of a language ZZ
are given by a transition relation t c Trans (usually written as _-_). This relation
is often given as a (fairly small) set T of transitions and transition schemata together
with a set R of rules and rule schemata. t is then the smallest set of transitions
containing all transitions and instantiations of transition schemata from T, which
is closed under application of (instantiations of) rules in R.

4.4. The relationship between denotational and operational semantics

There are a number of important properties describing the relationship between
denotational and operational semantics, for example faithfulness, full abstraction
or termination. Faithfulness is a property of individual statements or transitions,
while the other properties mentioned deal with the semantics of the language as a
whole. This paper does not give the complete operational semantics of any language,
but only a few transitions describing some important language constructs. Therefore
these other properties are not relevant in this context and we will only deal with
faithfulness.

The following definition is based on [27, Section 10.71.

Definition 4.6 (Faithfulness).
(a) A transition e, L* e2 is faithful with respect to the denotational semantics c/u

if it implies &[eJ = Jbll[e,l, or &[eJ 2 JUl[e,l if&Z returns a se? of valuations.
(b) An operational semantics _-_ is faithful with respect to the denotational

semantics Jtl if for all expressions e, and e2, el =-‘ e2 implies JU[e,l = .Hle21,
or M[eJ 3 d[e21J if A returns a set of valuations.

All the transitions given in the rest of the paper can be shown to be faithful with
respect to the standard denotational semantics of the relevant statement of the
language, although the proofs tend to be lengthy and tedious. Therefore only one
is given below, since it is quite short, and a second one is given elsewhere (Theorem
4.10).

An important general rule that shows how symbolic execution of a sequence of
specifications can be split up into symbolic execution of its elements is the following:

Symbolic execution 233

Rule 1.

(I34 SF+ (r I, w
(cons(sn, snseq), S) L) (snseq, S’)

Lemma 4.7. Rule 1 preserves faithfulness: if the hypothesir transition is faithful, then
so is the conclusion.

Proof. Let sm : SpecMap be given. Asrume that

4Ml, 99 (1 I, St>

is faithful. This implies that

Then

symbolic-exlI sm (sn)ll (&Es,~,~QJI Sll) = &ESIP,eOPU S’ll.

&JKcons(sn, snseq), S>1

= symbolic-ex-s[evalseq(cons(sn, snseq), sm)~(.HsEsl,,,&n)

= symbolic-ex-s[evalseq(snseq, sm)jj(symbolic-ex[sm(sn)~(A~~~~~,~OPIS~))

= symbolic-ex-s[evalseq (snseq, sm)I (.&slareOpl[S’j)

= 4h&nw, s7n
as required. CT

4.5. Simplijica tion

An important aspect of symbolic execution is the simplification of result terms.
In general, it .!epends very much on the user and what he wants to do whether a
given terms is “simpler” than another. On the other hand, a term cannot be
“simplified” into an arbitrary other term, both term3 need to be equivalent in a
suitable theory.

Assume we are given a specification language 2’. To reason about PredS, for
example to decide whether a PredSps, can be simplified to ps2, one needs a suitable
theory of PredS. This theory, which will be called 7%(.2’), is based on the theory
used to reason about terms in 2. Additionally an indexing mechanism is needed to
differentiate between the values of program variables (identifiers or names) at
different stages in the execution sequence. To do so, sequences (Ci)i of states are
introduced, where ui: CL. Since the definition of SEStateOp is recursive, simple
sequences are not enough-we actually need iterated sequences where ai might be
a sequence of states itself. This is modelled by introducing a function 6, which

stage in the execution,

i: N, with the index [i].

returns the name of the value of the identifier n at a given
with the signature

6 : Index x Name + Val-ref:

For simplicity, we shall in the following identify the elemenl

234 R. Kneuper

Now a PredS can be defined as a predicate that contains names of values of
identifiers at some stage, instead of the identifiers themselves. The resulting theory
of PredS is the theory used for simplification: psi : PredS inside some SEStateOp
can be simplified to ps2. l PredS if they are equivalent in Th(.Z). Weak simplification,
as used in weak symbolic e ecution, requires that psi implies ps2 in i%(9).

4.6. Assignment statement

Consider again the assignment statement x := e. We now have to provide a
transition that describes the effect of this statement in an SEStateOp such that the
transition is faithful with respect to the denotational semantics as given in Section 3.3.

Rule 2.

