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Abstract 

Kneuper, R., Symbolic execution: a semantic approach, Science of Computer Programming 16 
(1991) 207-249. 

This paper discusses symbolic execution from a semantic point of view, covering both programs 
and specifications. It defines the denotational semantics of symbolic execution of specifications 
and programs, and thus introduces a notion of correctness of symbolic execution which applies 
not just to an individual language but to a wide class of languages, namely those whose semantics 
can be described in terms of states and state transformations. Also described are the operational 
semantics of a language as used for symbolic execution. 

This work also provided the basis of the prototype symbolic execution system SYMBEX which 
was developed at the University of Manchester as part of the mural project. However, this paper 
only covers the theoretical foundations used by SYMBEX, but not the system itseif. 

1. Introduction 

1.1. Symbolic execution 

Symbolic execution is a technique that allows the user to handle a whole range 
of input values at a time, rather than just a single value as in actual execution. This 
is done by allowing identifiers (symbols) as input in addition to the usual “actual” 
values. It was first introduced by King (cf. [22]) who was mainly interested in its 
use for program validation and verification [ 141. Others later used it for a variety 
of purposes, such as test case generation [4,17] and specification validation (GIST 

project, cf. [2,7]). With the exception of GIST and the work done by Kemmerer 
[21], symbolic execution has so far only been applied to programs, as opposed to 
specifications. 

* Most of the work described here was done while the author was working on the APSE 2.5 project 
at the University of Manchester, England. 

0167-6423/91/$03.50 @ 1991-Elsevier Science Publishers B.V. 
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Techniques related to symbolic execution are partial evaluation (e.g. [4]) and 
abstract interpretation (e.g. [ 10,9,25]). They differ from symbolic execution in that 
the result of partial evaluation of a program, given some input data, is a new 
program. In abstract interpretation, one analyses the relationship between sets (or 
domains) of input and output data, abstracting away from the relationships between 
the individual values within those sets. In this sense, abstract interpretation is more 
abstract than symbolic execution, since symbolic execution tries to capture this 
information as well. 

Complexity analysis can also be done using techniques similar to symbolic 
execution, see for example [30]. For a more detailed survey of the different 
approaches to symbolic execution and related techniques see [24, Chapter 21. 

The purpose of this paper is to define precisely what is meant by symbolic 
execution, independent of the language used, and provide a semantic framework 
for it. As a result, it is not concerned with using symbolic execution for any of the 
practical purposes described above, or with any particular system for symbolic 
execution. 

The framework described was, however, introduced as one step towards the overall 
aim of developing a system for symbolic execution of specifications which can help 
to validate them, and thus support the first step in a formal software development 
process. How such a system could be used is described in [23]. 

Symboli, execution can be considered as a technique for “executing” programs 
or specifications when some of the information normally needed is not available. 
In this sense, symbolic execution allows one to handle partial information about: 

l Input data: the input values are not determined (or at least not uniquely); this 
means one has to handle a whole range of input values at once, not just a 
single value. 

l Aigorithm: the algorithm for computing the output value for any given input 
value is not provided (or is at least incomplete). In this case one usually talks 
about a speciJication rather than a program. 

l Output data: the output values are not determined uniquely by the input values, 
i.e. the specification is nondeterministic. 

In order to describe this variation of execution, one first has to define what exactly 
is meant by “interpretation “, “execution” and “executable”. Unless otherwise stated, 
a program will in future be considered as a special kind of specification. The 
differences between the two are discussed in Section 2.2. Furthermore, I shall 
distinguish between interpreting a specification and executing it. Interpreting a 
specification transforms one state into another according to the meaning of the 
specification. Executing it additionally requires that one has an algorithm for 
performing this transformation. When interpreting or executing a specification, one 
interprets or executes a term in the appropriate language. Obviously, it does not 
make sense to talk about interpretation or execution if only the syntax of this 
language is known, e.g. if one only knows its grammar from some production rules. 
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Interpretation and execution of a language clearly depend on its semantics. There- 
fore, Section 2.1 will discuss the relevant aspects of language semantics that will be 
needed later. Section 2.2 briefly discusses the notions of execution and interpretation, 
and compares specification and programming languages. 

The main body of this paper starts in Section 3, which investigates the denotational 
semantics of symbolic execution. These will be expressed in terms of the denotational 
semantics of the specification language used. This is followed in Section 4 with a 
discussion of the operzlional semantics of symbolic execution. 

The notation used in this paper for describing functions, data types, etc., is based 
on VDM [20]. A short summary of it is given in Appendix A. 

1.2. Scope and structure of this paper 

This paper defines the denotational and operational semantics of symbolic execu- 
tion in a formal way independent of the specific language under consideration. This 
distinguishes it from other papers on symbolic execution which only consider one 
particular language and only give an intuitive description of the notion of symbolic 
execution itself. 

The work described in this paper provided the framework for a language-generic 
symbolic execution system called SYMBEX, a prototype of which was developed as 
part of the muraZ/IPsE 2.5 project. However, this paper concentrates on the semantic 
aspects of symbolic execution and does not try to describe SYMBEX. For more 
information on the system SYMBEX itself see [ 18,241. 

The ideas in this paper are intended to apply to any specification or programming 
language that is based on the notions of states and state transitions or, more precisely, 
whose semantics can be expressed in terms of states and state transitions. Therefore, 
most of the ideas described are not appropriate for algebraic specification languages, 
for functional or logic programming languages, or for languages such as CCS or 
CSP which are based on the concept of processes. However, within these restrictions 
the ideas described are intended to be fully generic. Note that on a very low level 
this implies that the concepts apply to all programming languages, since programs 
are eventually translated into state transformations in a computer. However, this 
very low-level view will in general not be very useful. 

The concept of symbolic execution in the sense described here and in the previous 
literature relies heavily on the concept of variables and their (changing) values, SO 
that it is difficult to imagine what symbolic execution of a language not using states 
and state transitions should be. Languages such as PROLOG or LISP support a 
considerable amount of symbol processing in ordinary execution, so that an addi- 
tional concept of symbolic execution might not be needed. 

For a more detailed discussion of the range of languages covered see [24, Sect. 4.31. 
Furthermore, this paper ignores the problems arising from rounding errors in 

floating point arithmetic and from over- and underflow on computers with bounded 
storage capacity. The latter could be dealt with by introducing parameters expressing 
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these bounds into the semantics of the language, using the “clean termination” 
approach described in [8]. 

As for the structure of this paper, Section 2 provides some of the theoretical 
background that will be used later. In particular, it discusses the semantics of 
specification or programming languages with an emphasis on denotational semantics. 
Based on that, the notions of execution and executability and the differences between 
specification and programming languages are examined. 

The main body of the paper starts with Section 3, which gives a semantic definition 
of symbolic execution. By expressing it in terms of the denotational semantics of 
the language used, symbolic execution is defined generically over languages. 

This denotational description is followed in Section 4 by a description of symbolic 
execution from an operational semantics point of view, and a discussion of the 
relationship between the two. Section 4 includes a number of rules that can be used 
to describe symbolic execution of some common language constructs. 

Finally, Section 5 provides a short summary of the ideas discussed in this paper 
and assesses the achievements and limitations of this approach. 

The appendices contain, apart from a few proofs that were too long to be included 
in the text itself, a short summary of some of the VDM-notation used. 

2. Specification and programming languages 

2.1. Semantics 

Consider a specification or programming language 2,. Unless otherwise stated, 
I shall in future consider a program as a special kind of specification. The differences 
between the two are discussed below. Specifications are a certain class of &terms, 
usually containing free variables called input and output variables and state variables. 

For simplicity, I shall from now on assume that specifications only use a single 
state variable, but no other input or output variables. Since the state variable might 
be of arbitrarily complex type, this is no real restriction of generality. 

We now need to define the concept of “language”: 

Definition 2.1 (Language). A language is defined by 
l its syntax, expressed as a (usually context-free) grammar; 
l well-formedness conditions (often expressed as static semantics or as context- 

sensitive syntax); 
l its semantics, which may be given in any of the styles described below. 

The semantics of a programming or specification language describe the “meaning” 
of terms of the language in some way. There are a number of different ways of 
describing the semantics of a language, the most common ones are the following 
(cf. [28, Section 21 or [ 113): 

0 Operational semantics. The meaning of a construct of the language is given by 
explicitly stating its effect, the operation that it evokes (see for example [26]). 
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Given an input state for a specification, the operational semantics of the 
language provide an algorithm to find the appropriate output state. 

Another way of describing operational semantics views only input variables 
as free variables of a specification. In this case one substitutes the input data 
for the free variables of the specification term, and then rewrites the resulting 
ground term into normal form in a rewrite system which is given by the semantics 
of the programming language. This normal form is then the output from 
executing the specification. For example, the semantics of A-calculus can be 
given this way, using p-reduction, etc. [ 11, Chapter 51. 

@ Denotationalsemarrtics. The meaning of a construct of the language is described 
by giving it a “denotation”, i.e. by translating it into a different structure which 
is considered to be understood (usually but not necessarily a formalized 
structure) and modelling the effect of statements of the language there. This 
different structure is often based on domain theory as introduced by Scott 
[27,28]. One possible alternative is to express the denotations in the language 
of predicate calculus, this is called predicative semantics [15]. 

0 Axiomatic semantics. The meaning of a language is described by axioms that 
can be used to prove theorems about (specification) terms in the language. 
These axioms act as constraints on the relation between input and output 
variables. The usual style for such axioms is Hoare logic [ 1,161, using input 
and output assertions. A similar approach is the use of predicate transformers 
and weakest preconditions, as introduced by Dijkstra [13]. 

The following is mainly based on denotational semantics. By giving a denotational 
semantics to a language &, one translates it into another language &, called 
semantic language, which is considered to be “understood”, i.e. the meaning of its 
constructs is known. In other words, one explains the semantics of 9, in terms of 
the semantics of .J&. The translation is given by a recursive function from terms in 
the language .JZ’i to terms in .Z’*. This translation is called valuation function. Usually, 
LZZ will have some theory associated with it, in that case it will be more adequate 
to say that we understand the theory associated with L&, rather than the language 
itself. Common choices for L& with an associated theory are the languages of Scott’s 
domain theory, of predicate calculus, of partial recursive functions, or of A -calculus. 

