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This paper analyzes the supersymmetric solutions to five and six-dimensional minimal (un)gauged 
supergravities for which the bilinear Killing vector constructed from the Killing spinor is null. We 
focus on the spacetimes which admit an additional SO(1, 1) boost symmetry. Upon the toroidal 
dimensional reduction along the Killing vector corresponding to the boost, we show that the solution 
in the ungauged case describes a charged, nonextremal black hole in a Friedmann–Lemaître–Robertson–
Walker (FLRW) universe with an expansion driven by a massless scalar field. For the gauged case, the 
solution corresponds to a charged, nonextremal black hole embedded conformally into a Kantowski–
Sachs universe. It turns out that these dimensional reductions break supersymmetry since the bilinear 
Killing vector and the Killing vector corresponding to the boost fail to commute. This represents a new 
mechanism of supersymmetry breaking that has not been considered in the literature before.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Over the last two decades, many developments of superstring 
theory have been triggered by supersymmetric solutions in su-
pergravities. In particular, supersymmetric black holes played a 
key role for the first successful account for the microscopic ori-
gin of the Bekenstein–Hawking entropy [1]. Recently a system-
atic classification of supersymmetric solutions has been devel-
oped and proved useful for obtaining supersymmetric black ob-
jects with various topologies (see e.g. [2–13] for an incomplete 
list). The supersymmetric solutions are divided into two cate-
gories, according to the causal character of the vector field con-
structed from the Killing spinor, i.e., timelike and null classes. Typ-
ically, the timelike class of solutions contains black holes, whereas 
the null family contains propagating waves. The timelike class 
of metrics in ungauged supergravities is specified by a set of 
harmonic/Poisson-type functions on a (d − 1)-dimensional man-
ifold with reduced holonomy over which the metric is fibered. 
It therefore follows that supersymmetric black holes belonging 
to the timelike class are time-independent with degenerate hori-
zons and allow for a superposition principle, as inferred from 
the Majumdar–Papapetrou solution. This represents a situation in 
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which gravitational and electromagnetic fields are in mechanical 
equilibrium.

More than twenty years ago, Kastor and Traschen discovered 
an interesting generalization of the Majumdar–Papapetrou solution 
in the Einstein–Maxwell-�(> 0) system [14]. The Kastor–Traschen 
solution is characterized by a harmonic function on R3 with an 
additional time-dependence and asymptotically tends to the de Sit-
ter universe. When the harmonic function has a single monopole 
source at the center of R3, the metric describes a black hole with 
a bifurcate Killing horizon in the de Sitter universe, i.e., the luke-
warm limit of the Schwarzschild–de Sitter black hole [15]. The 
superposition property of the Kastor–Traschen solution is reminis-
cent of supersymmetric solutions in the timelike class, although a 
positive cosmological constant is not compatible with supersym-
metry. Nevertheless, the Kastor–Traschen solution admits a spinor 
obeying 1st-order differential equations in “fake” supergravity, in 
which the gauge coupling constant in gauged supergravity is an-
alytically continued [16,17]. The superposition property further 
allows to investigate analytically black hole collisions in a (con-
tracting) universe and to test the validity of the cosmic censorship 
conjecture [18].

Later on, Ref. [19] obtained a time-dependent and spatially 
inhomogeneous solution from the time-dependent intersecting 
M2/M2/M5/M5 branes, which reduces to AdS2 × S2 for r → 0, 
and approaches for r → ∞ to the FLRW cosmology with the scale 
factor obeying a(τ ) ∝ τ 1/3. Maeda and one of the present au-
thors verified that this metric indeed describes a black hole in the 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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FLRW universe with regular horizons [20]. The solution was fur-
ther generalized to the case with a Liouville-type scalar potential, 
for which the metric asymptotically tends to an FLRW universe 
with arbitrary power-law expansion [21,22]. These solutions are 
very similar to the Kastor–Traschen solution since they are spec-
ified by some set of harmonic functions on a base space. Inter-
estingly, the event horizon is generated by an asymptotic Killing 
vector and realizes the isolated horizon [23], when each harmonic 
has a point source at the origin. Hence, the area of the horizon 
fails to grow even though the outside region of the black hole is 
highly dynamical. Moreover, it was shown that these solutions are 
pseudo-supersymmetric in “fake” supergravity [24]. Using the gen-
eral classification scheme of [25], further extensions to the case 
with a sum of exponential scalar potentials and to the case includ-
ing rotation were analyzed in Refs. [26,27].

