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The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was oxidized to dihydropyridine
MPDP* and pyndine MPP* by preparations of monoamine oxidase B (MAO B), including pure human
liver MAO B monoclonal antibody complex K, .p, values for MPTP and benzylamine, a preferred MAO
B substrate, were 316 and 64 uM, respectively 4-Phenyl-1,2,3,6-tetrahydropyridine (PTP), the nor dervative
of MPTP, was also a substrate (Kyapp=221 uM) MPDP*, MPTP, and MPP*, but not PTP, were found
to be irreversible inhibitors of MAO B Our studies support the hypothesis that MPTP 1s oxidized 1n primate
brain by MAO B to MPDP*, which 1s then converted to MPP*, a major metabolite found 1n the substantia

mgra
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1. INTRODUCTION

Several studies suggest that 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) must be
metabolized to produce Parkinson-hke symptoms
[1-4]. Monoamine oxidase (MAO, EC 1.4.3.4),
the major intracellular enzyme which degrades bio-
genic amines 1n mammals [5], is thought to play an
important role in this process. Chiba et al. [1]
found that n rat brain mitochondrial fractions,
MPTP can be converted by MAO B, one of the
two forms of this enzyme, to its corresponding
pyridintum derivative, MPP™, a major metabolite
in primates [6—7]. Furthermore, Langston et al. [2]
have shown that pretreatment of primates with the
MAOQO B mhibitor, deprenyl, prevents the develop-
ment of MPTP-induced parkinsonism, while
studies by Heikkila et al. [3] demonstrate in mice
that clorgyline, an MAO A inhibitor, does not pre-
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vent the dopamine-depleting effect of the drug.
Our studies [8] show that MPTP is metabolized
to MPP* by MAO B wvia the dihydropyridine
MPDP*. Simultaneously, Salach et al [9]
demonstrated that homogeneous preparations of
bovine liver MAO B and human placental MAO A
oxidize MPTP with K, values similar to those of
benzylamine. Both forms of the enzyme were ir-
reversibly 1nactivated when incubated with high
concentrations (1-5 mM) of MPTP. Collectively,
these data led us to examine the kinetic properties
of human MAO B with MPTP as substrate, since
highly purified preparations of human or other
primate MAO B had not previously been studied.

2. MATERIALS AND METHODS

One source of enzyme used in these studies was
pure, catalytically active MAO B:monoclonal an-
tibody complex (MAO B:MAO B-1C2) prepared
from human autopsy liver as described by Patel et
al. [10], using a well characterized monoclonal an-
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tibody (MAO B-1C2) which recognizes human
MAO B but not MAO A [11,12]. MAO B:MAO
B-1C2 was studied because MAO B has not yet
been separated from MAO B-1C2 in catalytically
active form, nor have preparations of pure human
MAO B with high catalytic activity been obtained
by other methods. Liver was the most appropriate
source of human MAO B because autopsy brain is
difficult to obtain. The substrate preferences and
molecular activities of human MAO B in hver and
brain appear to be essentially identical [13]. Crude
extracts of human liver mitochondria and partially
purified bovine liver MAQO B were prepared and
studied as described in [8,9].

MPTP and 4-phenyl-1,2,3,6-tetrahydropyridine
(PTP) were purchased from Aldrich. MPDP* and
MPP™ were prepared and characterized as mn [8]
(see fig.1 for structures). These compounds exmbit
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different UV spectra, and the oxidation of MPTP
[8] and PTP (unpublished) into their corre-
sponding dihydropyridinmmum derivatives can be
followed spectrophotometrically at 340 nm (EM =
1 30 x 10% n aqueous solutions.
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Fig.l Structures of MPTP, MPDP* and MPP*

Table 1
Kinetic parameters of MPTP, PTP and benzylamine oxidation by human and bovine hver MAO
preparations
Source of enzyme Substrate Ko app Vimax,app
(M) (nmol/min per mg)
Partially purified bovine hiver MAO B MPTP 179 346
benzylamine 128 769
Human hver mitochondrial extracts MPTP 152 2 47
(1 5% Triton X-100) PTP 282 417
benzylamine 34 112
Pure human hver MAO B-MAO B-1C2 MPTP 316 229
PTP 221 196
benzylamine 64 880