I- ([x := e], mk-SEStateOp(Seq, ind))

r* ([1, mk-SEStateOp(

Seq@(n*if n =x

then {&(cons(len Seq + 1, ind), x)

= e[nm/&(cons(len Seq+ 1, ind), nm) 1 nm E Name])

else {a(cons(len Seq+ 1, ind), n)

= G(cons(len Seq, ind), n)}},

ind))

Lemma 4.8. The transition given in Rtile 2 is faithful with respect to the denotation
given in Section 3.3.

Proof. We have to show that both sides of the transition have the same denotation.
Identifying SpecName and Spec, we get for the left-hand side

JG,,hUx := e], mk-SEStateOp(Seq, ind))l

= symbolic-ex[x := eJJ(&S,areOp~ mk-SEStateOp(Seq, ind)ll)

while for the right-hand side of the transition

&,,J<[J, mk-SEStateOp(. . .))I = AlsEs,,,,,[mk-SEStateOp(. . .)I.

The proof that both are equal now amounts to a very lengthy and tedious calculation
which will not be given here. 0

Symbolic execution 235

4.7. Block structures, variable declarations and scoping

We start off the description of operational semantics of language constructs with
some rules describing block structures. The approach taken by, for example, Plotkin
[26] for operational semantics of actual execution of blocks and local variable
declarations is not possible here, since it discards information about earlier states,
only the current values of variables being stored. In symbolic execution, this is not
sufficient since the predicates describing a current value of a variable in general
refer to earlier values, therefore the whole history needs to be preserved.

Therefore blocks are modelled by SEStateOps that are elements of the sequence
SEQ of the original SEStateOp. In order to be able to describe how this is done,
the following auxiliary functions will be needed:

l The function current-names is defined as follows

current-names : SEStateOp + P(Name).

current-names(S) 0, if last SEQ(S): SE-map
then dom last SEQ(S)
else dom hd SEQ(last SEQ(Sj).

l The function current-index finds the current or last index in an SEStateOp:

current-index : SESta teOp + Index.

current-index(S) A
if last SEQ(S): SE-map
then [len SEQ(S)]n INDEX(S)
else (current-index(last SEQ(S)) 0 len SEQ(S)) n INDEX(S).

current-index(S) is always the index of a SE-map.
l previous takes as input the index ix of an element of some SEStateOp and

returns the index of the previous element:

previous : Index + Index.

previous(ix) A if hd ix = 1
then ti ix
eise cons(hd ix - 1, tl ix).

pre ix#[].

l The function add-to-SEStateOp adds an element to the sequence in an
SESta teOp.

add-to-SEStateOp : SEStateOp x SE-elem + SEStateOp.

add-to-SEStateOp(S, e) 4 mk-SEStateOp(SEQ(S)O e, INDEX(S)).

0 The function start-block starts a new block by creating a new SEStateOp which
is then added as a new slemen; to the sequence SEQ of the current one. SEQ

which describes that
that they had before.

236 R. Kneuper

of the new §EStateOp only consists of one element
“nothing changes”- all identifiers keep the same value

start-block : SESta teOp + SESta teOp.

start-block(S) A

,

let S’= mk-SEStateOp([(n*(6([1, ten SEQ(S)+ l]m INDEX(S), n)

= 6([len SEQ(S)JmZNDEX(S), n)}

1 n E current-names(S))],

cons(len SEQ(S)+ 1, INDEX(S))) in

add-to-SEStateOp(S, S’).

l The function jfnish-block is defined as:

jnish-block : SEStateOp + SEStateOp.

finish-block(S) A

let m =(n-{6([len SEQ(S)]m INDEX(S), n) = G(INDEX(S), n))

1 n E dom hd (SEQ(S))} in

add-to-SEStateOp(S, m).

The rule for describing the operational semantics of a block is then given by.

Rule 3.

(snseq, last SEQ(start-block(S))+ ([I, S’)

(begin snseq end, S) c* ([1, add-to-SESta teOp(S, jinish-block(S’)))

where begin snseq end is used as the name of the appropriate sequence of
specifications. A similar convention will be used for other constructs below.

Declarations of local variables are handled by mapping them to the empty set of
restrictions and keeping all other variables equal:

Rule 4.