The cosmic expansion of the solution in Ref. [19] is driven 
by a massless scalar field corresponding to a “flat gauging” in 
the context of gauged supergravity. It might therefore be possible 
to embed these solutions into higher-dimensional supersymmet-
ric spacetimes by the Kaluza–Klein mechanism, rather than em-
bedding them into fake supergravity. As we commented, a naive 
Kaluza–Klein reduction does not work, since supersymmetric black 
holes are time-independent and extremal, whereas the solution 
in [19] is time-evolving and non-extremal. To fill this gap is one 
of the main aims of the present article.

We exhibit a class of supersymmetric solutions which can be 
identified as a black hole in an expanding universe upon dimen-
sional reduction. Interestingly, the black hole is time-dependent 
and admits nondegenerate horizons, both of these properties 
counter to those for supersymmetric black holes in the timelike 
class. This is possible because our supersymmetric solutions belong 
to the null family. We discuss how an additional SO(1, 1) scaling 
property gives rise to a Killing vector for the dimensional reduc-
tion and how this Kaluza–Klein reduction breaks supersymmetry. 
This susy breaking mechanism is new, and may have applications 
in other contexts as well.

The remainder of our paper is organized as follows. In the 
next section, we show that the five-dimensional null BPS family in 
minimal (un)gauged supergravity admits solutions describing (af-
ter a KK reduction) a black hole in equilibrium in an expanding 
universe. In section 3, we show how to obtain five-dimensional 
dynamical black holes from a supersymmetric solution in six-
dimensional minimal ungauged supergravity. Section 4 contains 
our conclusions. We employ the mostly plus metric signature 
throughout the article.

2. Black hole from five dimensions

2.1. Ungauged case

The bosonic Lagrangian of five-dimensional ungauged minimal 
supergravity is given by [3]

L(0)
5 = R � 1 − 2F ∧ �F − 8

3
√

3
F ∧ F ∧ A , (2.1)

where F = dA is a Maxwell field. In terms of a Dirac spinor ε , the 
Killing spinor equation reads

∇̂με ≡
[
∇μ + i

4
√

3

(
γμ

νρ − 4δμ
νγ ρ

)
Fνρ

]
ε = 0 . (2.2)

Let us consider the case in which V μ ≡ iε̄γ με is a null vector. 
In the coordinate system V = ∂/∂v , the metric and the gauge field 
are v-independent and the general supersymmetric solution in the 
null family is given by [3]
ds2 = −2e+e− + eiei , A = −
√

3

2
Ãidxi , (2.3)

where i, j . . . = 1, 2, 3 and the orthonormal frame is given by

e+ = H−1du , e− = dv + F
2

du , ei = H(dxi + aidu) .

In three-dimensional vector notation, the supersymmetric solu-
tions are determined by the system

∇ × Ã = ∇H , ∂uÃ = 1

3
H−2∇ ×

(
H3a

)
,

∇2F = 2H2 Du W ii + 2H W (i j)W (i j) + 2

3
H W [i j]W [i j] , (2.4)

where Du ≡ ∂u − a · ∇ and W ij ≡ Du Hδi j − H∂ jai . The integrabil-
ity condition of (2.4) leads to ∇2 H = 0. The solution to the Killing 
spinor equation (2.2) is given by the constant spinor under the 
projection γ +ε = 0, viz, the solution preserves half of the super-
symmetries.

Let us focus here on the following class of supersymmetric so-
lutions

a = 0 , H = H(x) , F = − 4

(hu)2
U (x) . (2.5)

With these restrictions, the metric is invariant under the SO(1, 1)

boost action u → λu, v → v/λ [28]. Namely there exists an addi-
tional Killing vector ξ = u∂/∂u − v∂/∂v corresponding to the scal-
ing. By the following coordinate transformation (u, v) → (t, w):

u = 2

h
e−hw/2 , v = tehw/2 , (2.6)

where h is a constant, the scaling Killing vector is transformed into 
a coordinate vector, ξ = −(2/h)∂/∂ w . It therefore follows that the 
metric (2.3) is independent of w and reads

ds2 = H−1dw[2dt + (ht + U )dw] + H2dx2 , (2.7)

where H and U obey Laplace’s equations ∇2 H = ∇2U = 0 on R3. 
One can then reduce the system down to four dimensions by the 
Kaluza–Klein ansatz

ds2 = e−2φ/
√

3(dw + 2A(1))2 + eφ/
√

3 gμνdxμdxν , (2.8)

where

φ =
√

3

2
ln

(
H

ht + U

)
, A(1) = dt

2(ht + U )
, (2.9)

and the 4-dimensional metric ds2
4 = gμνdxμdxν reads

ds2
4 = −�−1

4 dt2 + �4dx2 , (2.10)

with �4 ≡ [(ht + U )H3]1/2. This recovers the solution obtained by 
the compactification of dynamically intersecting branes (with three 
equal charges) [19] and solves the four-dimensional field equations 
derived from the Lagrangian