Definition 2.2 (Valuation functions). A valuation function Ju maps terms of a 
language 2 to their meaning (denotation), an element or set of elements of the 
abstract or semantic domain. We require that valuation functions are defined 
structurally, i.e. the meaning of a term is defined in terms of the meaning of its 
subterms. This property is sometimes called the “denotational rule”. 

The valuation function may map to a set of elements of the abstract domain in 
order to handle nondeterminism and underdeterminedness. Alternatively, power 
domains may be used instead. 
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A valuation function may also take additional arguments such as the environment 
or continuations, in order to handle more complicated language constructs. This 
will in the following be handled by “currying” the valuation function and turning 
the denotation of the construct itself into a function. In particular, the denotation 
of a program term is usually defined as a function from states to states. Variation:: 
are used for nondeterministic programs, whose meaning may be given as a binary 
relation between states or, equivalently, a function from states to sets of states, and 
for underdetermined programs, whose meaning may be given as a set of functions 
from states to states. 

Usually, one introduces several different valuation functions for different classes 
of terms, such as commands, Boolean expressions, etc. The valuation function for 
terms in class C will be written as & c. Figure 1 describes the valuation functions 
on predicates and specifications. Specifications are terms in the language that denote 
a binary relation on states. The definitions in Fig. 1 only give those properties of 

-4~ and J&~ that will be needed later. Obviously, for any given language one 
will want to define these functions in muc more detail, and Pred and Spec should 

probably allow expression of nonrecursive functions as well. The conditions on 
these two valuation functions ensure that the languages of predicates and 
specifications are “reasonably expressive”, at least they allow one to express all 
(partial) recursive functions of the appropriate type, for example by expressing a 
suitable recursion scheme for defining the function. 

Given a set Name of identifiers (names) where each identifier has a type associated with it, and a set Vu1 of 

values, a state is a map of type 

C = Name 2 Vail 

Define 

C,=Cu{l) 

The valuation function on predicates (over states) is some function 

M&d: Pred + & + B 

such that 

Vf: {partial recursive functions CA + B} - 3[tpj: Pred - A&d(EqD =f 

The valuation function on specifications Spec is some function 

.UsPcC: Uspecj I-+ R; Spec + (CA x C+ + B) 

where R is such that 

and where 

b”: {partial recursive functions CA x CA + B} - 3bpeclI: Spec . M~p,ITqW = f 

Fig. 1. Valuation functions for specifications and predicates. 
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The valuation function ,ti S,,ec for specifications maps a specification to a binary 
relation on states that is interpreted as the input/ou’_put relation induced by the 
specification. Since the investigations in this paper are restricted to specification 
languages that are based on the notions of state and state transitions (cf. Section 
1.2), this seems the most appropriate approach. 

Note that the specification of C with fslnction Asper is su$iciently abstract in the 
sense of [20, p. 2181. A model is sufficiently abstract if, for any two different states, 
one can find a sequence of operations, in this case, of elements J&&pec],’ that 
distinguishes them. This is very similar to full abstraction of the denotational 
semantics of a language in relation to its operational semantics. 

According to Fig. 1, the meaning of a specification I[specJJ is a relation R between 
input and output states. 

Nontermination or abortion is described by the output state I, i.e. R(a, I) 
describes the fact that, starting from state a, execution of [specj may not terminate, 
or it may abort. We require that R(& C), and R(I, o) only if a=&. This is done 
in order to ease the description of composition. It essentially describes the fact that 
if a specification never starts to be interpreted because the one interpreted previously 
fails to terminate, then interpretation of this specification also will not terminate. 
Equivalently this could of course be expressed as 

R&a) H a=l. 

It is also required that for every state g1 there exists at least one state 0, (possibly 
L) such that R(a, , q). 

For deterministic specifications, R will actually be a function from states to states 
rather than a relation. 

The reason for using L as a state ir: its own right, rather than for example 
introducing a termination set T of states (as done in VDM), is that this will make 
it easier to describe symbolic execution and to distinguish between nontermination 
of symbolic execution itself and termination with the result “execution does not 
terminate”. Additionally, composition is easier to describe this way. However, 
provided two relations R are considered equivalent if they agree on all pairs of 
states whose first element is in T (i.e. whenever they are guaranteed to terminate), 
then this is only a matter of taste and the two models are isomorphic: given R as 
above, (R,, Tl) can be defined as 

&(a,, ~2) = R(cr, 4 c2) A u2 f L an::\ T, = {al~R(a, C)}. 

Conversely, given (h, , T,) we can define 

W-, , ~2) = R,( (71, a2) v (a, E T, A (+2 = 1.). 

’ Terms in the object (or specification or programming) language are written in Strachey brackets 
[I. . .I, in order to distinguish them from terms in the (meta-) language used for describing the semantics 
of the term. 
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The definition of &,,, in Figure 1 can easily be extended to cover sequences of 

specification: 

2.2. Execution and ehvcutability 

We first discus:, the difference between execution and interpretation of a program. 

Definition 2.3 (Execution and interpretation). Given a specification I[specl, interpreta- 

tion of [specl is a state transformation from a state a to a state (+’ such that 
&,,,I[specl)h, CT’). interpret is defined as an arbitrary function 

interprel : Spec + Zc + CL 

that satisfies 

&&&pecj( a, interprerbspecjv j. 

If this state transformation !s given by a ( partial) recursive algorithm, then interpreta- 
tion [spec] is called execution. 

Note that in general the result interpret[spec]o is not defined uniquely by this 
definition, since [specs may be underdetermined or nondeterministic. If this is the 
case, one has to force the interpretation of [specjj into choosing a particulrr result 
state out of the set of possible result states. 

Definition 2.4 (Executable languages). A language 9 is executable if every 
specification term in 9 can be executed in the sense of Definition 2.3, i.e. if all 
specification terms in the language are recursive. 

A special case of this is a language 9 with operational semantics. In this case, 
the recursive algorithm is given explicitly by the operational semantics, and the 
language is therefore executable. 1~ follows that a language is recursive if and only 
if its operational semantics can be given. Executability of a language or term does 
not (or at least not only) depend on its denotational semantics: two functions may 
denote the same input/output relationship, but only one of them is executable, since 
the other one is defined using properties of the result, without providing an algorithm 
for it. E.g. sorting of a list could be defined as a procedure that takes a list of 
elements and returns a list containing the same elements but where each element 
is smaller than or equal to any following element. In this case, sorting would be 
non-executable. Alternatively, sorting could be defined using a suitable algorithm, 
such as bubble sort, in which case sorting would be executable. 

Similarly, termination of a term clearly depends on its operational semantics, 
since it refers to the length of the process of computation. It therefore does not 
make sense to talk about termination of non-executable terms or languages. 
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A difficulty that arises in this context is that even though recursive functions do 
model the hardware operations wiP”:* . 

111111 5 computer ts a cctizin extec,, ____y + fh~ do not 
take into account time and space restrictions that apply to any computer in the real 
w0rh.l. Almost all language constructs are in some sense non-executable on real 
computers, since for sufficiently large arguments, the capacity of any computer will 
be exceeded. However, Definition 2.3 ignores such restrictions and says that a 
specification is executable if it is executable given a large enough computer and 
unlimited (but finitc) time. 

To some extent, executability can be used to differentiate between specification 
and programming languages: programming languages are always executable, while 
specification languages in general are not. This implies that specification languages 
can be more expressive. In particular one can use more abstract concepts for 
specifications, such as more abstract types, or describing what the result of an 
operation should be, as opposed to describing how it should be computed. From 
this point of view, “executable specification languages” are programming languages 
that usually allow more abstract constructs than the more common programming 
languages, but nevertheless the fact that they are executable implies that they can 
never be as abstract as a genuine specification language, and it therefore is at least 
questionable whether they are suitable for actualiy specifying a system. 

When one specifies a system before implementing it, the question of cc!urse arises 
whether the implementation is correct, whether it “satisfies” the specification. 
There are a number of different definitions of satisfaction, which differ mainly 
in their treatment of undefinedness. These are discussed in more detail in [5] or 
[24, Section 3.31. 

In the following a specification [Spec,n will be called an implementation of [Spec,] 
if it satisfies [Spec,] and is executable. [SpecJ is implementable if there exists an 
implementation of it, i.e. if it can be defined as a recursive function. 

3. Denotational semantics of symbolic execution 

3.1. The semantic model 

AS a first attempt at a formal description of symbolic executioin, one might try to 
base it on the observation that in symbolic execution, the input to a specification 
[spec]l can be considered as a set S 5 CL of states. As output, it returns the set of 
states that can be reached from a state in S via J&,,,&~ec~. l-!owever, for describing 
the denotational semantics of symbolic execution this is not sufficient, since it would 
lose all the information about the relationship between input and output states 
themselves, as opposed to the relationship between the sets of these states.(For 
other purposes it can still be very useful to consider only these sets; this is essentially 
what is done in abstract interpretation.) For example, given the specification 

x=Ovx=x’+l 
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(where 2 denotes the “old” value of x before running the operation specified), 
symbolic execution would map N to N and not really provide any information. To 
get more useful information, one would have to restrict the set S, in this case 
{a 1 a(x j E N}, to a small subset, which would be contrary to the ideas behind symbolic 
execution and lead towards “testing” of specifications. 

In addition to the requirement :hat the semantic model should support the use 
of (fairly arbitrary) sets of input states, we therefore need that the semantic model 
describes the relationship between individual input and output states (and not just 
the relationship between the set of UN input states and the set of all output states). 
other requirements on the model are: 

I; should allow composition of two (or more) symbolic execution steps. In 
particular, this implies that input and output must be of the same type. 

l It should be possible to make assumptions on the set of input states (as described 
above) not only at the beginning of a sequence of symbolic execution steps, 
but also at an intermediate stage. In this case, assumptions may be expressed 
in terms of the values of variables in earlier states. (Cf. the assume command 
in SYMBEX [24, pp. 4Of, 85, HO].) 

As a result, the model of symbolic execution used is based on a “symbolic 
execution state” called SEStuteDen which contains sets of sequences of states. The 
definition of §EStateDen is given in Fig. 2. The name SEStuteDen stands for 
Symbolic Execution State as used for Denotational semantics. similarly, Section 
4 will introduce SEStateOp for states in operational semantics. 