F([var x: Type], mk-SEStateOp(Seq, ind))

q ([1, mk-SEStateOp(

Seq$++if n =x

then (6(cons(len Seq + 1, ind), x): Type}

else (c(cons(len Seq+ 1, ind), n)

= 6(cons(len Seq, ind), n)}},

ind))

Symbolic execution 237

Additionally one needs to express that if a variable has a certain type at some
stage of the execution, it will keep that type until the end of the current block or
until a new declaration of that variable is encountered. (Most languages do have
restrictions as to when a new declaration of the same variable is allowed to occur,
but since we here assume that all specifications handled are syntactically correct
we do not need to deal with such restrictions.) This can be done using the following
rule:

Rule 5.

G(current-index(S), x): T; declares-var(sn, x); (I[sn]l, S)L, ([1, S’)
G(current-index(S), x): T

where declares-var is a predicate that returns true if the specification I[specl declares
the variable x to be of a certain type. E.g. declares-var([x: Tl, x) is true. The exact
definition of declares-var must be defined based on the syntax of the language, in
particular it needs to recognize implicit variable declarations as allowed by some
languages, such as FORTRAN.

lefine the map m: SE-map as

let rest = current-names(S) - {a, ew, r) in

!et oldzq = cons(len Se&index) in

let newseq = cons(lenSeq + 1, index) in

1
inv-Tl [nm,l’&(newscq, nm) 1 nm: Name]

1
ifn=a

{ if pre(new(a), oid(er), old(ew)) ifn=ew

then post(new(u), old(er), old&w), new(er), new(ew)),

inG4[nm/8(newseq, fim) 1 nm: Mz~e]}

{ if I;’ t*lnew(a), old(er), old&w)) ifn=r

than post(new(a), old(er), ofd(ew), new(er), new&)),

inv-T2[nm/@newseq, nm) I nm: Name]}

{ if pre(new(a), old(er), old(ew))

then @newseq, n) = 6(ofdseq, n)}

if n E rest

where old(x) denotes the value of x before, and new(x) the value of x after interpretation of Op.

Then

([Op],S) w ([I, add-to-SEStateOp(S, m))

--_-____a--P__

Fig. 6. Transition for VDM-operations.

238 R. Kneuper

4.8. Operations defined in terms of pre- and postconditions

Given a VDM-specification of an operation

Op (a: TJ r: Tz
ext rd er: T3

wr ew: Ts

pre p(a, er, ew)
post #(a, a, r, er, ew)

Here a, er, and ew may each denote a sequence of variable names, where TI, T3,
and T4 are sequences of types of the same length.

If the language of the theory Th(9) of PredS was not rich enough to express
these predicates, one would have to be content with weak symbolic execution and
use predicates which are implied by the ones above. However, this language should
be derived from LPF in the way described in Section 4.5, in which case it is expressive
enough.

Instead of using the conditional if-then in Fig. 6, it could be useful for practical
purposes to use an alternative conditional with the same denotational semantics
but which result in a warning message to the user if the condition is not satisfied,
since it really is the precondition of an operation.

Example 4.9. Given the specification OP, from Example 3.2. As before, we assume
that the precondition holds. Since x and y are the only identifier used, we start with
the SEStateOp

The appropriate instantiation of the rule giving the operational semantics of VDM-
operations is then given by (after some simplification)

~-M21, Y)2 s WI, d
let m = A G([23, X) = G([11, x) + 1) in

Y-M239 Y) s a[13941

I-([OPJ, S)- ([I, mk-SEStateOp(SEQ(S)Om, [I))

Theorem 4.10. The transition scheme in Fig. 6 giving the operational semantics of
VoM-operations is ftiithful, provided that S is well-behaved.

Proof. See [24, Appendix A.31. Cl

4.9. Operational semantics of ij3hen-else

Unfortunately, the rule describing the operational semantics of the if-then-else
combinator as used for symbolic execution turns out to be far more complicated
than those used for actual execution as given by Plotkin [26]. This is due to the

Symbolic execution 239

fact that, as mentioned before, in symbolic execution one has to store the whole
history of results, not just the current ones, and the recursive definition of states

SEStateOp needed accordingly. The rule is therefore expressed using a (recursive)
auxiliary function that “merges” two SEStateOps, and at the same time turns each _--
ps: PredS in either of the two SEStateOps into the appropriate conditional. The
latter is done by ZTE-merge-map, which is then called by the general function
ZTE-merge. ZTE-merge has to distinguish nine different cases, since either of the
two sequences to be merged may be empty or start with a SE-map or start with a
SEStateOp.

First define the auxiliary functions:

ZTE-merge-map : SE-map x SE-map x Reds + SE-map.