Partially punified bovine MAO B was assayed spectrophotometrically n triplicate with 9 different
concentrations of MPTP (40—650 M, Az40um) and benzylamine (25-250 M, Azsonm) Km,app and
Vinax,app values were calculated by hnear regression analysis of the data plotted as 1/v agaimnst 1/S
The correlation coefficients of the regression hines were 0 99 for MPTP and 0 98 for benzylamune
and the values of the triplicate points were + 8% SD Protein concentrations used for the enzyme

activity measurements were 1l xg protemm per sample for both substrates

Human hver

mutochondrial extracts were assayed wn triphcate for activity at 9 concentrations of MPTP
(20-200 M), PTP (20-480 M) and benzylamine (20~480 xM) Values for K, zpp and Vimas,app
were calculated as stated above with correlation coefficients of 0 99, 0.97, 0.98, respectively. The
means for the triplicates were + 5% SD for benzylamime and MPTP and + 10% SD for PTP.
Protein concentrations used for these measurements were 242 ug for MPTP and PTP and 48 xg for
benzylamine per sample analyzed Pure human hver MAQ B MAO B-1C2 was assayed at 9
concentrations in triphcate of MPTP (40-400 xM), PTP (40-400 xM) and benzylamine
(10—-160 4M). K app and Viax,app values were obtained as described above, correlation coefficients
were 0 98, 0 98, 0 99, respectively. The means of the triphcates were + 5% SD for MPTP and PTP
and + 8% SD for benzylamine MAO B protein concentrations were 6.7 xg per sample for MPTP
and PTP and 0 67 4g per sample for benzylamine
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3. RESULTS

Table 1 shows the kinetic properties for the ox-
1dation of MPTP and PTP to their corresponding
dihydropyridinium analogs by pure human liver
MAO B:MAO B-1C2 and detergent extracts of
human liver mitochondria. Km,app values for
MPTP were similar, although not identical, in
these 2 preparations. Kuapp values for ben-
zylamine, however, were approx S-fold lower than
for MPTP A comparison of MPTP and ben-
zylamine oxidation by partially purified bovine
MAO B (about 80% pure as judged by examina-
tion on SDS gels), which was prepared according
to Salach [14], gave similar Ky, app values (179 and
129 4M, respectively). In all MAO B preparations
studied, however, benzylamine was oxidized at a
2—4-fold faster rate than MPTP.

MAQO B catalytic activity declined progressively
when MPTP was used as substrate, suggesting that
the enzyme was being 1nactivated. Therefore, the
effects of MPTP, MPDP*, MPP* and PTP on
benzylamine oxidation of MAO B:MAO B-1C2
were assessed as a function of time. Fig.2 shows
that after a short 1nitial lag, enzyme inactivation by
MPTP followed first-order kinetics. MPDP* and
MPP"* also mactivated the enzyme complex, but
PTP (1 mM) had no effect. The pseudo first-order
rate constants for the 1nactivation of
MAO B:MAO B-1C2 were 3.92 x 1072 mun~! for
MPTP (1 mM), 3.48 x 1072 min~! for MPDP*
(0.2mM), and 1.77 x 1072 mmn~! for MPP*
(10 mM) Attempts to recover activity by over-
mght dialysis against buffer were unsuccessful.
Furthermore, 1ncubation of [PH]MPTP with
MAO B:MAO B-1C2 resulted 1in the incorpora-
tion of tritium into protein, which could not be
removed by extensive washing with buffer.

These results support the concept that MPTP
can be oxidized by human MAO B to MPDP*, an
mtermediate in the formation of the metabolite
MPP*. Using crude preparations of MAO B, we
have shown that MPTP is oxidized to MPDP* at
a 5-fold faster rate than MPDP™ 1s converted to
MPP* [8]. However, since MPDP* chemically
undergoes rapid disproportionation at the pH of
the incubation mixture [15,16] and has spectral
properties in water (max 343 nm) which are
similar to those of MPP* (max. 293 nm), it is
presently not possible to determine whether the

226

FEBS LETTERS

July 1985

100 <@——F—F—3
80 A B
60

40

20

Activity (% of initial)

Time (min)