In addition to the set of sequences of states, §EStuteDen contains a field LEN 
which stores the number of symbolic execution steps performed, plus 1 for the 

symbolic execution is given by 

SESlar&en :: SE@ : P((ZJ’) 

LEN : N 

where 

inv-SEStuteDen(mk-SES~afeDen(set, I)) & 

Vu-seq 6 set - len U-seq I 1 

A VU-seq!, U-se42 E set . VU-seq: (&J’ - a-seql = u-seq2 Tc U-seq * a-seq = [ ] 

A set S c X+ of staiees (or, similarly, a predicate on states) can be represented by the SESlureDen 

z(S) 2 mk-SE%teDen({ Ial I U E S}, 1) 

The function yield exvacts the input/output relationship from the sequences in SESfafeDen. 

yie!d(z) & la: I+ - {d: C+ I3u-seq E SEQS( T) - 

hd a-seq = u A last a-seq = u’ A len a-seq = LEN( ?)) 

Fig. 2. Denotational semantics of symbolic execution: state. 
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initial state (see Fig. 2) At ahe same tim 2, this is the number of actual execution 
steps modelled in any sequence of states in the field 5SEQS plus 1, which leads to 
the first conj-net in the invariant. In this model, assumed restrictions are modelled 
by “cutting off” as much as necessary from the end of all sequences of states until 
the condition is satisfied. This intuition explains the second conjunct of the invariant 
on SEStateDm, which demands that no seqc lence in SEStateDen is an initial segment 
of another such sequence. The LEN field idthen needed to recognize if all sequences 

. ” 
in SEQS have been cut off. 

As a convention , T will be used to denote elements of SEStateDen, while a denotes 
elements of CL, as before. 

Symbolic execution of a specification is modelied by adding another state to all 
those sequences that have not been “cut off”, see Fig. 3. Just as interpretation or 
execution, given a . g- ;cification, maps states to states, so symbolic execution, given 
a specification, maps SEStateDens to SEStateDens. 

The functions froct and last used in Figs. 2 and 3 are defined is 

front = rev 0 tl 0 rev, 

last = hd 0 rev, 

where the function rev reverses a list. 
Doing symbolic execution in the way described here and storing all possible 

sequences of states allawed by a sequence of specifi :ations requires a fairly rich 
language for expressing the results of symbolic execution, whic’n might not always 
be available. For example, the result of executing a while-loop will often not be 
expressible in the language available. Therefore, in addition to such fulZ symbolic 
execution Fig. 3 also defines weak symbolic execution, where :he result includes the 

[Full) symbolic execution is given by the function 

symbolic-ex : Spec + SESiateDen -+ SEStareDen 

symbolic-ex[spezjr h 

mk-SEStateDen( 

{ 6-seq 1 len a-seq = LEN(?) + 1 A front a-seq E SEQS( r) 

A ,bf~pcc(rspec](lastfront cweq, last a-seq) 

v lein a-seq c LEN(t) A 6-seq E SEQS( 7)) , 
r r?aII-\ I 1, &L‘.(‘, T A) 

Weak symbolic execution is zilly function 

w-symbolic-ex: Spec x SESlaleDen + SESrateDen; (I[specD, TI) ++ 72 

which satisfier 

SEQS( ~252) I> SEQS(symbolic-ex[specl]?l) A LEN( ?d = LEN(symbolic-exUspecD rl) 

Fig. 3. Denotational semantics of symbolic execution: functions. 
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set of all possible sequences of states. This ensures that the properties one gets as 
a result of weak symbolic execution still hold for the denotation of the full result, 
they just do not in general give a complete description. 

Since in many cases one is really interested in the relationship between input and 
output states and less in the intermediate states, a function called yield for extracting 
this relationship from an SEStateDen is also provided (in Fig. 2). This can be 
considered as extracting from an SEStateDen the map from initial states to possible 
resulting states, the possible data model for symbolic execution rejected above. It 
thus is quite similar to the yield operator + introduced in [ 121. 

Note that there is a distinction between symbolic execution of the composition 
of specifications and the composition of symbolic execution steps. As Lemma 3.4 
will show, they give rise to SEStateDens that describe the same relationship between 
initial and final states, but the SEStateDens themselves are different. They lead to 
SEStateDens of different lengths, since symbolic execution of the composition of 
specifications is considered as a single step, while a sequence of symbolic executions 
in general consists of several steps. 

3.2. Some properties of symbolic execution 

It is not immediately obvious that symbolic-ex as defined is a totaZ function. 
Although a result is constructed for any input value, this result might not be of type 
SEStateDen. The following lemma shows that this case does not arise. 

Lemma 3.1. symbolic-ex is total. 

Roof. We have to show that for any [specj’J: Spec and T: SEStateDen 

inv-SEStateDen (symbolic-ex[specj 7). 

The first condition of the invariant is obviously true. Now let 

u-seq, , u-seq2 E SEQS( symbolic-ex[specl r) 

and c+-seq: (Cc)*, wseq # [ ] be such that 

o-seq, = a-seq, n cr-seq. 

The definition of symbolic-ex then implies that a-seq, E SEQS( 7). 

Case 1: len a-seq, = LEA/( 7) + 1. Then 

o-seq, n f ront a-seq = front a-seq, E SEQS( T) 

and inv-SEStateDen( 7) implies that front u-seq = [ 1, i.e. len a-seq = 1. But then 
len a-seq, = EEN( T), therefore a-seq, cannot be in SEQS( symbolic-ex[speclT)- 
contradiction. 

Case 2: len a-seq, < LEN( 7). In this case a-seq = [ ] follows immediately from 
inv-SEStateDen (7). 0 
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Example 3.2. Let Name = {x, y}. We want to symbolically execute the VDM operation 

op, 
ext wr x: P 

wry:N 
prexW 
posty2~XL/\x=XL+1 

Then 

&p,cuoP,n!~~ 4 H 

if a(x) B o then a,(~)~ S CT(X) A al(x) = u(x)+ 1 else true 

Now the user assume s that the precondition of OP, is true. This means that OP, 
is to be symbolically executed in the SEStateDen 71 which represents the predicate 
x30: 

r1 = mk-SEStateDen(([u] IJXpred[x 3 Ona}, 1) 

= mk-SEStateDen(([o] 1 CT(X) 3 0), I). 

Then symbolic execution of the specification OP, starting in the SEStateDen r1 
results in the SEStateDen 

symbolic-ex[ OPJ r1 

= mk-SEStateDen({c+-seq 1 len a-seq = LEN( rl) + 1 

A front cweq E 

A A,,,[OP,](last front a-seq, last u-seqjl 

v len a-seq < LEN(T,) 

A c+-seq E SEQS( rl)}, 

LEN(r,)+lj 

= mk-SEStateDen ({ a-seq 1 len r--scq = 2 

= mk-SEStateDen(([a, T a23 Icr,(x) 2 8 

Strictly speaking, Op, is the name oi the oper&Dn (or specigIicaGon) rather than 
the operation itself. For the time b&g, I shalI ;srse names of specifications to denote 
both the name itself and ths spMdicaQon referred to by it, until in Section 4.3 a 
mapping from specificatial: narr~s ro specifications is introduced. 
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‘The following lemma states that the result of interpreting a specification in a state 
u can also be achieved ‘by symbolically executing the specification in a SEStateDen T 
which represents a set of states including U, and then selecting a sequence starting 
with (+ in the result. This is a property that one would “obviously” want to hold, 
and it thus serves to validate the model. 

Lemma 3.3. Let [specj : Spec, let r1 , r2: SEStateDen be such that 

symbolic-ex[[ specl r1 = r2. 

Then for all states a, u1 : CA 

o1 E yield( r,)(o) a interpret[specla, E yield (TV). 

In particular if q represents a set S of states, i.e. 

71 = mk-SEStateDen(([o] 1 a E S}, l), 

then for all cr E S 

[a, interpret[spec]lcr] C-T SEQS( TV). 

3.3. Assignment statement 

The denotational semantics of the assignment statement can be described as 
follows: 

Ok = .k[ejj A Vy E dom ul l y # x + u2(y) = q(y). 

The denotational semantics of symbolic execution of the assignment statement can 
now be calculated as 

symbolic-ex[x := en T 

= mk-SEStateDen({ cr-seq 1 len o-seq = LEN( 7) + 1 

A front o-seq E SEQS( T) 

A last a-seq(x) = Jld[[en 

A !/ye y f x 3 last cr-seq(y) = last front a-seq(y) 

v len a-seq < LEN( 7) A o-seq E SEQS( T)}, 

2). 

As a simple example, consider the case where we start with the SEStateDen that 
represents CL, that is, no restriction has been placed on the starting state and no 
other statement has been symbolically executed: 

T= mk-SEStateDen(([a]IoE&}, 1). 
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We then get 

symbolic-ex[[x := en T 

= mk-SEStuteDen ({ wseq 1 len o-seq = 2 A u-seq[ l] E SEQS( 7) 

A a-seq[2](x) = A[ej/ 

A Vy l y # x * a-seq[Tj(y) = a-seq[ l](y)}, 2) 

= mk-SESta teDen ({ [ cl 9 4 Iv1 E 2~ A 44 = 4kll 

AvY*Y f x * U*(Y) = cQ(Y)I, 2) 

which expresses, as one would expect, that all sequences of states of length 2 are 
included for which the value in the pzecond state of x is (the denotation of) e, and 
the values of all other variables are the same as in the first state. 

3.4. Composition of specijica tions 

Let ; denote sequential composition of specifications, and let symbolic-ex-s be the 
obvious generalisation of symbolic-ex that symbolically executes a sequence of 
specifications instead of just a single one. Then: 

Lemma 3.4 (Composition). For all spezijications [specil, [spec& Spec, 

yield (symbolic-ex[spec, ; spec,i = yield (symbolic-ex-slj[ spec, , specJj). 

Proof. See Appendix B. Cl 

Note that we do not have 

symbolic-ex[spec, ; spec,] = symbolic-ex-s[[[ spec, , SpecJn 

since [spec , ; spec,Jj is regarded as a single specification, while [[spec, , specJj is a 
sequence of two specifications. Therefore symbolic execution of the two leads to 
SEStateDens of different lengths. 