ZTE-merge-map(m,) m2, ps) n

{if ps then psi else p2

1 pi E mi(n), i = 1,2} if n E dom ml n dom m2

{if ps then psi else true

I psi E w(nN if ncdom ml-dom m2

{if ps then true else ps2

I PS2E m2Wl if nEdom m2-dom ml

If the two sequences to be merged have different length, then, as defined in ZTE-merge
below, one will eventually get into the position where one of the sequences starts
with a map, and the other one is empty. This case is handled by:

ZTE-merge-empty : SE-map x Z%edS x Index + SE-map.

ZTE-merge-empty(m, ps, ix) n

(nw(if ps then psr else ‘6(ix, n) = c?(previous(ix), n)‘l psi E m(n)}).

Now define

kind : SE-elem* + {EMPTY, MAP, SES),

kind (seq) 4 if seq = []
then EMPTY
else if hd seq: SE-map

then MAP
else SES.

Then

ZTE-merge : SE-elem* x SE-elem* x PredS x SEStateOp + SEStateOp.

ZTE-merge(seq, , seq2, ps, S) A

240 R Kneuper

cases kind (seql), kind (seq2) of

EMPTY, EMPTY-, s

EMPTY, MAP+

let S1 = add-to-SEStateOp(

S, ITE-merge-empty(hd seq2, ps, INDEX(S))) in

ITE-merge([1, tl seql, ps, S,)

EMPTY, ad3 +

let S1 = add-to-SEStateOp(S, ITE-merge([1, hd seq,, ps, S)) in

ITE-merge([1, tl seq2, ps, S,)

MAP, EMPTY+

let S1 = add-to-SEStateOp(

S, ITE-merge-empty(hd seql , ps, INDEX(S))) in

ITE-merge(tl seqr [], ps, S,)

MAP, MAP+

let S1 = add-to-SEStateOp(

S, ITE-merge-map (hd seql, hd seq,, ps)) in

ITE-merge(tl seql, tl seq2, ps, S,)

. MAP, SES +

let S, = last(SEQ(start-block(S))) in

let S2 =fmish-block(add-to-SEStateOp(S, , hd seql)) in

let S3 = ITE-merge(S2, hd seq,, ps, S) in

ITE-merge(tl seql, tl seq, ps, S,)

SES, EMPTY +

let S1 = add-to-SEStateOp(S, ITE-merge(hd seql , [1, ps, S)) in

ITE-merge(tl seq,, [1, ps, S,)

SES, MAP-,

let S1 = last(SEQ(start-bZock(S))) in

let S2 =$nish-bZock(add-to-SEStateOp(S1, hd seq2)) in

let S3 = ITE-merge(hd seq, , S2, ps, S) in

ITE-merge(tl seql, tl seq2, ps, S,)

SES, SES 3

let Sl= ITE-merge(hd seq, , hd seq2, ps, S) in

ITE-merge(tl seq, , tl seq,, ps, S,)

end.

Symbolic execution 241

Note that this definition implies

len SEQUTE-merge(seq, , seq,, p, S)) = len SEQ(S) + max(len seql, len seq2)

(proof by double induction over len seq, and len seq2).
Now the rule describing the operational semantics of if-then-else can be given as:

Rule 6. let&S) = q[n/&(cons(len SEQ(S), INDEX(S)), n)ln: Name] in

ps(S)t-(snseq,, S)- ([I, mk-SEStateOp(SEQ(S)r*seq,, INDEX(S)))

1ps(S)+(-v2, S)- ([I, mk-SEStateOp(SEQ(S)r*seq2, INDEX(S)))

([if Q then ml else ma], S)- ([I, ZTE-merge(seq,, seq,, ps(S), S))

assuming that the language of the simplification theory 7% (2’) (cf. Section 4.5) has
the cor!nective if-then-else.

Here “if 9 then snl else sn2” is the name of the appropriate specification. Note
that the combinator if&en-else and the connective if-then-else are different con-
structs, of different types.

The simplification theory ?I@‘) should then contain some rules for handling
if-then-else, for example

if true then q, else e2 H +I

if false then $, else e2 H qb2

if ps then @else ~4 @ #

Of course one could additionally introduce two rules that handle the case when
either ps(S) or lps(S) is known to hold. Although these rules are not strictly
necessary since they can be derived from the above (assuming that the operational
semantics given always allow one to find seq, and seq2), they would save a lot of
simplification work.