Fig 2. Irreversible inactivation of pure human liver
MAO B.MAO B-1C2 by MPTP (1 mM, panel A),
MPDP* (0 2 mM, panel B), and MPP* (10 mM, panel
C) MAOB.MAO B-1C2 (62xg protein) was
suspended 1n 50 mM KH,PO,/K,;HPO, buffer, pH 7.4,
and incubated at 30°C with 1 mM MPTP, 0.2 mM
MPDP”, and 10 mM MPP*, respectively At the times
indicated, triplicate 1041 aliquots were removed, added
to the assay cuvettes, and diluted to 1 0 ml with the
assay solution, which contained 3 mM benzylamine 1n
50 mM potassium phosphate buffer, pH 7 4 Initial
rates were determuned from 0 to 2 min by measuring the
increase 1n absorption at 250 nm using a Beckman
DU-7U spectrophotometer Panel D shows linear
regression analyses of the data; the correlation
coefficients 1n all cases were >099 (o) Control or
1 mM PTP (panel A), (&) 1 mM MPTP, (4) 02 mM
MPDP*; (0) 10 mM MPP* The calculated rate
constants k£ (min~") were 3 92 x 1072 for 1 mM MPTP,
3 48 x 1072 for 0.2 mM MPDP* and 1 77 x 1072 for
10 mM MPP* Overmight dialysis vs phosphate buffer
after 100-fold dilution did not affect the activity
measurements

formation of MPP* from MPDP" is the result of
this chemical transformation or additional en-
zymatic oxidation.

MPTP and 1ts oxidation products were found to
inhibit MAO B irreversibly with potencies ranked
as follows: MPDP* > MPTP > MPP*. In con-
trast, PTP did not inactivate MAO B. The N-
methyl substituent 1s clearly important for irrever-
stble enzyme 1nhibition.
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4. DISCUSSION

The relevance of MAO 1nactivation to the
neurotoxic effects of MPTP 1n vivo 1s unclear. Pa-
tients treated for endogenous depression with ir-
reversible inhibitors of MAO A and B (e.g.,
tranylcypromine) do not develop parkinsonian
symptoms [17]. Furthermore, if irreversible inhibi-
tion of MAO B were the crucial event for
neurotoxicity, many MAO B-containing neurons
would presumably undergo similar damage. In
fact, however, we have shown that MAO B 1s not
found 1n the highly sensitive cells of the substantia
nigra. Our localization studies of MAO A and
MAO B 1 Macaca cynomolgus monkey brain,
performed with MAO type-specific monoclonal
antibodies, revealed that MAO B is localized large-
ly in serotonergic neurons and not dopaminergic
neurons, while MAOA is localized in
catecholaminergic regions, including the substan-
tia nigra [18].

Given these patterns of distribution, we
hypothesize that MAO B catalyzes the oxidation
of MPTP to MPDP* and MPP"* in serotonergic
neurons which impinge either on dopamnergic
cells in the substantia nigra or their terminals 1n the
striatum, or in MAO B-containing, astrocytic ghal
cells. These metabolites may be transported out of
these cells and taken up by neurons in the substan-
tia migra. After this work was completed, Javitch
et al. [19] also proposed that MPP* may be pro-
duced 1n astrocytes and transported into neurons
in the substantia nigra. Previous studies show that
48-72 h after MPTP admunistration to monkeys,
MPP® accumulates in the substantia nigra, but
decreases in surrounding regions of brain [20]. In
rats, MPP* 1s transported into neurons through
the dopamine uptake system in striatal prepara-
tions [21].

The biological target(s) of MPP* in neurons of
the substantia nigra 1s unknown, but one possible
candidate 1s MAO A. In vitro preparations of pure
human placental MAO A converts MPTP to
MPP*, an irreversible inhibitor of this enzyme [9];
however, MPTP 1s a reversible competitive 1n-
hibitor of rat brain MAO A [22]. If MPP* is an ef-
fective 1n vivo inhibitor of primate neuronal
MAO A, its accumulation in the substantia mgra
could 1nterfere with the function of this important
amune-degrading enzyme and thereby contribute to
specific neurotoxicity.
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Collectively, the results of our studies of human
MAO B and those of others using MAO B from
other mammals [1-4,9] support the hypothesis
that MPTP 1s oxidized by MAO B to compounds
that can cause significant mhibition of both
MAO A and MAO B. These molecular events
could contribute to specific neuronal toxicity in the
substantia nigra and lead to Parkinson’s disease.
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