Example 3.5. Given the operation specification 

m 
ext wr x: Z 

rdy: N 
pre -lOO~x~+lOO 
post3Z:Z.y*Z+X=x’A06X<y 
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we want to symbolically execute OP, starting in the SEStateDen 72 resulting from 
symbolically executing OP,, as given in Example 3.2. From the specification it 
follows that 

J&pecuoP,llb, 4 

W if -lOOSa(x 

then 32: Eol(y)*z+q(x) =a($ 

A 0s dx) < 4Y) A al(y) = O(Y) 

else true. 

Then symbolic execution of OP, starting in r2 results in the r3: SEStateDen with 

LEN( r3) = 3 and 

SEQS(symbolic-ex[ 0P21 TV) 

= (cr-seq 1 len a-seq = LEN( TV) + 1 A front a-seq E SEQS( r2) 

A As,,[OP,~(last front a-seq, last cr-seq) 

v len a-seq < LEN(r,) A a-seq E SEQS( r2)} 

= {o-seq 1 len a-seq = 3 

A cT-seq[ l](x) 3 0 A (r-seq[2](y)‘s a-seq[ l](x) 

A o-seq[2](x) = a-seq[ l](x) + 1 

A &pecUOP211b-=Wl, ~-seqW)I 

={[~1,~2,~311~,(X)30A~2(Y)24~1(X)A(TZ(X)=~,(X)+1 

A if -1OOS 4X) S +100 

then 32: Z - c3(y) * z+ q(x) = a,(x) 

A 0 s 03(X) <= a,(Y) A g3(Y) = g2(Y) 

else true}. 

Note that the restriction on the set of starting states for the resulting set of state 
sequences (i.e. V&X) 2 0) was explicitly introduced by the user, before symbolically 
executing OP, . This is the reason why, in spite of the second precondition, -100 s 
x Q + 100, the result still considers all a-seq such that u,(x) 2 0. Instead, the result 
itself contains a conditional. It is only for practical reasons that the user will often 
assume that the precondition is true, so as to keep the resulting expression reasonably 
simple. 

3.5. Nondeterminism and underdeterminedness 

In symbolic execution, the effects of underdeterminedness and nondeterminism 
are captured by the state rather than by making symbolic execution itself nondeter- 
ministic--the reason being that one wants to check that UN outputs allowed by the 
specification or program are correct, and not just one of them. 
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As an example, consider the command (from Dijkstra’s language of guarded 
commands [ 131) 

IF 4 if b, + spec, /j b2 + sgecz f i 

The meaning of IF is given by 

J&eeu~Fll((+1~ 4 

= Jtlf+t?duhn~* A &.&P4K~19 4 

v &‘red I[b,b, A &&p%bl9 ‘d 

Since we are interested in the nondeterministic case, we let r1 : SEStateDen represent 

i.e. 

and the nondeterminism has been transferred inside the SEStateDen T?. 

4. Operational semantics of specifications as used for symbolic execution 

This section describes a model of symbolic execution based on the operational 
semantics approach. The style of operational semantics used is based on that of 
Plotkin’s “Structured Operational Semantics” [26], but of course the transitions 
themselves are rather different since they describe symbolic rather than actual 
execution. However, if there is no danger of confusion, I shall in future not explicitly 
mention that I am dealing with the particular version of operational semantics used 
for symbolic execution, but just talk about operational semantics. 

In Section 4.1, the data structure (or state) used is defined. Sections 4.2-4.5 
introduce some general ideas about symbolic execution. After that, the state transi- 
tions used for symbolic execution of some specific language constructs are intro- 
duced. These include block structures, variable declarations, operation definitions 
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in terms of pre- and postconditions, deterministic and nondeterministic conditionals, 
and loops. Note that this paper does not try to provide the complete operational 
semantics for any one language, but it does show the rules for a number of important 
language constructs. 

There is an important difference between the descriptions of the denotational and 
operational semantics of symbolic execution. While it is possible to explicitly define 
the denotational semantics of symbolic execution itself by expressing them in terms 
of the denotational semantics of the language used, this is not possible for the 
operational semantics. Instead, one here has to provide a different version of the 
operational semantics of the language, specifically for symbolic execution. 

There is a similarity here between operational semantics as used for symbolic 
execution, and the axiomatic semantics of the same language. Both are essentially 
concerned with what properties are provable about a given specification term. 
However, in axiomatic semantics such properties are expressed as a logical 
expression in a suitable theory, usually making reference to the values of variables 
before and after interpreting the specification. In operational semantics as used for 
symbolic execution a similar logical expression is constructed. However, it is 
expressed as a predicate on a sequence of states (called a PredS, see below) or 
“description value”, and used as the value of the appropriate variable in a suitably 
defined “symbolic execution state” (SEStuteOp, see below). 

4.1. The data structure 

States as used on the operational level will be called SEStateOps-Symbolic 
Execution States as used for Operational semantics. In SEStateOps, the information 
derived using symbolic execution should get associated with those identifiers whose 
values are described by it. For this reason, SEStateOps use maps from Name to 
the relevant information. The easiest way to model this relevant information seems 
to be as predicates. These predicates must be predicates on sequences of states rather 
than single states, since they should model the relationship between different states. 
These are the predicates the user should actually get to see in description values of 
variables at any stage in the symbolic execution. A PredS then is any expression 
whose semantics can be given as 

Ju heds : PredS + StateSeq + B 

where StateSeq is defined as 

C teSeq = (& 1 StateSeq)“. 

StateSeq is defined recursively rather than just as a sequence of states in order 
to be able to handle blocks and loops, as described below. 

The language of PredS has to include constant symbols true and false, and 
operator symbols A, ==$, and N (all with their standard interpretation). 
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The only condition on the internal structure of preds is that it must be possible 
to define a function 

mention : PredS + 9( Name) 

which collects the identifiers mentioned in a given PredS into a set. No other 
conditions are needed since symbolic execution itself makes almost no use of the 
information contained in the PredS, it mainly stores it in a suitable way. Only 
simplification will need to know about the syntax and semantics of PredS. (In 
particular, it needs to know when two PredS are equivalent.) The definitions of the 
syntax and semantics of PredS are therefore given in a theory which is used to 
instantiate symbolic execution for a particular specification language (and thus for 
a particular language of PredS), but not as part of the model of symbolic execution 
itself. Simplification theories are described in Section 4.5. 

We now need to define the structure of the states SEStateOp which should store 
the information contained in the Reds. Since allowing sets of PredS rather than 
only individual PredS as description values makes it easier to combine different 
PredS and, when needed (for example for simplification), split the resulr again to 
get its components, SEStateOps are modelled using maps from Name to g(PredS). 

Each symbolic execution step gives rise to a new predicate (or set of predicates) 
on sequences of states, and obviously each such predicate may provide valuable 
information that should be associated with the appropriate identifier and the 
appropriate execution step. Therefore, SEStateOps will be defined as sequences of 
maps from identifiers to sets of predicates on sequences of states. An SEStateOp 

thus stores a history of the results of symbolic execution. 
In this history a loop should be considered as a single step, even though it may 

really consist of any number of steps (including 0). Therefore, the result of the loop 
is modelled as an SEStateOp itself, which is then considered as one step in the 
original SEStateOp. Similarly, blocks should be considered as a single step and are 
therefore also modelled as an SEStateOp themselves. This leads to the recursive 
definition of SEStateOp given in Fig. 4. One might thus consider an SEStateOp as 
a tree, where the leaves of the tree are maps and the inner nodes are SEStateOps. 
R-e-order traversal of this tree describes the execution sequence modelled by the 
(root) SESta teOp. 

In addition to the sequence described above, SEStateOp contains a field INDEX 
which stores the index or position of this SEStateOp in the recursive definition. 
Without this, one would not be able to recognize whether an SEStateOp is itself an 
element in another SEStateOp, or whether it is a top-level state. However, one needs 
to know this in order to get the right description values in the SEStateOp. Since 
these description values express properties of sequences of states, they need to know 
which sequence of states they should refer to. 

The invariant on SEStateOp ensures that every SEQ( S) has a first element which 
defines the allowed parameter states. An SEStateOp itself would not be allowed as 
first element because it should only arise as a result of symbolically executing a 
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lefine 

Index = I+!; 
-- 

4 state a used for &scribing the operational semantics of a language for symbolic execution is defined recur- 

,ively as 

SE-map = Name -% P(Pred.9 

SE-elem = SE-map 1 SEStateOp 

SEStateOp : : SEQ : SE-elem’ 

INDEX : Index 

where 

inv-SEStateOp(mk-SEStateOp(Seq, ix)) 2 

Seq#Il 

A hd Seq: SE-map 

AVkIlenSeq- 

Seq[k]: SEStateOp =j INDEX(Seq[k]) = cons(k, ix) 

Fig. 4. Operational semantics of symbolic execution: state, 

specification (usually a loop or alock). Additionally, the invariant ensures that 
SEStateOp describes the intuition behind INDEX as described above-the INDEX 
of any SEStateOp which is the kth element of SEQ of the SEStateOp S is the 
INDEX ix of S with k added at the front, or cons(k, ix). 

