
PERGAMON 

Applied 
Mathematics 
Letters 

Applied Mathematics Letters 16 (2003) 535-542 
www.elsevier.nl/locate/aml 

Convergence Theorems of the Ishikawa 
Type Iterative Sequences with Errors 

for Generalized Quasi-Contractive 
Mappings in Convex Metric Spaces 

SHIH-SEN CHANG 
Department of Mathematics, Sichuan University 

Chengdu, Sichuan 616664, P.R. China 

JONG KYU KIM* 
Department of Mathematics, Kyungnarn University 

Masan, Kyunguam 631-701, Korea 
j ongkyuk&yungnam . ac . kr 

(Received February 2002; accepted March 8002) 

Communicated by R. P. Agarwal 

Abstract-In this paper, zome convergence theorems of Ishikawa type iterative sequence with 
errors for nonlinear generalized quasi-contractive mapping in convex metric spaces are proved. The 
results presented in this paper not only extend and improve the main results in (l-81 but also give 
an affirmative answer to the open question of Fthoades-Naimpally-Singh in convex metric spaces. 
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1. INTRODUCTION AND PRELIMINARIES 
Recently concerning the problem of the Isbikawa iterative sequence {x,} defined by 

x,+1 = (1 - a,> xn + ~,TY,, n 2 0, (1.1) 
in = (I- Pn) x, + PnTxn, 

converging strongly to a fixed point of T or to a solution of the equation TX = f has been 

considered by many authors (see, for example, [1,2,6&k12]), w h ere C is a nonempty closed convex 
subset of a Banach space E, T : C --+ C is a nonlinear pseudocontractive mapping or accretive 
mapping, and {cy,} and {&.} are two sequences in [O,l]. 
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On the other hand, in 1974, Ciric [l] proved the following theorem. 

THEOREM. (See [II.) Let (E, d) be a complete metric space, T : E ---) E be a quasi-contractive 
mapping i.e., there exists a constant k E [0, 1) such that 

~(%TY) 5 km={d(x,~),d(x,Tx) ,~(Y,TY) ,d(x,Ty) ,d(y,Tx)}, (1.2) 

for all x, y E E. Then T has a fixed point x* in E and for any given & E E, the Picard iterative 
sequence {Z%e} converges to this fixed point x*. 

In 1976 and 1983, Rhoades [7] and Naimpahy-Singh [5] suggest the following open question. 

OPEN QUESTION. Can the Ishikawa iterative procedure be extended to nonlinear quasi-contract- 
ive mapping in a metric space? 

This question is in fact solved in the affirmative (see [3,4,8]) for the Hilbert or Banach space 
setting. 

The purpose of this paper is to prove some new convergence theorems for Ishikawa type iterative 
sequence with errors in a convex metric space. The results presented in this paper not only extend 
and improve the main results in [l-8], but also give an ahirmative answer to the open question 
mentioned above in convex metric spaces. 

For the purpose of this paper, we first give some definitions and notations. 

DEFINITION 1.1. Let (E, d) be a metric space and I = [0, 11. For any positive integer n 2 2, 
denotebyEn=~xE~~~~xE/,In=~xIx_~~~xI/.AmappingW:EnxIntEbsaidto 

be a convex structure ofnE, if it satisfies the f&owing conditions: for any u, xl, x2, . . . ,xn c E 
andforanyor,o2,... , CY, E I with Cz, cri = 1; that is, 

(1) w (Xl, x2,. . . ,x,; 0, 0, . . . ( (Yi, 0,. . . ) 0) = xi, i=l,2,...,n; 

d(u,W(xl,xz,...,xn;QI1,(Y2,... , Q,)) 5 2 d(u, xi). 
i=l 

(1.3) 

E together with a metric d and a convex structure W is called a convex metric space and is 
denoted by (E, d, W). 

It should be pointed out that each linear normed space is a special example of convex metric 
space, but there exist some convex metric spaces which cannot be embedded into any normed 
space (see [13]). 

DEFINITION 1.2. A function 0 : [0, co) --$ [O,oo) is said to satisfy the condition (C+), if it is 
nondecreasing, continuous from right, a(t) < t, Vt > 0, and a(O) = 0. 

