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Abstract

In this short paper, we establish a variational expression of the Tsallis relative entropy. In addition, we
derive a generalized thermodynamic inequality and a generalized Peierls–Bogoliubov inequality. Finally we
give a generalized Golden–Thompson inequality.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Recently, the matrix trace inequalities in statistical mechanics are studied by Bebiano et al.
in [2]. Their results are generalized by them in [1] via α-power mean. In addition, the further
generalized logarithmic trace inequalities are obtained and their convergences are shown via
generalized Lie–Trotter formulae in [6]. Inspired by their works, we generalize the trace inequal-
ities in [2] by means of a parametric extended logarithmic function lnλ which will be defined
below. Our generalizations are different from those in [1,6]. In the sense of our generalization, we
give a generalized Golden–Thompson inequality. In addition, we give a related trace inequality
as concluding remarks.
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We denote ex
λ ≡ (1 + λx)

1
λ and its inverse function lnλx ≡ xλ−1

λ
, for λ ∈ (0, 1] and x � 0.

The functions ex
λ and lnλx converge to ex and log x as λ → 0, respectively. Note that we have the

following relations:

ex+y+λxy
λ = ex

λey
λ, lnλ xy = lnλ x + lnλ y + λ lnλ x lnλ y. (1)

The Tsallis entropy was originally defined in [19] by − ∑n
i=1 p

q
i ln1−q pi =

∑n
i=1(p

q
i −pi)

1−q
for any

nonnegative real number q and a probability distribution pi ≡ p(X = xi) of a given random
variable X. Taking the limit as q → 1, the Tsallis entropy converges to the Shannon entropy
− ∑n

i=1 pi log pi . We may regard that the expectation value Eq(X) = ∑n
i=1 p

q
i xi depending on

the parameter q is adopted in order to define the Tsallis entropy as xi = − ln1−q pi , while the
usual expectation value E(X) = ∑n

i=1 pixi is adopted in order to define the Shannon entropy
as xi = − log pi . In the sequel we use the parameter λ ∈ (0, 1] insead of q. There is a relation
between these two parameters such that q = 1 − λ.

The Tsallis entropy and the Tsallis relative entropy in quantum system (noncommutative sys-
tem) are defined in the following manner. See [4,5] for example.

Definition 1.1. The Tsallis entropy is defined by

Sλ(ρ) ≡ Tr[ρ1−λ − ρ]
λ

= −Tr[ρ1−λ lnλ ρ]
for a density operator ρ and λ ∈ (0, 1]. The Tsallis relative entropy is defined by

Dλ(ρ|σ) ≡ Tr[ρ − ρ1−λσλ]
λ

= Tr[ρ1−λ(lnλ ρ − lnλ σ )]
for density operators ρ, σ and λ ∈ (0, 1].

The Tsallis entropy and the Tsallis relative entropy converge to the von Neumann entropy
S(ρ) ≡ −Tr[ρ log ρ] and the relative entropy D(ρ|σ) ≡ Tr[ρ(log ρ − log σ)] as λ → 0, respec-
tively. See [14] for details on the theory of quantum entropy. Two Tsallis entropies have nonad-
ditivities such that

Sλ(ρ1 ⊗ ρ2) = Sλ(ρ1) + Sλ(ρ2) + λSλ(ρ1)Sλ(ρ2) (2)

and

Dλ(ρ1 ⊗ ρ2|σ1 ⊗ σ2) = Dλ(ρ1|σ1) + Dλ(ρ2|σ2) − λDλ(ρ1|σ1)Dλ(ρ2|σ2), (3)

due to the nonadditivity Eq. (1) of the function lnλ. Thus the field of the study using these entropies
is often called the nonextensive statistical physics and many research papers have been published
in mainly statistical physics [20]. In addition, for the relative Rényi entropy of order λ

Rλ(ρ|σ) ≡ 1

λ
log Tr[ρ1−λσλ], λ ∈ (0, 1],

we have the following relation between Rλ(ρ|σ) and Dλ(ρ|σ):

λDλ(ρ|σ) + exp[λRλ(ρ|σ)] = 1.

See our previous papers [4,5] on the mathematical properties of the Tsallis entropy and the
Tsallis relative entropy.
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2. A variational expression of Tsallis relative entropy

In this section, we derive a variational expression of the Tsallis relative entropy as a parametric
extension of that of the relative entropy in Lemma 1.2 of [9]. A variational expression of the
relative entropy has been studied in the general setting of von Neumann algebras [17,11]. In the
sequel, we consider n × n complex matrices in the finite quantum system. A Hermitian matrix A is
called a nonnegative matrix (and denoted by A � 0) if 〈x, Ax〉 � 0 for all x ∈ Cn. A nonnegative
matrix A is called a positive matrix (and denoted by A > 0) if it is invertible. Throughout this
paper, Tr means the usual matrix trace. A nonnegative matrix A is called a density matrix if
Tr[A] = 1. In the below, we sometimes relax the condition of the unital trace for the matrices in
the definition of the Tsallis relative entropy Dλ(·|·), since it is not essential in the mathematical
studies of the entropic functionals.