The valuation function ASESlareOp in Fig. 5 maps an SEStateOp to an SEStareDen, 
where the resulting SEStateDen contains those sequences of states that satisfy all 
the predicates in the SEStateOp. This is expressed using the following notation and 
auxiliary functions: 

l satisfies-restriction takes a sequence of states wseq and a PredS ps and c!lecks 
whether a-seq satisfies ps. Any restriction on a state a-seq[ k], where len u-seq c 
k, is considered as satisfied. The detailed definition of this function depends 
on the language of PredS under discussion, it would have to be defined formally 
by recursion over the syntax of PredS. C? returns a name for the value of an 
identifier nm at some stage k in an actual execution sequence and is used to 
refer to that value in a PredS (cf. Section 4.5). 

satisfies-restriction : (&)* x Z+edS x Index + IEB. 

satisfies-restriction(u-seq, ps, ix) 111 
(1) replace any G(cons( k, ix), nm) in ps by 

u-seq[ k]( nm)( k < len a-seq), 
(2) in the result, replace any atomic formula still containing 6 by true 

and evaluate. 
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The denotation of an SEStuteOp is given by 

MS&,&@: SESuw-Gp -+ SEStateDen 

mk-SEStuteDen({ [a] 1 satisfies-alhestricfions([0], S, 1))) 1) 

pre lenSEQ(S) = 1 

MsEs,M&mk-SEStateOp(Seq @ e, ind)l & 

let S1 = mk-SEStateOp(Seq @ e, ind) in 

let S2 = mk-SEStateOp(Seq, ind) in 

mk-SEStateDen ( 
{ a-seq: (&)’ 1 sufisfies-all-restrictions(a-seq. S1, ten Seq + 1) 

A (front a-seq E SEQS(MSES,~~~&~) A len o-seq = len Seq + 1 

v 0-q E SE~~~(MSESWO~I[&~) 

A len a-seq = len Seq 

A 46: CA - safisfes-all-restrictions( a-seq @ 6. SI , len Seq + 1) 

v a-seq E SEQS(hfs~s~,~&%j) A len a-seq c len Seq) } , 

lenSeq+ 1) 

Fig. 5. Denotation of SEStateOp. 

l The function satisfies-restrictions checks that a-seq satisfies all the restrictions 
imposed by S at level i: 

satisfies-restrictions : (&)* x SEStateOp x N, + B. 

satisfies-restrictions (a-seq, S, i) n 

if SEQ( S)[ i]: SE-map 

then A A satisjes-restriction(u-seq, ps, INDEX(S)) 
nEdom SEQ(S)[i] pscSEQ(S)[i](n) 

else 3u-seq’ l satisjes-all-restrictions( u-seq’, SEQ( S)[ i], len SEQ( SEQ( S)[ i])) 

A len a-seq’ = len SEQ( SEQ( S)[ i]) 

A u-seq[ i - l] = hd u-seq’ A u-seq[ i] = last u-seq’ 

pre i G len SEQ(S). 

The function satis$es-all-restrictions is defined below. As will be seen, the two 
functions are mutually recursive. 

0 The function is-legal-sequence arises from the conditions on A&,,, and is a 
(very weak) check that a-seq can actua5 arise from a sequence of executions. 

is-legal-sequence( u-seq) A 

Vi < len a-seq. u-seq[ i] =I * u-seq[i+l]=L. 
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l Finally, satisJies-all-restrictions checks that ail restrictions imposed by S up to 

level j are satisfied and the sequence “is legal”: 

satisfies-all-restrictions : (EC)* x SEStateOp x N, + B. 

sa tis@es-all-restrictions ( a-seq, S, j) A 

i satisfies-restrictions( a-seq, S, i) 
i-l 

/\ is-legal-sequence ( a-seq ). 

pre j Q lens SEQ( S). 

We now discuss some of the properties of AsEsroreop. The first one follows 
immediately from the definitions: 

Lemma 4.1. For all S: SEStateOp 

LEN(&,,,,,, [Sg) = len SEQ( S). 

Theorem 4.2. The valuuiion function &ESrareOP is total. 

Proof. One needs to show that, for any S: SEStateOp, 
exists. To do so, one needs to show that &sEs,a,,,[Sg 
SEStateDen. This is done in Appendix B. Cl 

A SESrrr,oOPISJJ: SEStateDen 
satisfies the invariant inv- 

A SEStateDen can represent a predicate on states. Similarly, one can represent 
such predicates by SEStateOps. Given p : Pred, let @ be the PredS 

~~edd~n~~(~ll, 4 1 n: Name) 

and let 

S(q) A mk-SEStateOp([(n+P~ 1 n: Name)], [I). 

Then Jt sEs,,,,OPl[S(p)n is the SEStateDen that represents p, and we say that S( (9) 
is the SEStateOp that represents p. Of course, @ does not have to be associated 
with each Name n, one could alternatively only associate it with those n that are 
mentioned in @, or even only with one arbitrary n. 

The valuation function of SEStateOp, like the others defined before, could also 
be considered as a retrieve function [20, pp. 18 1 ff]. In this case, it has an adequacy 
proof obligation associated with it: a representation Rep is adequate with respect 
to a retrieve function retr : Rep + Abs iff va E Absm 3r E Rep* retr(r) = a. If Val is 
finite, then it depends on the expressiveness of PredS whether ~&~,~,~o~ satisfies 
this obligation. For infinite Val, however, there are uncountably many sets of state 
sequences and therefore uncountably many SEStateDen. On the other hand, there 
are only countably many SEStateOp and therefore SEStateOp cannot be adequate 
with respect to &ES,a,eOP. 
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So far we have always allowed the PredS-conditions inside an SEStateOp to refer 
to any element of a state sequence, including future ones. This will cause some 
problems when adding another element to the sequence SEStateOp, for example in 
the transition for VDM-operations in Section 4.8. Earlier conditions on the current 
state u may destroy the faithfulness (see Definition 4.6) of that transition. We 
therefore define .he following property which ensures that this problem does not 
arise. The definition uses the auxiliary function 

highest-index : PvedS + Index 

which finds the highest index ix such that for some n: Name and some ixseq: N* 
with hd ixseq = ix, 6( ixseq, n) occurs in a PredS. This function has to be defined 
recursively over the syntax of PredS. 

Definition 4.3. mk-SEStateOp( Seq, ind) is well-behaved iff 

Vi S len Seqm Seq[ i]: SE-map A A highest-index( ps) d i. 
nsdomSeq[i] pscSeq[i](n) 

The main motivation for the definition of well-behaviour is captured by the 
following lemma: 

Lemma 4.4. Let len o-seq 2 i. Zf S: SEStateOp is weN-behaved, then for all CT: XL 

satisjies-restrictions(u-seq, S, i) H satisjies-restrictions(o-seq 0 a, S, i). 

Proof. (+ Follows from the well-behaviour of S. 
(+) Follows directly from the definition of satisjes-restrictions. Cl 

4.2. A syntactic view of symbolic execution 

It is not immediately clear from the above how SEStateOps relate to the conven- 
tional concept of symbolic execution, where identifiers take symbolic values. Con- 
sider an identifier int x. Possible kinds of values of x include: 

l Actual values (ground terms). These are the “usual” values as used in actual 
execution. The identifier x has value c for some c E VaZ at stage i of the 
SEStateDen r iff 

Vu-seq E SEQS( 7) l o-seq[ i](x) = c. 

Accordingly, this is represented by the Z+edS c?( [ i], x) = c. In the appropriate 
S: SEStateOp we then get that the PredSG([i], x) = c is in S[i](x). 

l Symbolic values (terms containing symbols denoting identifiers). For example 
x = 2 * y - I is a possible symbolic value of the identifier x. Symbolic values 
denote a whole range of input values but possibly restricted to those of a 
particular form (odd numbers for x in the above example). They are distingus- 
ished by the fact that they express the value of an identifier (x in the above 
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example) as an explicit function of the values of other identifiers (y in the 
example). The identifier x has value f(y) at stage i of the SEStuteDen 7 iff 

Vu-seqe SEQS(r)-cr-seq[i](x) =f(cr-seq[i](y)). 

These two kinds of values in symbolic execution are the ones used in most symbolic 
execution systems. However, they are too restricted for dealing with specifications, 
since they cannot deal with values that are defined implicitly, or underdefined. 
Therefore we introduce: 

0 Description values. A variable, and in particular the output variable, may have 
a predicate as a value, which describes the value implicitly, rather than a term 
describing it explicitly. A set of such predicates is called a description value, 
it may describe a set of states as associated with an identifier in a SEStateDen. 

These description values are general predicates of type Pre&, while both actual 
values and symbolic values can be considered as special cases of description values. 

The most general results would be achieved by letting S: SEStateOp describe the 
results of (actual) execution starting with the set XL of all states. For practical 
reasons, however, one will usually have to cut down the complexity of the output 
term by (interactively) restricting the admissible universes of the variables used, in 
extreme cases even restricting it to just one element, i.e. to mix symbolic and actual 
execution. In S, such a restriction just has the effect of adding another constraint 
ps: PredS at the last element of S. Although in theory it does not matter for which 
n: Numeps is added to S[i](n), in practice one will probably want to add it to all 
those n which are mentioned in the constraint ps. 

In some cases, it might be more useful to show only part of the information 
gained from symbolic execution, for example to ignore a more general description 
such as an invariant and only show those parts of the information about the output 
that arise &om the execution itself. In this case, the information that is not shown 
should be hiddepl behind “. . .“, so that the user can always get to it again and 
“unhide” it. Eliminatiug the information rather than just hiding it would lead to 
weak symbolic execution. 

4.3. Transitions and rules 

In the following I am going to define the kind of transitions and rules used for 
describing the operational semantics of language constructs in general, and then 
give the appropriate transitions and rules for various coi%structs. In many cases (e.g. 
the rule for if-then-else), the transitions and rules of the oFerationa1 semantics of 
various language constructs are defined by translating them into an equivalent 
construct in the language used for describing the results (the language of Reds), 
and then simplying the result whenever possible. This simplification will hopefully 
help to eliminate the construct from the description. 
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From the point of view of their purpose, one can therefore distinguish three 
different kinds of transitions: 

Transitions describing (state-changing) specifications, like the one in Section 
4.8. describing the effect of VDrvt-operations. Since such operations actually 
lead to a new state, they are described by transit:ons that extend a S: SESateOp 
by adding another element to the sequence SEQ(S). 
Transitions that eliminate combinators for specifications by translating them 
into equivalent constructs used inside PredS expressions. As an example, 
consider the rule for if-thcn- e given in Section 4.9 (Rule 6). 
Simplification transitions derived from the theory for PredS, as discussed in 
Section 4.5. The transition S, - S2 is allowed if S2 can be derived from S, by 
simplification of PredS only. 

\Ve now define the various co ponents that are needed to express transitions. 
SpecName is the type of specification names, and SpecMap associates specification 
names with specifications: 

SpecMap = SpecName 5 Spec. 

Configurations consist of a sequence of SpecNames (which may be empty) and an 
SESta teOp : 

Conf:: SNSEQ : SpecName* 
STATE : SEStateQp 

A configuration mk-Conf (snseq, S) will be writlzn as (snseq, S). 
The configuration (snseq, S): Conf describes the fact that the sequence of 

specifications given by snseq is to be applied to S. Given some sm : SpecMap, the 
denotation of a configuration is therefore defined as below, using the auxiliary 
function evalseq which, given a sequence aseq and a function f on its elements, 
applies f to all the elements of aseq: 

A cO,,f : Conf + SEStateDen, 

JUcoJbseq, SNI 4 

symbolic-ex-s[ evalseq ( snseq, sm)]( JtlSESlareOp[ S] ) . 