It is easy to prove the following proposition. 

PROPOSITION 1.1. If function Q : [0, co) 4 [O,oo) satisfies the condition (C*) and t I Q(t), 
t E [O,oo), then t = 0. 

DEFINITION 1.3. Let (E,d) be a metric space and T : E + E be a mapping. If there exists a 
function @ : [0, co) + [0, 00) satisfying the condition (Ca) such that 

d (TX, TY) 5 Q (ma {cl (2, Y) , d (x, TX) , d (y, Ty) , d (x,Ty) , d (~,Tx)}) , Vqy E E, (1.4) 

then T is said to be a generalized quasi-contractive mapping. 

If@(t) = kt, k E [0, l), then (1.4) is equivalent to (1.2), i.e., T is a quasi-contractive mapping. 
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DEFINITION 1.4. Let. (E,d, W) be a convex metric space with a convex structure W : 
E3 x I3 4 E satisfying condition (1.3) for n = 3. Let T. : E --f E be a generalized quasi- 
contrdive mapping, {4, {Dd, {m), {M, Id, and (6,) be six sequences in [0, l] with 
~~,+/3,+~,=1,Q+~,,+&,=l,n=0,1,2 ,..., ar~d~~=~~~=oo. ForanygivenzoE E, 
define a sequence {x,} as follows: 

x,+1 = W(x,,T~,,u,;cr,,P,,y,), 

yn =W(x,,Tx ‘u *t q 6 > 7-b 2 0, 
(1.5) 

n, n, n, nr 7% 7 

where {u,}, {v,} are two sequences in E satisfying the following conditions. 
For any nonnegative integers n,m with 0 5 n < m, if b(A,,,) > 0, then 

ncyEm{d(X~Y) :X E {%,‘Ui)r YE {Xjcj,Yj~TXj~T~j~~j~Vjj)) < a(An,na) 1 W-9 
-I- 

where 
A n,m = {x;,yi,Txi,Tyi,~i,vi : n < i 5 m} 

and 
J(&,m) = sup d(zc,y). 

%YEA,., 
Then {x,} is called the Isbikawa type iterative sequence with errors of T. 

Especially, if q,, = 0, 6, = 0, Vn 2 0, it follows, from (1.3), that y,, = x,,. Hence, from (1.5), 
we have 

xn+l = W(x,,Tx,,un;rm,Pn,^ln). (1.7) 
The sequence defined by (1.7) is called the Mann type iterative sequence with errors of T. 

It should be pointed out that if E is a linear normed space, then E is a convex metric space 
with a convex structure W(x, y; 1 - A, A) = (1 - X)x + Xy, Vx, y E E, X E I. Therefore, the 
Ishikawa iterative sequence (1.1) is a special case of (1.5) with -yn = 0, 6, = 0, and u, = v, = 0, 
Vn>O. 

2.’ MAIN RESULTS 

We are now in a position to prove the main results of this paper. 

THEOREM 2.1. Let (E, d, W) be a complete convex metric space with a convex structure W : 
E3 x I3 -+ E of E, T a generalized quasi-contractive mappingsatisfying condition (1.4), and {x,} 
the Isbikawa type iterative sequence with errors of T defined by (1.5). Then the sequence {x,} 
converges to a unique fixed point p of T in E. 

PROOF. Let N be the set of all nonnegative integers. For any n, m E N, 0 < n < m, we denote 

and 

Then we have 

where 

A n,m = {xi,yirTxi,Tyi,Ui,vi : n 5 i 5 m) 

6 (Awn) = SUP d (2, Y) . 
WEA,., 

6 (An,m) = m= (01, Dz, % D4, Ds, De}, 

D1=max{d(x,,Tx~),d(s,,Ty~):n<i~m}, 

&=m~{d(Txi,Txj),d(Txi,Tyj),d(Tyi,Tyj):n<i,j<m}, 

D3=max{d(xi,Tzj),d(xi,Tyj):n<i1m, n<jlm}, 

D4 = mm{d(yi,Txj) ,d(yi,Tyj) : n 5 i, j 5 m}, 

D~=max{d(xi,xj),d(xi,yj),d(yi,yj):n~i,j<m}, 

Ds=max{d(z,y) :zE {%,‘Q}, YE {Xj,Yj,T~j,T~~,zlj,vj}:nli,j <m}. 
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First, we prove that 
6 (An,,,,) = Dl. 