L(0)
4 = R − 1

2
(∇φ)2

− e−√
3φ F (1)

μν F (1)μν − e−φ/
√

3 F (2)
μν F (2)μν , (2.11)

where F (1,2) = dA(1,2) and A(2) = −
√

3
2 Ãidxi descends from the 

five-dimensional gauge potential (2.3).
Working in spherical coordinates dx2 = dr2 + r2(dθ2 +

sin2 θdφ2), let us consider the case in which only the monopole 
sources are nonvanishing as H = 1 + Q /r and U = Q /r. Asymp-
totically for r → ∞, the metric (2.10) then tends to an expanding 



112 D. Klemm, M. Nozawa / Physics Letters B 753 (2016) 110–116
FLRW universe ds2 = −dτ 2 + a2(τ )dx2, where a ∝ τ 1/3 and τ ∝
t3/4. As shown in [20], the metric (2.10) then describes a nonex-
tremal black hole in an expanding FLRW universe for which the 
cosmic expansion is driven by the massless scalar field. Interest-
ingly, the solution admits a black hole event horizon for which 
the area is constant even if the outside region of the black hole is 
highly dynamical. This is a realization of isolated horizons [23] and 
their areal radii are given by R2± ≡ 1

2 Q 2(
√

(hQ )2 + 4 ± hQ ) [20]. 
A similar solution was obtained in [28] by the same scaling 
method, but it fails to admit regular horizons.

It is worth emphasizing that the bilinear Killing field V =
∂/∂v = e−hw/2∂/∂t and the Kaluza–Klein Killing field ξ = u∂/∂u −
v∂/∂v = −(2/h)∂/∂ w do not commute,

[ξ, V ] = V . (2.12)

In other worlds, the Killing spinor is not invariant under the action 
of the Kaluza–Klein Killing vector. To see this explicitly, we present 
the solution to the Killing spinor equation (2.2) in the coordinate 
system (2.7) for the reader’s convenience. Introducing the frame

e0 = dt√
(ht + U )H

, ei = Hdxi ,

e4 =
√

ht + U

H

(
dw + dt

ht + U

)
, (2.13)

and taking the orientation to ε01234 > 0 and γ01234 = −i, the solu-
tion to (2.2) is given by

ε = [ehw H(ht + U )]−1/4ε0 , γ04ε0 = ε0 , (2.14)

where ε0 is a constant spinor. One sees immediately that L ξ ε 
= 0. 
This means that the five-dimensional Killing spinor (2.14) does not 
give rise to a four-dimensional Killing spinor for the solution (2.10), 
i.e., the U(1) dimensional reduction (2.8) breaks supersymmetry.

One can uplift the BPS solution (2.3), (2.5) into eleven-
dimensional supergravity, by simply adding a flat torus T 6. The 
resulting solution preserves 1/8 supersymmetry and describes the 
intersecting M5/M5/M5 branes (with three equal charges) with a 
plane wave [29]. After dimensional reduction to ten dimensional 
string frame and performing T-duality, one obtains the dynam-
ically intersecting D2/D2/D4/D4 branes. This solution breaks su-
persymmetry by the same reasoning as (2.12). If this solution is 
embedded back into eleven dimensions, one obtains the dynami-
cally intersecting M2/M2/M5/M5 branes. A comprehensive analysis 
of dynamically intersecting branes can be found in [19].