4. IO. Operational semantics of while-loops

Similar to block structures, loops are considered as a single step even though
their execution may consist of any number of steps. This is achieved by describing
the results of this execution sequence in a different SEStateOp or block which is
then considered as a single step in the original SEStateOp. However, there is an
additional complication in that w&h the usual approach to operational semantics,
using a rule like *.

(while Q do [spec] od, S)- (if Q

then ([specl; wh;Ie Q ."ic? [spec] od)

else skip, S)

it is not clear when encountering a while-statement whether to start a new block
(because it is a new while-statement) or. continue the current one (because it is a
new iteration of a previously encountered statement). Therefore we introduce two
different versions of the while-statement that allow one to distinguish the two.

242 R. Kneuper

while-&~ is the “proper” statement that starts a new block, and auxwhile-do is an
auxiliary version that is used to continue the current block.

This leads to the rules (again identifying the names of specifications with the
specifications they name):

Rule 7.

([amwhile Q do [sn] od], last start-block(S))- ([I, S’)
([while up do [sn] od], S)* ([I, add-to-SEStateOp(S, jnish-block(S)))

Rule 8.

F([auxwhile Q do [sn] od], S)* (if Q

then cons(sn, auxwhile cp do sn od)

el* 1 I, 9.

4.11. Handling nondeterminism

As mentioned before (in Section 3.5), in symbolic execution the effects of nondeter-
minism should be captured by the state rather than by supplying different transitions
that apply to the same configuration. As an example, consider the following rule
describing the operational semantics of the command IF (as defined in Section 3.5).
Since it is quite similar to the rule for if-then-else as given in Section 4.9, only the
analogue of ITE-merge-map is given here, the other cases are completely analogous
to if-then-else.

IF-merge-map : SE-map x SE-map x PredS x PredS + SE-map.

IF-merge-map(m, , y2, m, ps21 4

{n-

{if ps, *psi0 ps2+psi fi

Ip&m,(n),i=l,2} if nEdomm,ndomm,

{if psi + psi 0 ps2 + true f i

I PS: E mhO1 if nedom m,-domm,

{if psl + true (I ps2 + psi f i

I psk m2(n)l if n E dom m2 -dom ml.

Rule 9. let psi(S) = QJn/c(cons(len SEQ(S), INDEX(S)), n)l n: Name] in

ml, m2: SE-map
ps,(S)t-([sn,], S)w ([I, add-to-SEStateOp(S, m,)
ps2(S)b([sn2], S)v ([J, add-to-SEStateOp(S, m,)

(Clfv~+ sn10 ~2+ sn2fil,S)

- ([I, add-to-SEStateOp(S, IF-merge-map(m,, m2, ps,(S), ps2(S))))

Again, as for if-then-else, the consequent transition of this rule is used to transform
the combinator if-fi into the consective if-fi. This connective is then dealt with in
77@‘) by rules such as those below. These simplification rules are slightly more

Symbolic execution 243

complicated than those for if-then-else since they have to consider the different
alternatives in parallel-in symbolic execution it is not enough to know if one of
the guards is true.

5. Conclusions

This paper describes a formal definition of the denotational semantics of symbolic
execution for a wide class of specification and programming languages, expressed
in terms of the denotational semantics of the language being executed. Another way
to view this would be as a language-generic notion of correctness for symbolic
execution. This is believed to be the main contribution of the work described here.
Until now, the concept of symbolic execution had not been defrned on a general,
semantic level, but only on the syntactic level for a number of specific programming
languages (with the exception of GIST [2,7] which is a specification and not a
programming language).

In the next step, the paper introduced the notion of operational semantics of
symbolic execution. Based on a concept of state adapted for this purpose, rules are
given which describe the operational semantics as used for symbolic execution for
a small language including block structures, variable declarations, operation
definitions in terms of pre- and postconditions, deterministic and non-deterministic
conditionals, and loops.

In a further step not discussed in this paper, the work described here provided
the basis for the development of a language-generic tool for symbolic execution
(called SYMBEX and described in detail in 1241) which can handle specifications as
well as programs and is intended to support the user in validating specifications. It
is based on (a particular version of) the operational semantics of the language being
executed. The next steps in the development of this tool were the specification based
on these ideas, and the implementation of a first prototype written in SMALLTALK-80
and integrated into the mural system.

This prototype interacted with the formal reasoning tools provided by mural. The
operational semantics of a language were expressed as a collection of theories in

mural, and symbolic execution was then based on that theory. Likewise, sim-
plification was based on the theory of the language expressed in mural.