Transitions are defined as 

Trans=IfjExE 
E 

where u denotes disjoint union, and E ranges over Conf and the different syntactic 
categories of the specification language such as Expr. A transition mk-Trans(e, , e,) 
will be written as el L) e2. 
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(Opl , S,) - ( 0p2, SJ denotes the fact that one symbolic execution step transforms 

(0~~ , Sh into (OPZ, Sd, but - will also be used to denote its transitive-reflexive 

closure. 
Rules take the form 

Rule :: hyps : !P( Trans v PredS), 
cone : Trans. 

This fits with the definition of rules (or rule statements) in mural [ 181, sine; both 
Trans and Be& are special forms of Assertions. 

Definition 4.5 (Operational semantics). The operational semantics of a language ZZ 
are given by a transition relation t c Trans (usually written as _-_). This relation 
is often given as a (fairly small) set T of transitions and transition schemata together 
with a set R of rules and rule schemata. t is then the smallest set of transitions 
containing all transitions and instantiations of transition schemata from T, which 
is closed under application of (instantiations of) rules in R. 

4.4. The relationship between denotational and operational semantics 

There are a number of important properties describing the relationship between 
denotational and operational semantics, for example faithfulness, full abstraction 
or termination. Faithfulness is a property of individual statements or transitions, 
while the other properties mentioned deal with the semantics of the language as a 
whole. This paper does not give the complete operational semantics of any language, 
but only a few transitions describing some important language constructs. Therefore 
these other properties are not relevant in this context and we will only deal with 
faithfulness. 

The following definition is based on [27, Section 10.71. 

Definition 4.6 (Faithfulness). 
(a) A transition e, L* e2 is faithful with respect to the denotational semantics c/u 

if it implies &[eJ = Jbll[e,l, or &[eJ 2 JUl[e,l if&Z returns a se? of valuations. 
(b) An operational semantics _-_ is faithful with respect to the denotational 

semantics Jtl if for all expressions e, and e2, el =-‘ e2 implies JU[e,l = .Hle21, 
or M[eJ 3 d[e21J if A returns a set of valuations. 

All the transitions given in the rest of the paper can be shown to be faithful with 
respect to the standard denotational semantics of the relevant statement of the 
language, although the proofs tend to be lengthy and tedious. Therefore only one 
is given below, since it is quite short, and a second one is given elsewhere (Theorem 
4.10). 

An important general rule that shows how symbolic execution of a sequence of 
specifications can be split up into symbolic execution of its elements is the following: 
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Rule 1. 

(I34 SF+ (r I, w 
(cons( sn, snseq), S) L) (snseq, S’) 

Lemma 4.7. Rule 1 preserves faithfulness: if the hypothesir transition is faithful, then 
so is the conclusion. 

Proof. Let sm : SpecMap be given. Asrume that 

4Ml, 99 (1 I, St> 

is faithful. This implies that 

Then 

symbolic-exlI sm ( sn )ll (&Es,~,~QJI Sll ) = &ESIP,eOPU S’ll. 

&JKcons(sn, snseq), S>1 

= symbolic-ex-s[evalseq(cons(sn, snseq), sm)~(.HsEsl,,,&n) 

= symbolic-ex-s[evalseq(snseq, sm)jj(symbolic-ex[sm(sn)~(A~~~~~,~OPIS~)) 

= symbolic-ex-s[ evalseq (snseq, sm )I ( .&slareOpl[S’j) 

= 4h&nw, s7n 
as required. CT 

4.5. Simplijica tion 

An important aspect of symbolic execution is the simplification of result terms. 
In general, it .!epends very much on the user and what he wants to do whether a 
given terms is “simpler” than another. On the other hand, a term cannot be 
“simplified” into an arbitrary other term, both term3 need to be equivalent in a 
suitable theory. 

Assume we are given a specification language 2’. To reason about PredS, for 
example to decide whether a PredSps, can be simplified to ps2, one needs a suitable 
theory of PredS. This theory, which will be called 7%(.2’), is based on the theory 
used to reason about terms in 2. Additionally an indexing mechanism is needed to 
differentiate between the values of program variables (identifiers or names) at 
different stages in the execution sequence. To do so, sequences (Ci)i of states are 
introduced, where ui: CL. Since the definition of SEStateOp is recursive, simple 
sequences are not enough-we actually need iterated sequences where ai might be 
a sequence of states itself. This is modelled by introducing a function 6, which 

stage in the execution, 

i: N, with the index [i]. 

returns the name of the value of the identifier n at a given 
with the signature 

6 : Index x Name + Val-ref: 

For simplicity, we shall in the following identify the elemenl 
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Now a PredS can be defined as a predicate that contains names of values of 
identifiers at some stage, instead of the identifiers themselves. The resulting theory 
of PredS is the theory used for simplification: psi : PredS inside some SEStateOp 
can be simplified to ps2. l PredS if they are equivalent in Th(.Z). Weak simplification, 
as used in weak symbolic e ecution, requires that psi implies ps2 in i%( 9). 

4.6. Assignment statement 

Consider again the assignment statement x := e. We now have to provide a 
transition that describes the effect of this statement in an SEStateOp such that the 
transition is faithful with respect to the denotational semantics as given in Section 3.3. 

Rule 2. 

I- ([x := e], mk-SEStateOp(Seq, ind )) 

r* ([ 1, mk-SEStateOp( 

Seq@(n*if n =x 

then {&(cons(len Seq + 1, ind), x) 

= e[nm/&(cons(len Seq+ 1, ind), nm) 1 nm E Name]) 

else {a(cons(len Seq+ 1, ind), n) 

= G(cons(len Seq, ind), n)}}, 

ind )) 

Lemma 4.8. The transition given in Rtile 2 is faithful with respect to the denotation 
given in Section 3.3. 

Proof. We have to show that both sides of the transition have the same denotation. 
Identifying SpecName and Spec, we get for the left-hand side 

JG,,hUx := e], mk-SEStateOp( Seq, ind))l 

= symbolic-ex[x := eJJ(&S,areOp~ mk-SEStateOp( Seq, ind )ll ) 

while for the right-hand side of the transition 

&,,J<[ J, mk-SEStateOp(. . .))I = AlsEs,,,,,[mk-SEStateOp(. . .)I. 

The proof that both are equal now amounts to a very lengthy and tedious calculation 
which will not be given here. 0 
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4.7. Block structures, variable declarations and scoping 

We start off the description of operational semantics of language constructs with 
some rules describing block structures. The approach taken by, for example, Plotkin 
[26] for operational semantics of actual execution of blocks and local variable 
declarations is not possible here, since it discards information about earlier states, 
only the current values of variables being stored. In symbolic execution, this is not 
sufficient since the predicates describing a current value of a variable in general 
refer to earlier values, therefore the whole history needs to be preserved. 

Therefore blocks are modelled by SEStateOps that are elements of the sequence 
SEQ of the original SEStateOp. In order to be able to describe how this is done, 
the following auxiliary functions will be needed: 

l The function current-names is defined as follows 

current-names : SEStateOp + P( Name). 

current-names(S) 0, if last SEQ(S): SE-map 
then dom last SEQ(S) 
else dom hd SEQ(last SEQ(Sj). 

l The function current-index finds the current or last index in an SEStateOp: 

current-index : SESta teOp + Index. 

current-index(S) A 
if last SEQ(S): SE-map 
then [len SEQ(S)]n INDEX(S) 
else (current-index( last SEQ( S)) 0 len SEQ( S)) n INDEX(S). 

current-index(S) is always the index of a SE-map. 
l previous takes as input the index ix of an element of some SEStateOp and 

returns the index of the previous element: 

previous : Index + Index. 

previous( ix) A if hd ix = 1 
then ti ix 
eise cons(hd ix - 1, tl ix). 

pre ix#[]. 

l The function add-to-SEStateOp adds an element to the sequence in an 
SESta teOp. 

add-to-SEStateOp : SEStateOp x SE-elem + SEStateOp. 

add-to-SEStateOp( S, e) 4 mk-SEStateOp(SEQ( S)O e, INDEX(S)). 

0 The function start-block starts a new block by creating a new SEStateOp which 
is then added as a new slemen; to the sequence SEQ of the current one. SEQ 
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of the new §EStateOp only consists of one element 
“nothing changes”- all identifiers keep the same value 

start-block : SESta teOp + SESta teOp. 

start-block(S) A 

, 

let S’= mk-SEStateOp([(n*(6([1, ten SEQ(S)+ l]m INDEX(S), n) 

= 6([len SEQ(S)JmZNDEX(S), n)} 

1 n E current-names(S))], 

cons(len SEQ(S)+ 1, INDEX(S))) in 

add-to-SEStateOp(S, S’). 

l The function jfnish-block is defined as: 

jnish-block : SEStateOp + SEStateOp. 

finish-block(S) A 

let m =(n-{6([len SEQ(S)]m INDEX(S), n) = G(INDEX(S), n)) 

1 n E dom hd (SEQ(S))} in 

add-to-SEStateOp(S, m). 

The rule for describing the operational semantics of a block is then given by. 

Rule 3. 

(snseq, last SEQ(start-block(S))+ ([I, S’) 

(begin snseq end, S) c* ([ 1, add-to-SESta teOp( S, jinish-block( S’) )) 

where begin snseq end is used as the name of the appropriate sequence of 
specifications. A similar convention will be used for other constructs below. 

Declarations of local variables are handled by mapping them to the empty set of 
restrictions and keeping all other variables equal: 

Rule 4. 

F([var x: Type], mk-SEStateOp(Seq, ind)) 

q ([ 1, mk-SEStateOp( 

Seq$++if n =x 

then (6(cons(len Seq + 1, ind), x): Type} 

else (c(cons(len Seq+ 1, ind), n) 

= 6(cons(len Seq, ind), n)}}, 

ind )) 
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Additionally one needs to express that if a variable has a certain type at some 
stage of the execution, it will keep that type until the end of the current block or 
until a new declaration of that variable is encountered. (Most languages do have 
restrictions as to when a new declaration of the same variable is allowed to occur, 
but since we here assume that all specifications handled are syntactically correct 
we do not need to deal with such restrictions.) This can be done using the following 
rule: 

Rule 5. 