Note that the equations of motion derived from (2.11) are 
invariant under F (1) → F̃ (1) = −e−√

3φ �4 F (1) , F (2) → F̃ (2) =
−eφ/

√
3 �4 F (2) and φ → φ̃ = −φ. Using these dualized quantities, 

one can uplift the four-dimensional solution (2.10) back to five di-
mensions by ds2

5 = e−2φ̃/
√

3(dw + 2 Ã(1))2 + eφ̃/
√

3 gμνdxμdxν and 
F̃ (1) = d Ã(1) . The dualized solution then reads [31]

ds2
5 = −H−2dt2 + Hds2

GH , A =
√

3

2

dt

H
, (2.15)

where the base space ds2
GH = hmndxmdxn is the time-dependent 

Gibbons–Hawking space [30],

ds2
GH = (ht + U )−1(dw + χ)2 + (ht + U )dx2 , (2.16)

with ∇ × χ = ∇U and ∇2U = 0. The metric (2.15) is an exact 
solution to five-dimensional minimal supergravity (2.1) and rep-
resents a Kaluza–Klein charged black hole for H = 1 + Q /r and 
U = Q /r [31]. In spite of the striking similarity to the canonical 
form of the metric in the timelike class [3], the metric (2.15) fails 
to preserve any supersymmetries within the framework of minimal 
supergravity. This can be checked by computing the integrability 
condition det[∇̂μ, ∇̂ν ] = 0 for the Killing spinor (2.2).

The metric (2.15) was originally found by Kanou et al. in 
Ref. [31]. Recently, Ishihara, Kimura and Matsuno pointed out that 
the metric (2.15) with H = 1 + Q /r, U = 0 can be interpreted as a 
black string in the five-dimensional Kasner universe [32].

2.2. Gauged case

The bosonic Lagrangian of minimal gauged supergravity in five 
dimensions reads

L(g)
5 = L(0)

5 + 12g2 � 1 , (2.17)

where L(0)
5 is the ungauged Lagrangian (2.1) and g (> 0) denotes 

the gauge coupling constant. The general lightlike supersymmetric 
solutions to this theory were classified in [4], and are given by

ds2 = −H−1(Fdu2 + 2dudv) + H2
[
(dx1 + a1du)2

+ e3φ(dxα + e−3φaαdu)2
]

,

A = Audu +
√

3

4g
εαβ∂αφdxβ . (2.18)

Here x1 = z, α = 2, 3, x2 = x, x3 = y and εαβ = (iσ2)αβ is an 
antisymmetric tensor. The function φ(u, xi) is determined by the 
equation

e2φ∂2
z eφ + �(2)φ = 0 , (2.19)

where �(2) = ∂α∂α is a flat Laplacian. Given a solution of (2.19), 
H(u, xi) and Au(u, xi) are successively obtained from

H = − 1

2g
φ′ , (2.20)

[H2e2φ(eφ Au)′]′ + ∂α(H2∂α Au) =
√

3

2g
Hεαβ∂αφ̇∂β H . (2.21)

Dots and primes denote respectively the derivatives with respect to 
u and z. Then the functions ai(u, x j) are determined by the system

1

2
√

3
εαβ∂α(H3aβ) = −H2e2φ∂z(eφ Au) ,

1

2
√

3
[∂α(H3a1) − (H3aα)′] = H2εαβ∂β Au −

√
3

4g
H2∂αφ̇ , (2.22)

whose integrability condition is (2.21). Finally, the function
F(u, xi) follows from the uu-component of the Einstein equations 
derived from (2.17). The solution preserves 1/4 of the supersym-
metries.

Since in the five-dimensional ungauged case, the metric (2.7)
describes a wave on a black string, we would like to obtain a sim-
ilar BPS solution in the gauged theory as well. To this end, we 
follow the construction in [33], and suppose φ to be separable,

φ(u, x, y, z) = φ1(z) + φ2(x, y) . (2.23)

Substituting this expression of φ into (2.19) we find that φ1 and 
φ2 have to satisfy the equations

∂2
z eφ1 = k

24g
e−2φ1 , (2.24)

�(2)φ2 = − k
e3φ2 , (2.25)
24g
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where k is a constant. (2.24) implies

e3φ1(φ′
1)

2 = μeφ1 − k

12g
, (2.26)

where μ denotes another integration constant. As a particular so-
lution of the Liouville equation (2.25), we choose

e3φ2 = 64gϒ−2 , (2.27)

where ϒ(x, y) = 1 + k(x2 + y2). With these choices, the system 
(2.22) is satisfied for Au = a1 = aα = 0. If we introduce the new 
radial coordinate