Work was not continued beyond this first prototype since there was not enough
time left for the project, and it was decided to concentrate on other aspects of mural.

244 R. Kneuper

Therefore, not much can be said about the efficiency and complexity of SYMBEX.
Certainly, the prototype was very inefficient, but this was largely due to a na’ive
implementation. In particular the simplication and theorem proving algorithms
provided by mural were since improved considerably.

As mentioned before, the work described here applies to state-based languages.
It has to remain open for now whether and how these concepts can be extended to
cover other classes of languages, such as algebraic or logic programming languages.
As described in [24, Section 4.31, these languages certainly do not fit easily into the
framework described.

Appendix A. A short summary of the notation used

The following is a (very) short summary of the notation used in this paper and
which is not standard mathematical notation. It is essentially based on the VDM
specification language (see 1201 for more details on VDM).
VDM is based on the notions of states and state transformations called operations.

It supports a number of primitive data types such as functions, finite sets, finite
maps, and sequences, and also allows product types and defined types. A type
definition takes the form

type-name = type-expression

where type-name is defined to be type-expression. Additionally one can provide a
type invariant in order to define subtypes:

type-name = type-expression
where
inv-type-name(t) A . . .

Definitions of record types take the form

type-name : :jield-name 1: jield-type 1

field-name2 I field-type2

.

With each record type T we associate a constructor function mk-T that takes as
arguments objects of the component types of T and returns the object of type T
consisting of these components. Essentially, a record is a Cartesian product with
names for its components and a constructor function associated with it.

Operations that access the state of a system are specified in the form

OP (a: TI) r: T2
ext rd er: T3

wr ew: T4

pre (9(4 er, ew)
post #(a, 67, r, er, ew).

Symbolic execution 245

Here a: TI denotes the arguments of the operation, r: T2 denotes the result, er: 7”
the external or state variables to which the operation has got read access, and ew: T3
the external or state variables to which the operation has got write access. up denotes
a precondition, # a postcondition. The semantics of OP is defined as: if the
precondition holds before the operation, then the postcondition will hold afterwards.
Since the operation may have changed the state, the postcondition refers both to
the values before (2) and after (ew) the operation.

All the parameters in the definition of an operation are optional. In particular,
this notation can be used for implicit function definitions, which do not have external
read and write variables.

Maps A a B are functions from A to 43 with a finite domain. p is the type of

finite sequences with elements from T.
seq1mseq2 denotes the concatenation of two sequences seqr and seq,, while

seq,@ e denotes appending an element e at the end of a sequence seql :

seqBe n seqr*[e].

Appendix B. Proofs of Lemma 3.4 and Theorem 4.2

Proof of Lemma 3.4. For all r: SEStateDen

yield (symbolic-exl[spec, ; specJ r)

= ha= {u’ I3u-seq E SEQS(symbolic-exl[spec, ; specJ 7) l

hd u-seq = u A last u-seq = u’

h len a-seq = LEN(symbolic-ex[spec, ; spec2Jjr)}

= Au l {q I%r-seq* front a-seq E SEQS(T)

A len u-seq = LEN(7) + 1 A last u-seq = aI A hd a-seq = a

AJU sPJspecl ; spec,j(last front u-seq, last a-seq))

= Au= {o,)3u-seq.front a-seq E SEQS(7)

A len a-seq = LEN(7) + 1 A last a-seq = u1 A hd u-seq = u

A 3u2 l &sPeC[specJ(last front u-seq, u2)

A &,,,Uspec211(u2, last u-seq))

= ha* {cq I3u-seq’ l front front u-seq E SEQS(7)

A len a-seq’= LEN(T) +2 A last u-seq = ul A hd u-seq = a

A &JspecJ(last front front u-seq’, last front a-seq’)

A .&,ec[SpeC2~(laSt front U-S&, 1st U-Seq’))

= Aa. { u1 13u-seq’ l front a-seq’ E SEQS(symbolic-ex[specJ r)

A len a-seq’ = LEN(symbolic-ex[spec,n r) + 1

A last u-seq’ = ul A hd u-seq’ = u

A .&,&peC2](last f rOnt U-Seq’, last U-Se&}

246 R. Kneuper

= haa {u, I3u-seq’ l o-seq’ E SEQS(symbolic-ex-s[[spec, , spec2]l 7)

A len a-seq’ = LEN(symbolic-ex-s([[spec, , specJ1 r)

A last a-seq’ = ul A hd u-seq’ = a}

= yield (symbolic-ex-s[spec, , spec21 7). Cl

Proof of Theorem 4.2. We show, by induction on len SEQ(S), that

VS: SEStateOp* inv-SEStateDen(&Es,~,~OPIS~).