G( current-index( S), x): T; declares-var(sn, x); (I[sn]l, S)L, ([ 1, S’) 
G(current-index(S), x): T 

where declares-var is a predicate that returns true if the specification I[specl declares 
the variable x to be of a certain type. E.g. declares-var([x: Tl, x) is true. The exact 
definition of declares-var must be defined based on the syntax of the language, in 
particular it needs to recognize implicit variable declarations as allowed by some 
languages, such as FORTRAN. 

lefine the map m: SE-map as 

let rest = current-names(S) - {a, ew, r) in 

!et oldzq = cons(len Se&index) in 

let newseq = cons(lenSeq + 1, index) in 

1 
inv-Tl [nm,l’&(newscq, nm) 1 nm: Name] 

1 
ifn=a 

{ if pre(new(a), oid(er), old(ew)) ifn=ew 

then post(new(u), old(er), old&w), new(er), new(ew)), 

inG4[nm/8(newseq, fim) 1 nm: Mz~e]} 

{ if I;’ t*lnew(a), old(er), old&w)) ifn=r 

than post(new(a), old(er), ofd(ew), new(er), new&)), 

inv-T2[nm/@newseq, nm) I nm: Name]} 

{ if pre(new(a), old(er), old(ew)) 

then @newseq, n) = 6(ofdseq, n)} 

if n E rest 

where old(x) denotes the value of x before, and new(x) the value of x after interpretation of Op. 

Then 

([Op],S) w ([I, add-to-SEStateOp(S, m)) 

--_-____a--P__ 

Fig. 6. Transition for VDM-operations. 
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4.8. Operations defined in terms of pre- and postconditions 

Given a VDM-specification of an operation 

Op (a: TJ r: Tz 
ext rd er: T3 

wr ew: Ts 

pre p(a, er, ew) 
post #(a, a, r, er, ew) 

Here a, er, and ew may each denote a sequence of variable names, where TI, T3, 
and T4 are sequences of types of the same length. 

If the language of the theory Th(9) of PredS was not rich enough to express 
these predicates, one would have to be content with weak symbolic execution and 
use predicates which are implied by the ones above. However, this language should 
be derived from LPF in the way described in Section 4.5, in which case it is expressive 
enough. 

Instead of using the conditional if-then in Fig. 6, it could be useful for practical 
purposes to use an alternative conditional with the same denotational semantics 
but which result in a warning message to the user if the condition is not satisfied, 
since it really is the precondition of an operation. 

Example 4.9. Given the specification OP, from Example 3.2. As before, we assume 
that the precondition holds. Since x and y are the only identifier used, we start with 
the SEStateOp 

The appropriate instantiation of the rule giving the operational semantics of VDM- 
operations is then given by (after some simplification) 

~-M21, Y )2 s WI, d 
let m = A G([23, X) = G([ 11, x) + 1) in 

Y-M239 Y) s a[ 13941 

I-([OPJ, S)- ([I, mk-SEStateOp(SEQ(S)Om, [I)) 

Theorem 4.10. The transition scheme in Fig. 6 giving the operational semantics of 
VoM-operations is ftiithful, provided that S is well-behaved. 

Proof. See [24, Appendix A.31. Cl 

4.9. Operational semantics of ij3hen-else 

Unfortunately, the rule describing the operational semantics of the if-then-else 
combinator as used for symbolic execution turns out to be far more complicated 
than those used for actual execution as given by Plotkin [26]. This is due to the 
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fact that, as mentioned before, in symbolic execution one has to store the whole 
history of results, not just the current ones, and the recursive definition of states 

SEStateOp needed accordingly. The rule is therefore expressed using a (recursive) 
auxiliary function that “merges” two SEStateOps, and at the same time turns each _-- 
ps: PredS in either of the two SEStateOps into the appropriate conditional. The 
latter is done by ZTE-merge-map, which is then called by the general function 
ZTE-merge. ZTE-merge has to distinguish nine different cases, since either of the 
two sequences to be merged may be empty or start with a SE-map or start with a 
SEStateOp. 

First define the auxiliary functions: 

ZTE-merge-map : SE-map x SE-map x Reds + SE-map. 

ZTE-merge-map(m,) m2, ps) n 

{if ps then psi else p2 

1 pi E mi( n), i = 1,2} if n E dom ml n dom m2 

{if ps then psi else true 

I psi E w(nN if ncdom ml-dom m2 

{if ps then true else ps2 

I PS2E m2Wl if nEdom m2-dom ml 

If the two sequences to be merged have different length, then, as defined in ZTE-merge 
below, one will eventually get into the position where one of the sequences starts 
with a map, and the other one is empty. This case is handled by: 

ZTE-merge-empty : SE-map x Z%edS x Index + SE-map. 

ZTE-merge-empty(m, ps, ix) n 

(nw(if ps then psr else ‘6(ix, n) = c?(previous(ix), n)‘l psi E m(n)}). 

Now define 

kind : SE-elem* + {EMPTY, MAP, SES), 

kind (seq) 4 if seq = [ ] 
then EMPTY 
else if hd seq: SE-map 

then MAP 
else SES. 

Then 

ZTE-merge : SE-elem* x SE-elem* x PredS x SEStateOp + SEStateOp. 

ZTE-merge( seq, , seq2, ps, S) A 
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cases kind ( seql), kind ( seq2) of 

EMPTY, EMPTY-, s 

EMPTY, MAP+ 

let S1 = add-to-SEStateOp( 

S, ITE-merge-empty(hd seq2, ps, INDEX(S))) in 

ITE-merge([ 1, tl seql, ps, S,) 

EMPTY, ad3 + 

let S1 = add-to-SEStateOp( S, ITE-merge([ 1, hd seq,, ps, S)) in 

ITE-merge([ 1, tl seq2, ps, S,) 

MAP, EMPTY+ 

let S1 = add-to-SEStateOp( 

S, ITE-merge-empty( hd seql , ps, INDEX(S))) in 

ITE-merge(tl seqr [], ps, S,) 

MAP, MAP+ 

let S1 = add-to-SEStateOp( 

S, ITE-merge-map (hd seql, hd seq,, ps)) in 

ITE-merge(tl seql, tl seq2, ps, S,) 

. MAP, SES + 

let S, = last( SEQ( start-block( S))) in 

let S2 =fmish-block( add-to-SEStateOp( S, , hd seql)) in 

let S3 = ITE-merge( S2, hd seq,, ps, S) in 

ITE-merge(tl seql, tl seq, ps, S,) 

SES, EMPTY + 

let S1 = add-to-SEStateOp( S, ITE-merge( hd seql , [ 1, ps, S)) in 

ITE-merge(tl seq,, [ 1, ps, S,) 

SES, MAP-, 

let S1 = last( SEQ( start-bZock( S))) in 

let S2 =$nish-bZock( add-to-SEStateOp( S1, hd seq2)) in 

let S3 = ITE-merge( hd seq, , S2, ps, S) in 

ITE-merge(tl seql, tl seq2, ps, S,) 

SES, SES 3 

let Sl= ITE-merge( hd seq, , hd seq2, ps, S) in 

ITE-merge(tl seq, , tl seq,, ps, S,) 

end. 



Symbolic execution 241 

Note that this definition implies 

len SEQUTE-merge(seq, , seq,, p, S)) = len SEQ( S) + max(len seql, len seq2) 

(proof by double induction over len seq, and len seq2). 
Now the rule describing the operational semantics of if-then-else can be given as: 

Rule 6. let&S) = q[n/&(cons(len SEQ(S), INDEX(S)), n)ln: Name] in 

ps(S)t-(snseq,, S)- ([I, mk-SEStateOp(SEQ(S)r*seq,, INDEX(S))) 

1ps(S)+(-v2, S)- ([I, mk-SEStateOp(SEQ(S)r*seq2, INDEX(S))) 

([if Q then ml else ma], S)- ([I, ZTE-merge(seq,, seq,, ps(S), S)) 

assuming that the language of the simplification theory 7% (2’) (cf. Section 4.5) has 
the cor!nective if-then-else. 

Here “if 9 then snl else sn2” is the name of the appropriate specification. Note 
that the combinator if&en-else and the connective if-then-else are different con- 
structs, of different types. 

The simplification theory ?I@‘) should then contain some rules for handling 
if-then-else, for example 

if true then q, else e2 H +I 

if false then $, else e2 H qb2 

if ps then @else ~4 @ # 

Of course one could additionally introduce two rules that handle the case when 
either ps(S) or lps(S) is known to hold. Although these rules are not strictly 
necessary since they can be derived from the above (assuming that the operational 
semantics given always allow one to find seq, and seq2), they would save a lot of 
simplification work. 

4. IO. Operational semantics of while-loops 

Similar to block structures, loops are considered as a single step even though 
their execution may consist of any number of steps. This is achieved by describing 
the results of this execution sequence in a different SEStateOp or block which is 
then considered as a single step in the original SEStateOp. However, there is an 
additional complication in that w&h the usual approach to operational semantics, 
using a rule like *. 

(while Q do [spec] od, S)- (if Q 

then ([specl; wh;Ie Q ."ic? [spec] od) 

else skip, S) 

it is not clear when encountering a while-statement whether to start a new block 
(because it is a new while-statement) or. continue the current one (because it is a 
new iteration of a previously encountered statement). Therefore we introduce two 
different versions of the while-statement that allow one to distinguish the two. 
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while-&~ is the “proper” statement that starts a new block, and auxwhile-do is an 
auxiliary version that is used to continue the current block. 

This leads to the rules (again identifying the names of specifications with the 
specifications they name): 

Rule 7. 

([amwhile Q do [sn] od], last start-block(S))- ([I, S’) 
([while up do [sn] od], S)* ([I, add-to-SEStateOp(S, jnish-block(S))) 

Rule 8. 

F([auxwhile Q do [sn] od], S)* (if Q 

then cons(sn, auxwhile cp do sn od) 

el* 1 I, 9. 

4.11. Handling nondeterminism 

As mentioned before (in Section 3.5), in symbolic execution the effects of nondeter- 
minism should be captured by the state rather than by supplying different transitions 
that apply to the same configuration. As an example, consider the following rule 
describing the operational semantics of the command IF (as defined in Section 3.5). 
Since it is quite similar to the rule for if-then-else as given in Section 4.9, only the 
analogue of ITE-merge-map is given here, the other cases are completely analogous 
to if-then-else. 