For this purpose, we consider the following four steps. 

(I) It follows from (1.4) that 
D2 L Q (a b-&n)). 

(II) It follows from (1.5) and (1.3) that, if n < i < m, n 5 j I m, then we have 

(2.1) 

(2.2) 

d(%,Tzj) =d(W(zi-l,TT/i-lcui-l;ai-l,Pi-l,yi-l),T~j) 

5 Qi-ld(Zi-1,TZj) +/3i-ld(Tyi-l,TZj) +7i-ld(%-l,Tzj) 

I max(d(zi-l,Ttj),3(6(A,,,)),Ds). 

If i - 1 > n, then in the same way, we can prove that 

d (G-I, Tq) 5 max {d (xi-2, Tq) ,3 (6 (A,,&) , DC}. 

By induction, for n < i 2 m, n 5 j 5 m, we can prove that 

d (zi, Tzj) I m= {d (xi-l, Tzj) , @ (6 (An,m)) , Ds} 

I ma {d(zi-2, Tzj), @ (S (AwJ) , Ds) 

I ma {d (G, T%) , @ (6 k&d), Ds} . 

Similarly, for n < i I m, n I j 5 m, we can also prove that 

d(zi,Tyj) I max(d(2,,Tyj),~(G(A,,,)),Ds), 

This implies that 

03=max{d(si,T~j),d(zi,Tyj):n<i5m, nSj<m} 

I ma id h Tq) , d (G, TY~), @ (6 (44) , D6 : n 5 j 5 ml 
= ma {Dl,i (6 P&J), Ds) . 

(2.3) 

(III) For n 5 i, j < m, by (2.2) and (2.3), we have 

Similarly, we can prove that 

Hence, we have 

04 = ma{d(yi,Tzj) ,d(yiyTyj) : n < i, j 5 m} 

5 ma (01, Q (6 P&J), Ds) . 
(2.4) 

(IV) Since 
D5=max{d(zi,zj),d(si,yj),d(~i,yj):n<i,j1m}. 
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(a) We first make an estimation for msx{d(zi,q) : 12 5 i,j 5 m}. 
Let 

Al = max{d(zi,zj) : n < i, j 5 m}. 

Then there exist k, 1 : n 5 k < 1 5 m such that A1 = d(~k, ccl) and 

Hence, we have 

AI = d (zk, ~1) 

= d (Zkr w h-1, T?fl-I, %-I; al--l, h-1, n-1)) 

5 Wld(%W-1) +hld(%Ty~) +“Il-ld(%W-I) 
(2.6) 

If ~1-1 = 0, from (2.6), we have A1 I max{&,&}. If cri-1 # 0, from (2.5) and (2.6), 
we have 

AI < al--ld(xk,xl) +&I& + “11-106 

5 m={Al, Dl, D6) 

= max{Dl, D6). 
(2.7) 

(b) Next, we make an estimation for max{d(zi, yj) : n 5 i, j 5 m}. 
Let 

Az=max{d(si,yj):n<i,j<m}. 

Since yj = W(~~,Txj,vj;~jj,77j,bj), using (2.7) and (2.3), we have 

Az=max{d(zi,W(zj,Txjcjvj;0,11j,6j)) :n<i,j 5~7~) 

Imax{~jd(xi,xj)+71jd(zi,Txj)$bjd(zi,vj):nIi,j<m} 

5 m={Dl, D6, @ (6 (&,m))) . 

(2.8) 

(c) Finally, we make an estimation for max{d(yi, yj) : n 5 i, j 5 m}. 
Let 

As=max{d(yi,yj):nIi,j~m}. 

By using (2.8) and (2.4), we have 

43 =max{d(yi,W(xjcj,T~j,vj;t,~j,6j)) : n 5 i,j 5 TTI} 

5 mm {tjd (~7 xj) + qjd (Yi,Txj) + bjd (yi, vj) : n 5 i, j 5 TTL} 

I max{d(~i,xj),d(yi,Txj),d(yi,v~) : n I i,j I m} 
2 max (01, ‘3 (6 (A,,m)) , D6) . 