ρ = 1

2φ′
1(geφ1)3/2

, (2.28)

the metric and gauge field (2.18) become

ds2 = 1

(gρ)2

[
− f 3/2

(
F
2

du2 + dudv

)
+ dρ2

f 2
+ g−2d�2

k

]
,

A = k

g
√

3ϒ
(ydx − xdy) , (2.29)

where we defined f = 1 + g2kρ2/3 and the constant μ has been 
eliminated by a rescaling of u, v . d�2

k = 4ϒ−2(dx2 + dy2) is the 
line element of the unit constant curvature space with k = 0, ±1. 
(2.29) represents a wave on a magnetic string in AdS5, with wave 
profile F determined by the uu-component of the Einstein equa-
tions, which in the present case boils down to

ϒ2�(2)F + 8 f 2 − 20 f

g2ρ
∂ρF + 4 f 2

g2
∂2
ρF = 0 . (2.30)

Similar to the ungauged case, we seek for a solution of the form 
F = −4(hu)−2U (ρ), with h a constant. Then, (2.30) can be easily 
solved, with the result

U = C1
2 + g2kρ2

f 3/2
+ C2 , (2.31)

where C1,2 denote integration constants. Notice that, in the limit 
ρ → 0, the solution (2.29) asymptotes to (magnetic) AdS5. If U = 0, 
the horizon is located at the zeroes of f , so one has a genuine 
black string in the hyperbolic case k < 0 (constructed in [34]), 
a naked singularity for k > 0 (found in [35]), and AdS5 for k = 0.

The metric (2.29) is again invariant under the scaling u → λu, 
v → v/λ, so we can follow the same procedure as in subsec-
tion 2.1, namely introduce the new coordinates t and w by (2.6), 
and then Kaluza–Klein reduce along the Killing direction ∂/∂ w , us-
ing the ansatz (2.8). This leads to the four-dimensional solution

ds2
4 = −�−1

4 dt2 + �4 f 3

4(gρ)6

(
dρ2

f 2
+ g−2d�2

k

)
, (2.32)

where �4 ≡ 2
√

2(gρ)3 f −9/4 (ht + U )1/2. The dilaton and Kaluza–
Klein gauge field are given by

e−2φ/
√

3 = f 3/2

2g2ρ2
(ht + U ) , A(1) = dt

2(ht + U )
. (2.33)

(2.32) and (2.33) solve the equations of motion derived from the 
four-dimensional Lagrangian

L(g)
4 = L(0)

4 + 12g2eφ/
√

3 , (2.34)

where L(0)
4 was defined by (2.11). For the solution considered 

here, A(2) is given by (2.29). (2.34) represents (after dualization 
of e.g. F (1)) the zero-axion truncation of the t3 model of N = 2 su-
pergravity with Fayet–Iliopoulos gauging, leading to the Liouville 
potential for φ.

Notice that U defined in (2.31) is still a harmonic function, but 
now on the curved base space

hmndxmdxn = f 3

4(gρ)6

(
dρ2

f 2
+ g−2d�2

k

)
. (2.35)

Let us move to the physical discussion for the solution (2.32). Due 
to the freedom t → t + t0, one can choose 2C1 + C2 = 0 in (2.31), 
for which U (ρ = 0) = 0. Since

∫
S

e−√
3φ � F (1) = k2�kC1

3g
,

∫
S

F (2) = k�k√
3g

, (2.36)

the magnetic charge obeys a Dirac-type quantization condition and 
the electric charge is proportional to C1 which we shall assume to 
be negative in what follows. In the asymptotic region ρ → 0, the 
metric (2.32) reduces to

ds2
4 = 1

2
√

2(gρ)3

[
−dτ 2 + a2(τ )

(
dρ2 + g−2d�2

k

)]
,

where τ ∝ t3/4 and a(τ ) ∝ (hτ )1/3. The asymptotic geometry is 
thus conformal to a Kantowski–Sachs universe with power-law ex-
pansion for h > 0. Note that in a generic Kantowski–Sachs universe, 
the part proportional to dx2 + dy2 and dρ2 can have different 
scale factors. Here they happen to be equal. The behavior of the 
scale factor a(τ ) ∝ (hτ )1/3 is the same as that driven by a mass-
less scalar in an FLRW universe. However, this does not mean that 
the potential plays no role, since the metric depends also on the 
coordinate ρ .