Theorem 2.1. For λ ∈ (0, 1], we have the following relations:

(1) If A and Y are nonnegative matrices, then

lnλ Tr[eA+lnλY
λ ] = max{Tr[X1−λA] − Dλ(X|Y ) : X � 0, Tr[X] = 1}.

(2) If X is a positive matrix with Tr[X] = 1 and B is a Hermitian matrix, then

Dλ(X|eB
λ ) = max{Tr[X1−λA] − lnλ Tr[eA+B

λ ] : A � 0}.

Proof. The proof is almost similar to that of Lemma 1.2 in [9].
(1) For λ = 1, we have lnλTr[eA+lnλY

λ ] = Tr[X1−λA] − Dλ(X|Y ) by easy calculations with
the usual convention X0 = I . Thus we assume λ ∈ (0, 1). Let us denote

Fλ(X) = Tr[X1−λA] − Dλ(X|Y )

for a nonnegative matrixX with Tr[X]=1. If we take the Schatten decompositionX=∑n
j=1 rjEj ,

where all Ej , (j = 1, 2, . . . , n) are projections of rank one with
∑n

j=1Ej = I and rj � 0, (j =
1, 2, . . . , n) with

∑n
j=1 rj = 1, then we rewrite

Fλ


 n∑

j=1

rjEj


 =

n∑
j=1

{
r1−λ
j Tr[EjA] + 1

λ
r1−λ
j Tr[EjY

λ] − 1

λ
rj Tr[Ej ]

}
.

Since we have

�
�rj

Fλ


 n∑

j=1

rjEj




∣∣∣∣∣∣
rj =0

= +∞,

Fλ(X) attains its maximum at a nonnegative matrix X0 with Tr[X0] = 1. Then for any Hermitian
matrix S with Tr[S] = 0 (since Tr[X0 + tS] must be 1), we have

0 = d

dt
Fλ(X0 + tS)|t=0 = (1 − λ)Tr

[
S

(
X−λ

0 A + 1

λ
X−λ

0 Yλ

)]
,

so that X−λ
0 A + 1

λ
X−λ

0 Yλ = cI for c ∈ R. Thus we have

X0 = eA+lnλ Y
λ

Tr[eA+lnλ Y
λ ]
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by the normalization condition. By the formulae lnλ
y
x
= lnλ y + yλ lnλ

1
x

and lnλ
1
x
=−x−λ lnλ x,

we have

Fλ(X0) = lnλ Tr[eA+lnλ Y
λ ].

(2) For λ = 1, we have Dλ(X|eB
λ ) = Tr[X1−λA] − lnλ Tr[eA+B

λ ] by easy calculations. Thus
we assume λ ∈ (0, 1). It follows from (1) that the functional g(A) = lnλ Tr[eA+B

λ ] defined on
the set of all nonnegative matrices is convex, due to triangle inequality on max. Now let A0 =
lnλ X − B, and denote

Gλ(A) = Tr[X1−λA] − lnλ Tr[eA+B
λ ],

which is concave on the set of all nonnegative matrices. Then for any nonnegative matrix S, there
exists a nonnegative matrix A0 such that

d

dt
Gλ(A0 + tS)|t=0 = 0.

Therefore Gλ(A) attaines the maximum Gλ(A0) = Dλ(X|eB
λ ). �

Taking the limit as λ → 0, Theorem 2.1 recovers the similar form of Lemma 1.2 in [9] under the
assumption of nonnegativitiy of A. If Y = I and B = 0 in (1) and (2) of Theorem 2.1, respectively,
then we obtain the following corollary.

Corollary 2.2

(1) If A is a nonnegative matrix, then

lnλ Tr[eA
λ ] = max{Tr[X1−λA] + Sλ(X) : X � 0, Tr[X] = 1}.

(2) For a density matrix X, we have

−Sλ(X) = max{Tr[X1−λA] − lnλ Tr[eA
λ ] : A � 0}.

Taking the limit as λ → 0, Corollary 2.2 recovers the similar form of Theorem 1 in [2] under
the assumption of nonnegativitiy of A.

3. Generalized logarithmic trace inequalities

In this section, we derive some trace inequalities in terms of the results obtained in the previous
section. From (1) of Corollary 2.2, we have the generalized thermodynamic inequality:

lnλ Tr[eH
λ ] � Tr[D1−λH ] + Sλ(D) (4)

for a density matrix D and a nonnegative matrix H . Putting D = A
Tr[A] and H = lnλ B in Eq. (4)

for A � 0 and B � I , we have the generalized Peierls–Bogoliubov inequality (cf. Theorem 3.3
of [4]):

(Tr[A])1−λ(lnλ Tr[A] − lnλ Tr[B]) � Tr[A1−λ(lnλ A − lnλ B)] (5)

for nonnegative matrices A and B � I .

Lemma 3.1. The following statements are equivalent:

(1) Fλ(A) = lnλ Tr[eA
λ ] is convex in a Hermitian matrix A.