IF-merge-map : SE-map x SE-map x PredS x PredS + SE-map. 

IF-merge-map(m, , y2, m, ps21 4 

{n- 

{if ps, *psi0 ps2+psi fi 

Ip&m,(n),i=l,2} if nEdomm,ndomm, 

{if psi + psi 0 ps2 + true f i 

I PS: E mhO1 if nedom m,-domm, 

{if psl + true (I ps2 + psi f i 

I psk m2(n)l if n E dom m2 -dom ml. 

Rule 9. let psi(S) = QJn/c(cons(len SEQ(S), INDEX(S)), n)l n: Name] in 

ml, m2: SE-map 
ps,(S)t-([sn,], S)w ([I, add-to-SEStateOp(S, m,) 
ps2(S)b([sn2], S)v ([ J, add-to-SEStateOp(S, m,) 

(Clfv~+ sn10 ~2+ sn2fil,S) 

- ([I, add-to-SEStateOp(S, IF-merge-map(m,, m2, ps,(S), ps2(S)))) 

Again, as for if-then-else, the consequent transition of this rule is used to transform 
the combinator if-fi into the consective if-fi. This connective is then dealt with in 
77@‘) by rules such as those below. These simplification rules are slightly more 
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complicated than those for if-then-else since they have to consider the different 
alternatives in parallel-in symbolic execution it is not enough to know if one of 
the guards is true. 

5. Conclusions 

This paper describes a formal definition of the denotational semantics of symbolic 
execution for a wide class of specification and programming languages, expressed 
in terms of the denotational semantics of the language being executed. Another way 
to view this would be as a language-generic notion of correctness for symbolic 
execution. This is believed to be the main contribution of the work described here. 
Until now, the concept of symbolic execution had not been defrned on a general, 
semantic level, but only on the syntactic level for a number of specific programming 
languages (with the exception of GIST [2,7] which is a specification and not a 
programming language). 

In the next step, the paper introduced the notion of operational semantics of 
symbolic execution. Based on a concept of state adapted for this purpose, rules are 
given which describe the operational semantics as used for symbolic execution for 
a small language including block structures, variable declarations, operation 
definitions in terms of pre- and postconditions, deterministic and non-deterministic 
conditionals, and loops. 

In a further step not discussed in this paper, the work described here provided 
the basis for the development of a language-generic tool for symbolic execution 
(called SYMBEX and described in detail in 1241) which can handle specifications as 
well as programs and is intended to support the user in validating specifications. It 
is based on (a particular version of) the operational semantics of the language being 
executed. The next steps in the development of this tool were the specification based 
on these ideas, and the implementation of a first prototype written in SMALLTALK-80 
and integrated into the mural system. 

This prototype interacted with the formal reasoning tools provided by mural. The 
operational semantics of a language were expressed as a collection of theories in 

mural, and symbolic execution was then based on that theory. Likewise, sim- 
plification was based on the theory of the language expressed in mural. 

Work was not continued beyond this first prototype since there was not enough 
time left for the project, and it was decided to concentrate on other aspects of mural. 
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Therefore, not much can be said about the efficiency and complexity of SYMBEX. 
Certainly, the prototype was very inefficient, but this was largely due to a na’ive 
implementation. In particular the simplication and theorem proving algorithms 
provided by mural were since improved considerably. 

As mentioned before, the work described here applies to state-based languages. 
It has to remain open for now whether and how these concepts can be extended to 
cover other classes of languages, such as algebraic or logic programming languages. 
As described in [24, Section 4.31, these languages certainly do not fit easily into the 
framework described. 

Appendix A. A short summary of the notation used 

The following is a (very) short summary of the notation used in this paper and 
which is not standard mathematical notation. It is essentially based on the VDM 
specification language (see 1201 for more details on VDM). 
VDM is based on the notions of states and state transformations called operations. 

It supports a number of primitive data types such as functions, finite sets, finite 
maps, and sequences, and also allows product types and defined types. A type 
definition takes the form 

type-name = type-expression 

where type-name is defined to be type-expression. Additionally one can provide a 
type invariant in order to define subtypes: 

type-name = type-expression 
where 
inv-type-name(t) A . . . 

Definitions of record types take the form 

type-name : :jield-name 1: jield-type 1 

field-name2 I field-type2 

. . . . . . . . 

With each record type T we associate a constructor function mk-T that takes as 
arguments objects of the component types of T and returns the object of type T 
consisting of these components. Essentially, a record is a Cartesian product with 
names for its components and a constructor function associated with it. 

Operations that access the state of a system are specified in the form 

OP (a: TI) r: T2 
ext rd er: T3 

wr ew: T4 

pre (9(4 er, ew) 
post #(a, 67, r, er, ew). 
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Here a: TI denotes the arguments of the operation, r: T2 denotes the result, er: 7” 
the external or state variables to which the operation has got read access, and ew: T3 
the external or state variables to which the operation has got write access. up denotes 
a precondition, # a postcondition. The semantics of OP is defined as: if the 
precondition holds before the operation, then the postcondition will hold afterwards. 
Since the operation may have changed the state, the postcondition refers both to 
the values before (2) and after (ew) the operation. 

All the parameters in the definition of an operation are optional. In particular, 
this notation can be used for implicit function definitions, which do not have external 
read and write variables. 

Maps A a B are functions from A to 43 with a finite domain. p is the type of 

finite sequences with elements from T. 
seq1mseq2 denotes the concatenation of two sequences seqr and seq,, while 

seq,@ e denotes appending an element e at the end of a sequence seql : 

seqBe n seqr*[e]. 

Appendix B. Proofs of Lemma 3.4 and Theorem 4.2 

Proof of Lemma 3.4. For all r: SEStateDen 

yield (symbolic-exl[spec, ; specJ r) 

= ha= {u’ I3u-seq E SEQS( symbolic-exl[spec, ; specJ 7) l 

hd u-seq = u A last u-seq = u’ 

h len a-seq = LEN(symbolic-ex[spec, ; spec2Jjr)} 

= Au l {q I%r-seq* front a-seq E SEQS( T) 

A len u-seq = LEN( 7) + 1 A last u-seq = aI A hd a-seq = a 

AJU sPJspecl ; spec,j(last front u-seq, last a-seq)) 

= Au= {o, )3u-seq.front a-seq E SEQS(7) 

A len a-seq = LEN( 7) + 1 A last a-seq = u1 A hd u-seq = u 

A 3u2 l &sPeC[specJ( last front u-seq, u2) 

A &,,,Uspec211(u2, last u-seq)) 

= ha* {cq I3u-seq’ l front front u-seq E SEQS( 7) 

A len a-seq’= LEN(T) +2 A last u-seq = ul A hd u-seq = a 

A &JspecJ(last front front u-seq’, last front a-seq’) 

A .&,ec[SpeC2~(laSt front U-S&, 1st U-Seq’)) 

= Aa. { u1 13u-seq’ l front a-seq’ E SEQS( symbolic-ex[specJ r) 

A len a-seq’ = LEN( symbolic-ex[spec,n r) + 1 

A last u-seq’ = ul A hd u-seq’ = u 

A .&,&peC2]( last f rOnt U-Seq’, last U-Se&} 
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= haa {u, I3u-seq’ l o-seq’ E SEQS( symbolic-ex-s[[ spec, , spec2]l 7) 

A len a-seq’ = LEN( symbolic-ex-s([[ spec, , specJ1 r) 

A last a-seq’ = ul A hd u-seq’ = a} 

= yield (symbolic-ex-s[spec, , spec21 7). Cl 

Proof of Theorem 4.2. We show, by induction on len SEQ(S), that 

VS: SEStateOp* inv-SEStateDen(&Es,~,~OPIS~). 

Base case: len SEQ(S) = 1. We have to show that 

let set = ([u] 1 satisjes-all-restrictions( [ u], S, 1)) in 

Vu-seq E set- len u-seq s 1 

A Vu-seq, , u-seq2 E set- Vu-seq: (CJ* l uoseql = u-seq2n 0.seq 

* u-seq=[] 

which is trivially true. 
Induction step. Now assume that, for some S, 

inv-SESta teDen ( &Es,a,eO,,l[Sjj) 

holds and consider 

S’ = mk-SEStateOp(SEQ(S)O e, DEPTFl( S)), for some e. 

We first have to show that 

Vu-seq E SEQS(.&stO,=,[S’n l len a-seq 4 LEN(As~s,~,,O,,[S’~). 

, This follows immediately from the definition of &~,~,~OPIIS’jj. 
For the second part of the proof assume that 

cr-seql 9 u-w2 E sEQs(~~,,~,,,USll), 

and that for some u-seq: (&)* 

u-seq, = u-seq2n a-seq. 

We distinguish three cases: 

Case 1: len u-seq, = LEN(&s,s,,,e, [S’n). Then a-seq = [ ] follows immediately, 
since there are no sequences in SEQS(&Z sESrPteOJS’jl) that are longer than 

~~wsEsta,edm 
Case 2: len u-seq, = LEN( AsEs,~teop[S’~) - 1. Then, by definition of .I&~~~,~~~, 

13u: 2~ l satisjies-all-restrictions(uoseq20 0, S, len S + l), 
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therefore a-seq cannot have length 1. It cannot be longer either, since then a-seq, 
would be too long to be in SEQS(A ~~~,a,~~pl[SO e]l). This only leaves o-seq = [ 1, as 
required. 

Case 3: len v-seq, < LEN(&~,a,,o,,l[S’jJ - 1. In this case 

and we have to distinguish two further cases: 

(3.0 u-seq, E SEQK&~s,aw,l[Sll). m en a-seq = [] follows by induction 
hypothesis. 

(3.2) o-seq, e SEQS(J&,,,,~~([S~). In this case, since 

+seq, E SEQS(~s~smreoplWll, 

we have 

front +seql E S~QWb~~ta,e~,Ml) A len -eq, = L~W&Es,a,eopUS~) + 1 

Now assume o-seq f [ ]. Then 

front wseq, = a-seq2 m front o-seq, 

and we can apply the induction hypothesis to get front a-wq = [ 1, or len o-seq = 1. 
Then we get 

len a--seq, = kn o-seq2 + len o-seq 

c (LENWsmaw&‘ll - 1) + 1 

= len a-seq, 

which shows that our assumption a-seq # [ ] must have been false. 0 
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