Since the five-dimensional U = 0 black string has a horizon for 
k < 0, we shall focus on this case in what follows. In terms of 
r = 1/(g2ρ), f = 0 has a root at r = r+ ≡ (

√
3g)−1. This is a naive 

horizon locus for the metric (2.32). As pointed out in [20], we have 
to take the t → ∞ limit at the same time, since the event horizon 
is an infinite redshift surface. To see the geometry of this candidate 
horizon, let us take the near-horizon limit

t = t̂

ε3/2
, r − r+ = εr̂ , ε → 0 . (2.37)

The near-horizon metric is independent of ε and reads

ds2
NH = − 2gr̂3

3
√

3R2
dt̂2 + 3R2dr̂2

4r̂2
+ R2d�2

k=−1 , (2.38)

where (g R)2 = 2−3/43−13/8
(
12ht̂(gr̂)3/2 − 21/231/4C1

)1/2
. As a 

consequence of the scaling limit (2.37), there appears an asymp-
totic Killing vector

K = r̂
∂

∂ r̂
− 3

2
t̂

∂

∂ t̂
, L K gNH = 0 . (2.39)

Changing coordinates from (t̂, ̂r) to (T , R), where T is defined by

T = log(r̂) −
∫

144g4 R3(C1 + 54g4 R4)

f1(R)
dR , (2.40)

with f1(R) ≡ (54g4 R4)2 + (108C1 g2 − 36h2)g2 R4 + C2
1 , the near-

horizon metric (2.38) is cast into

ds2
NH = − f1(R)

48g2h2 R2
dT 2 + 12(36g4 R4)2

f1(R)
dR2 + R2d�2

k=−1 .

(2.41)
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Fig. 1. Penrose diagram of the black hole embedded in the conformal Kantowski–
Sachs universe. There are regular horizons at R = R± .

In this coordinate system, the asymptotic Killing vector (2.39) be-
comes K = ∂/∂T . Therefore, there exist Killing horizons R = R± at 
roots of f1(R) = 0, i.e.,

R2± = g−2

18

(
±hg−1 +

√
h2 g−2 − 6C1

)
. (2.42)

This makes it obvious that the horizon is nonextremal.
To lend a further credence to the above picture, we have traced 

numerically the radial null geodesic motions and arrived at the 
conformal diagram shown in Fig. 1. The causal nature is analogous 
to that in the ungauged solution (2.10) (see the conformal diagram 
in [20]), but the asymptotic structure is quite different. There ap-
pears a timelike naked singularity at ht + U = 0, but otherwise 
the metric behaves non-pathologically. As is clear from Fig. 1, the 
spacetime (2.32) admits a regular, nonextremal event horizon at 
R = R+(> R−), which remains constant in time. The appearance 
of these isolated horizons is ascribed to the near-horizon asymp-
totic Killing vector (2.39).

Note finally that for k = −1, the scalar field φ and gauge fields 
A(i)

μ dxμ also admit a definite limit under (2.37), and the resulting 
system (2.38) solves the same field equations derived from (2.34)
as the original solution. This means that the scaling limit (2.37) is 
indeed well-defined.

3. Black hole from six dimensions

Let us next consider minimal ungauged supergravity in six di-
mensions [7]. The equations of motions are given by

Rμν = Gμρσ Gν
ρσ , dG = 0 , G = − � G , (3.1)

where G is the three-form field strength. Since G is anti-self-dual, 
there exists no covariant action which gives rise to the above equa-
tions. The Killing spinor equation reads

∇̂με ≡
(

∇μ − 1

4
Gμνργ νρ

)
ε = 0 , (3.2)

where ε is an anti-chiral spinor, γ7ε = −ε , with γ7 = γ012345.
According to the general analysis given in [7], there appears 

only the null family, and the general supersymmetric metric can 
be written as ds2 = −2e+e− + δI J eI e J (I = 1, . . . , 4) with the ori-
entation ε+−1234 > 0, where

e− = −
(

dv + ω − FH

2
e+

)
,

e+ = −H−1(du + β) , eI = H1/2ê I , (3.3)
and

2G = �4(DH + H β̇) + (H−1DH + β̇) ∧ e+ ∧ e−

+ [HG− − (Dω)−] ∧ e+ + H−1e− ∧Dβ . (3.4)

Here the metric and the three-form field are v-independent. hmn =
δI J ê I

mê J
n is the base-space metric of an integrable almost hyper-

Kähler manifold satisfying

d̂ J i = ∂u(β ∧ J i) , (3.5)

where d̂ is the exact differential on the base space and the J i

satisfy J i · J j = −δi j + εi jk J k . β and ω are one-forms on the 
base space with a u-dependence obeying Dβ = �4Dβ , where D
is a linear operator acting on p-form fields on the base space as 
D ≡ d̂ −β ∧ ∂u . The supersymmetric system is determined by solv-
ing