(2) fλ(t) = lnλ Tr[eA+tB
λ ] is convex in t ∈ R.
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Proof. Putting A1 = A + xB and A2 = A + yB in

lnλ Tr[eµA1+(1−µ2)A2
λ ] � µ lnλ Tr[eA1

λ ] + (1 − µ) lnλ Tr[eA2
λ ],

we find the convexity of fλ(t). Thus (1) implies (2).
Conversely, putting A = A2, B = A1 − A2 and x = 1, y = 0 in

lnλ Tr[eA+(µx+(1−µ)y)B
λ ] � µ lnλ Tr[eA+xB

λ ] + (1 − µ) lnλ Tr[eA+yB
λ ],

we find the convexity of Fλ(A). Thus (2) implies (1). �

Corollary 3.2. For nonnegative matrices A and B, we have

lnλ Tr[eA+B
λ ] − lnλ Tr[eA

λ ] � Tr[B(eA
λ )1−λ]

(Tr[eA
λ ])1−λ

. (6)

Proof. From Theorem 2.1, Fλ(A)= lnλ Tr[eA
λ ] is convex. Due to Lemma 3.1, fλ(t)= lnλ

Tr[eA+tB
λ ] is convex, which implies that fλ(1) � fλ(0) + f ′

λ(0). Thus we have the corollary
by simple calculations. �

4. Generalized exponential trace inequality

For nonnegative real numbers x, y and 0 < λ � 1, the relations ex+y
λ � ex+y+λxy

λ = ex
λey

λ hold.
These relations naturally motivate us to consider the following inequalities in the noncommutative
case.

Proposition 4.1. For nonnegative matrices X and Y, and 0 < λ � 1, we have

Tr[eX+Y
λ ] � Tr[eX+Y+λY 1/2XY 1/2

λ ].

Proof. Since Y 1/2XY 1/2 � 0 for nonnegative matrices X and Y , we have

I + λ(X + Y ) � I + λ{X + Y + λ(Y 1/2XY 1/2)}.
It is known [16] that A � B implies Tr[f (A)] � Tr[f (B)], if A and B are Hermitian matrices
and f : R → R is an increasing function. Thus we have

Tr[(I + λ(X + Y ))1/λ] � Tr[(I + λ{X + Y + λ(Y 1/2XY 1/2)})1/λ]
for 0 < λ � 1. �

Note that we have the matrix inequality:

eX+Y
λ � eX+Y+λY 1/2XY 1/2

λ

for λ � 1 by the application of the Löwner–Heinz inequality [13,8,15].

Proposition 4.2. For nonnegative matrices X, Y, and λ ∈ (0, 1], we have

Tr[eX+Y+λXY
λ ] � Tr[eX

λ eY
λ ]. (7)
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Proof. For λ ∈ (0, 1], we have

Tr[(AB)1/λ] � Tr[A1/λB1/λ] (8)

from the special case of the Lieb–Thirring inequality [12] (see also [10,21]), Tr[(AB)α] �
Tr[AαBα] for nonnegative matrices A, B and any real number α � 1. Putting A = I + λX and
B = I + λY in Eq. (8), we have

Tr[{(I + λX)(I + λY )}1/λ] � Tr[(I + λX)1/λ(I + λY )1/λ],
which is the desired one. �

Notice that Golden–Thompson inequality [7,18],

Tr[eX+Y ] � Tr[eXeY ],
which holds for Hermitian matrices X and Y , is recovered by taking the limit as λ → 0 in
Proposition 4.2, in particular case of nonnegative matrices X and Y .

5. Concluding remarks

Since Tr[HZHZ] � Tr[H 2Z2] for Hermitian matrices H and Z [16,3], we have for nonneg-
ative matrices X and Y ,

Tr[(I + X + Y + Y 1/2XY 1/2)2] � Tr[(I + X + Y + XY)2]
by easy calculations. This implies the inequality

Tr[eX+Y+1/2Y 1/2XY 1/2

1/2 ] � Tr[eX+Y+1/2XY

1/2 ].
Thus we have

Tr[eX+Y
1/2 ] � Tr[eX

1/2eY
1/2] (9)

from Proposition 4.1 and Proposition 4.2. Putting B = ln1/2 Y and A = ln1/2 Y−1/2XY−1/2 in
(2) of Theorem 2.1 under the assumption of I � Y � X and using Eq. (9), we have

D1/2(X|Y )=D1/2(X|eln1/2 Y

1/2 )

�Tr[X1/2A] − ln1/2 Tr[eA+B
1/2 ]

�Tr[X1/2A] − ln1/2 Tr[eA
1/2eB

1/2]
=Tr[X1/2 ln1/2 Y−1/2XY−1/2] − ln1/2 Tr[Y−1/2XY−1/2Y ]
=Tr[X1/2 ln1/2 Y−1/2XY−1/2], (10)

which gives a lower bound of the Tsallis relative entropy in the case of λ = 1/2 and I � Y � X.
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