Base case: len SEQ(S) = 1. We have to show that

let set = ([u] 1 satisjes-all-restrictions([u], S, 1)) in

Vu-seq E set- len u-seq s 1

A Vu-seq, , u-seq2 E set- Vu-seq: (CJ* l uoseql = u-seq2n 0.seq

* u-seq=[]

which is trivially true.
Induction step. Now assume that, for some S,

inv-SESta teDen (&Es,a,eO,,l[Sjj)

holds and consider

S’ = mk-SEStateOp(SEQ(S)O e, DEPTFl(S)), for some e.

We first have to show that

Vu-seq E SEQS(.&stO,=,[S’n l len a-seq 4 LEN(As~s,~,,O,,[S’~).

, This follows immediately from the definition of &~,~,~OPIIS’jj.
For the second part of the proof assume that

cr-seql 9 u-w2 E sEQs(~~,,~,,,USll),

and that for some u-seq: (&)*

u-seq, = u-seq2n a-seq.

We distinguish three cases:

Case 1: len u-seq, = LEN(&s,s,,,e, [S’n). Then a-seq = [] follows immediately,
since there are no sequences in SEQS(&Z sESrPteOJS’jl) that are longer than

~~wsEsta,edm
Case 2: len u-seq, = LEN(AsEs,~teop[S’~) - 1. Then, by definition of .I&~~~,~~~,

13u: 2~ l satisjies-all-restrictions(uoseq20 0, S, len S + l),

Symbolic execution 247

therefore a-seq cannot have length 1. It cannot be longer either, since then a-seq,
would be too long to be in SEQS(A ~~~,a,~~pl[SO e]l). This only leaves o-seq = [1, as
required.

Case 3: len v-seq, < LEN(&~,a,,o,,l[S’jJ - 1. In this case

and we have to distinguish two further cases:

(3.0 u-seq, E SEQK&~s,aw,l[Sll). m en a-seq = [] follows by induction
hypothesis.

(3.2) o-seq, e SEQS(J&,,,,~~([S~). In this case, since

+seq, E SEQS(~s~smreoplWll,

we have

front +seql E S~QWb~~ta,e~,Ml) A len -eq, = L~W&Es,a,eopUS~) + 1

Now assume o-seq f []. Then

front wseq, = a-seq2 m front o-seq,

and we can apply the induction hypothesis to get front a-wq = [1, or len o-seq = 1.
Then we get

len a--seq, = kn o-seq2 + len o-seq

c (LENWsmaw&‘ll - 1) + 1

= len a-seq,

which shows that our assumption a-seq # [] must have been false. 0

Acknowledgement

Most of the work reported here has been done as part of the IPSE 2.5 project, the
aim of which was to build an “Integrated Project Support Environment”.

Major innovative aspects of this project were genericity with respect to languages
and development methods supported, and an emphasis on support for formal
methods. The part of IPSE 2.5 dealing with support for formal methods was called
mural. See [l&19] for more information on mural.

IPSE 2.5 was developed under an Alvey/SERC project by a consortium of the
following member organisations: STC plc, ICL plc, University of Manchester, Dowty
Defence & Air Systems Ltd., Plessey Research Roke Manor Ltd., SERC Rutherford
Appleton Laboratory, British Gas plc.

At the same time, the work described here formed a major part of the author’s
Ph.D. thesis [24]. My thanks for many fruitful discussions go to the other members

248 R. Kneuper

of the IPSE 2.5 group here in Manchester and at Rutherford Labs, in particular to
Cliff Jones, my supervisor, and also to Roy Simpson and John Fitzgerald.

Minor parts of this paper are taken from the author’s contribution to [18].