D[�4(DH + H β̇)] −Dβ ∧ G+ = 0 ,

d̂G − ∂u[β ∧ G − �4(DH + H β̇)] = 0 , (3.6)

and

− �4 D(�4L) = 1

2
Hhmn∂2

u (Hhmn) + 1

4
∂u(Hhmn)∂u(Hhmn)

− 2β̇m Lm + 1

2
H−2[(Dω)− − HG−]2

− 1

2
H−2

(
Dω + 1

2
FDβ

)2

, (3.7)

where G = G+ + G− , �4G± = ±G± and L are given by

G+ ≡ H−1
[
(Dω)+ + 1

2
FDβ

]
,

G− ≡ 1

8
Hεi jk( J i)pq( J̇ j)pq Jk ,

L ≡ ω̇ + 1

2
F β̇ − 1

2
DF , (3.8)

where the dot denotes a differentiation with respect to u. Under 
the projection γ +ε = 0, the solution to the Killing spinor equation 
(3.2) is given by a constant spinor.

Let us consider the case where

β = 0 , Ḣ = ḣmn = 0 , (d̂ω)+ = 0 . (3.9)

Eq. (3.6) gives �h H = 0, while (3.7) leads to �hF = 0 provided 
we work in the gauge d̂ �4 ω = 0. As in the previous section, we 
choose

ω = 2

hu
� , F = − 4

(hu)2
U , (3.10)

where U and � are a u-independent scalar and one-form respec-
tively, and consider the coordinate transformation (2.6). One sees 
that the solution is independent of w and the spacetime can be 
dimensionally reduced as ds2

6 = e−√
3/2φ(dw + 2A(1))2 + eφ/

√
6ds2

5, 
where

φ =
√

2

3
log

(
H

ht + U

)
, A(1) = 1

2

dt + �

(ht + U )
. (3.11)

The five-dimensional metric becomes the one found in [36,37],

ds2
5 = −�−2

5 (dt + �)2 + �5hmndxmdxn , (3.12)

where �5 ≡ [(ht + U )H2]1/3 and d̂ω is an anti-self-dual two-form 
on the hyper-Kähler base space hmn . H and U satisfy �h H =
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�hU = 0. The solution (3.12) solves the field equations derived 
from the action

L5 = R − 1

2
(∇φ)2 − e−2

√
2/3φ F (1)

μν F (1)μν

− e
√

2/3φ F (2)
μν F (2)μν + εμνρστ A(1)

μ F (2)
νρ F (2)

σ τ , (3.13)

where A(2) = 1√
2

H−1(dt + �).

Taking the Euclidean space dr2 + r2(dϑ2 + cos2 ϑdφ2
1 +

sin2 ϑdφ2
2) as the hyper-Kähler base, and considering only the 

lowest-order harmonic contributions H = 1 + Q /r2, G = Q /r2, 
� = ( j/r2)(cos2 ϑdφ1 + sin2 ϑdφ2), this solution describes a five-
dimensional rotating black hole in an expanding FLRW universe 
in five dimensions [24]. This proves that the five-dimensional dy-
namical metric (3.12) admitting regular nonextremal horizons and 
an ergoregion is supersymmetric from a six-dimensional point of 
view. Note that, as in the previous section, the dimensional reduc-
tion along ξ = −(2/h)∂/∂ w breaks supersymmetry.

4. Concluding remarks

In this letter, we pointed out that the null family of supersym-
metric solutions in (un)gauged supergravities admits an interesting 
class of dynamical spacetimes that describe black holes in an ex-
panding universe upon dimensional reduction. The black hole met-
rics are dynamical and nonextremal, both of which are in marked 
contrast to the properties of conventional supersymmetric black 
holes belonging to the timelike class. The most interesting aspect 
of our findings is that the simple toroidal reduction breaks su-
persymmetry. As far as the authors know, this provides a new 
supersymmetry-breaking mechanism following from the noncom-
mutativity of the Kaluza–Klein Killing field and the bilinear Killing 
field constructed from the Killing spinor. Our results may be useful 
for generalizing the BPS attractors [38] into time-dependent set-
tings.

For the four-dimensional example described in section 2, we 
have considered only the solution without rotation. One may ex-
pect that the rotating solution specified by three harmonic func-
tions [27] could be obtained in a similar fashion. The only way to 
realize this is to set a = −2(hu)−1 H−3ω in (2.5), where ∂uω = 0. 
From the first two equations in (2.4), ω obeys ∇ × ω = H∇K −
K∇H in terms of another harmonic function K . After replacing 
U → U − H−3|ω|2 in (2.5), one finds that U satisfies

∇2U = h∇ · ω + 2

3H3
(K∇H − H∇K )2 . (4.1)

This implies that U obeys the Laplace equation iff K ∝ H , recover-
ing ω = 0. Therefore, the rotating solution in [27] is not obtained 
from an SO(1, 1) boost-invariant form. This situation is similar to 
the stationary counterpart, for which the Majumdar–Papapetrou 
solution can be embedded both into the timelike and null classes, 
whereas the IWP family [39,40] can only be embedded into the 
timelike class.

One can nevertheless consider the monopole harmonics H =
1 + Q 1/r, K = 1 + Q 2/r in the rotating case, for which one gets

U = k1 + k2

r
+ (Q 1 − Q 2)

2

3r(r + Q 1)
, ω = (Q 1 − Q 2) cos θdφ , (4.2)

where k1,2 are constants. This solution, however, always suffers 
from a Dirac–Misner string unless Q 1 = Q 2. Since the metric is 
t-dependent, this singularity cannot be removed by periodic iden-
tification of t . In conclusion, it remains to be seen if the four-
dimensional rotating dynamical black holes of [27] can be embed-
ded in some way into supersymmetric higher-dimensional space-
times.
We have thus far discussed the Kaluza–Klein type dimen-
sional reduction, which generates only a massless field in the 
ungauged case. One may thus wonder if an analogous higher-
dimensional embedding works for generalized dimensional reduc-
tions. To illustrate this, let us consider the non-twisting fake-
supersymmetric black holes in a five-dimensional FLRW universe 
obtained in [24] and see if they arise from a generalized di-
mensional reduction of six-dimensional supersymmetric solutions. 
The metric takes the form ds2

5 = −�−2
5 dt2 + �h(HK)

mn dxmdxn with 
�5 ≡ [(ht + U )n H3−n]1/3, where the base is a time-independent 
hyper-Kähler manifold, and the gauge and scalar fields are given 
by

φ =
√

n(3 − n)

3
log

(
H

ht + U

)
,

A(1) =
√

n

2(ht + U )
dt , A(2) =

√
3 − n

2H
dt . (4.3)

Here �h H = �hU = 0 as before. This solution solves the field 
equations derived from the action

L5 = R − 1

2
(∇φ)2 − V (φ)

− e−αφ F (1)
μν F (1)μν − e4φ/3α F (2)

μν F (2)μν , (4.4)

where V = 1
2 n(n − 1)h2eαφ and α = 2

√
(3 − n)/(3n). For n = 1, 

the solution (3.11)–(3.12) with � = 0 is recovered. A plausible 
dimensional reduction to generate this kind of scalar potential 
is the Scherk–Schwarz mechanism [41], exploiting a global sym-
metry and imposing twisted boundary conditions. Following the 
argument in Ref. [42], one can embed the five-dimensional theory 
(4.4) with n = 2 into six-dimensional minimal ungauged supergrav-
ity coupled to a vector multiplet, whose bosonic action reads

L6 = R − 1

2
(∇�)2 − 1

12
e−√

2�GμνρGμνρ

− e−�/
√

2 F (1)
μν F (1)μν . (4.5)

The embedding of the solution (4.3) is achieved by the explicit 
z-dependent form

ds2
6 = ehz/2

(
eφ/(2

√
6)ds2

5 + e−√
3φ/(2

√
2)dz2

)
,

G = �hdH , F (1) = dA(1) , � =
√

3

2
φ − hz√

2
. (4.6)

The supersymmetric solutions for the system (4.5) were classi-
fied in [43]. One can check that the uplifted solution (4.6) fails 
to satisfy the integrability condition for the Killing spinor, e.g., 
det(F (1)

μνγ
μν) = 0 is not satisfied. Namely, (4.6) does not preserve 

any supersymmetry in the theory (4.5). It would be interesting to 
see if the dynamical solutions with scalar potential constructed in 
[24] (for n 
= 1, 2) and in [21,26] can be embedded into BPS so-
lutions in higher dimensions by the Scherk–Schwarz mechanism 
or by a sort of brane world reduction [44]. This would be useful 
for further elucidating the Kaluza–Klein network originating from 
M-theory.
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