References

111

PI

c31

143

PI

WI

173

I81

191

WI

WI

WI

Cl31
I141

WI
1161
1171
Cl81

[I91

1201

WI

WI
u31

K.R. Apt, Ten years of Hoare’s logic: a survey-part I, ACM Trans. fiogramming Languages Syst.
4 (1981) 431-483.
R.M. Balzer, N.M. Goldman and D.S. Wile, Operational specification as the basis for rapid
prototyping, ACM SIGSOFT Software Engrg. Notes 5 (1982) 3-16.
H. Barringer, J.H. Cheng and C.B. Jones, A logic covering undefinedness in program proofs, Acta
Inform. 21 (1984) 251-269.
D. Bjflrner, A.P. Ershov and N.D. Jones, eds., Partial Evaluation and Mixed Computation, Gl.
Avemaes, Ebberup, Denmark (1987).
M. Bray, Extensional behaviour of concurrent, nondeterministic, communicating s: terns, in:
M. Bray, ed., Control Flow and Data Flow: Concepts of t+%tributed Programming (Springer, Berlin,
1985).
L.A. Clarke and D.J. Richardson, Symbolic evaluation-an aid to testing and verification, in: H.-L.
Hausen, ed., Softeware Validation- Boceedings Symposium on Software Validation, Darmstadt,
W Germany (North-Holland, Amsterdam, 1984) 141-166.
D. Cohen, W. Swartout and R. Balzer, Using symbolic execution to characterize behavior, ACM
SIGSOFTSofrware Engrg. Notes 5 (1982) 25-32.
D. Coleman and J.W. Hughes, The clean termination of Pascal programs, Acta Inform. 11 (1979)
195-210.
P. Cousot and R. Cousot, Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints, in: Proceedings ACM Symposium on
Rinciples of Rogramming Languages, Los Angeles, CA (1977) 238-252.
P. Cousot and R. Cousot, Static determination of dynamic properties of generalized type unions,
in: Proceedings ACM Conference on Language Design for Reliable Software, Raieigh, SC (1977) 77-94.
R.E. Davis, Truth, Deduction and Computation. Logic and Semanticsfor Computer Science (Computer
Science Press, Rockville, MD, 1989).
J.W. de Bakker and J.I. Zucker, Processes and the denotational semantics of concurrency. Inform.
Control l/2 (1982) 70-120.
E.W. Dijkstra, A Discipline of Programming (Prentice-Hail, Englewood Cliffs, NJ, 1976).
S.L. Hantler and J.C. King, An introduction to proving the correctness of programs, in: Proceedings
ACM Computer Science Conference (1976) 331-353.
E.C.R. Hehner, Predicative programming. Comm. ACM 27 (1984) 134-151.
C.A.R. Hoare, An axiomatic basis for computer programming, Comm. ACM 12 (1963) 576-583.
IX. Ince, The automatic generation of test data, Computer J. 1 (1387) 63-63.
C.B. Jones, K.D. Jones, P.A. Lindsay and R.C. Moore, eds., mural-A Formal Development Support
System (Springer, Berlin, 1331).
C.B. Jones and P.A. Lindsay, A support system for formal reasoning: requirements and status, in:
R. Bloomfield, L. Marshall and R. Jones, eds., VDM’88-The Way Ahead. Proceedings 2nd VDM-
Europe SymposiumDublin, Ireland, Lecture Notes Computer Science 328 (Springer, Berlin, 1988)
139-152.
C.B. Jones, Systematic Software Development Using VDM (Prenctice-Hall, Englewood Cliffs, NJ,
2nd ed., 1330).
R.A. Kemmerer, Testing formal specifications to detect design errors, IEEE Trans. Software Engrg.
11 (1985) 32-43.
J.C. King, Symbolic execution and program testing, Comm. ACM 19 (1376) 385-394.
R. Kneuper, Symbolic execution of specifications: user interface and scenarios, Tech. Report.
Department of Computer Science, University of Manchester (1387).

Symbolic execution 249

[24) R. Kneuper, Symbolic execution asa tool for validation of specifications, Ph.D. Thesis, Department
of Computer Science, University of Manchester (1989).

[25] A. Mycroft, Abstract interpretation and optimising transformations for applicative programs, Ph.D.
Thesis, University of Edinburgh (1981).

[26] G.D. Plotkin, A structural approach to operational semantics, Tech. Report, Computer Science
Department, Aarhus University, Denmark (1981).

[27] D.A. Schmidt, Denotational Semantics -a Methodology for Language Development (Allyn and
Bacon, Newton, MA, 1986).

1281 LE. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory
(MIT Press, Cambridge, MA, 1977).

[29] D. Talbot and R.W. Witty, Alvey programme for software engineering, Alvey Directorate (1983).
[30] W. Zimmermann, How to mechanize complexity analysis (Submitted).