(2.9) 

It follows, from (2.7)-(2.9), that 

D5 =ma{d(xi,~j) ,d(xi,yj) ,d(yi,yj) : n 5 i, j s m} 

5 max{Dl,o(s(A,,,)),Ds}. 

Combining (2.2)-(2.4) with (2.10), we have 

~L%d =max{DlrD2,D3,D4,D5,D6} 
I m= {Dl, @ (6 (A&), Ds} . 

(2.10) 

(2.11) 
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If Dr < @(h(A,,,)) or Dr < Ds, then c5(An,,,J > 0. Since Cp satisfies the condition (CQ), 
by using (1.6), we have that 

Dl < @ (6 (A,&) < 6 (An,m) , 

and 

Therefore, from (2.11), we have 

6 (An,,) < 6 b&n) t 

which is a contradiction. Thus, we have DI 2 @(b(An,m)) and DI 2 De. Hence, 
from (2.11), we have 

6 (An,m) I DI. 

However, it is obvious that 

Therefore, we have 

Dl 5 6 (An,,4 . 

DI = 6 &,,n) . 

Taking n = 0 in (2.1), we have 

6 (Ao,~ = mm {d (~0, Tq), d (20, Tyj) : 0 5 j 2 m} 
Id(zo,T~o)+max{d(T~o,T~~),d(T~o,Ty~):O<jIm} 

I d (20, Tzo) + Q (6 (Ao,m)) , 

and so we have 

6 (Ao,,) I (I- W1 (dbo, Tzo)) , Vm>O. (2.12) 

This implies that the sequence {S(Ao,,J} is bounded. 

On the other hand, for any positive integers n, m : 1 5 n < m, it follows,“from (2.1), that 

a(-%,,) =max{d(z,,Tsj),d(z,,Tyj):nIj <ml 

= nyJym {d(W (~-l,T~n-l, Z1,-1;(Yn-l,P*-l,‘Yn-l),T~~), 
-- 

d(~(~n-1,~y~-1,~n-l;~,-1,P,-1,m-1),~~~)} 

5 n~~~~(~n-ld(zn-l,~cj) +Pn-dP’~n-d’~~) 

+-wb,-lrT~j) ,+z-ldb-lrQ/j) +A-ld(%-l,Tyj) +x-ld(x-l,R/jlj)) 

5 G-IS (An-~,m) + &z-l@ (6 PL-l,m)) + x-16 (An-l,,n) 

= (I- A-1) 6 (An-1,m) + &,-I@ (6 (An-l,,)) 

= (I- A-1 (I- @I> (6 (An-l,m)) . 

By induction and using (2.12), we can prove that 

n-1 

6 (&,m) I n (I- Pj (I- a)) (6 (Aj,,)) 
j=O 

n-l 

I n (I- Pj (I- @p)) (6 (Ao,~)) 
j=O 

n-1 

I n (I- Pj (I- a>) (to> 7 

j-0 

where to = (I - a)-‘(d(zo, 230)). 
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Since the function Q : [0, M) + [0, 00) satisfies the condition (C*), for any t > 0, a(t) < t, i.e., 
(I - Q)(t) > 0, V t > 0. Again, since C’& & = 00. Therefore, we have that 

II u - Pj (I- cp)) (to) = 0. 
j=O 

Hence, we have 
lim 

n,n--roo 
6 (A,,,) = 0. 

This implies that {z,} is a Cauchy sequence in E and 

lim d (z,, 7’~~) = 0. 
n-cm 

Since E is complete, there exists a p E E such that x,, + p. Hence, we have 

lim xn = lim TX, = p. 
Tl-00 n+m 

It follows, from (1.4), that 

dG”xn,Tp) I @( m={d(xc,,z-4 ,d( xn, TX,), d (p, Tp) , d (z,, Tp) , d (p, TX,)}). 

Letting n + co on the both sides of the above expression and taking the right limit, we have 

d b, TP) I Q (mm {O,O, d (P, TP) , d (P, TP) ,O)) 

I @ Cd (p, 0)) . 

Therefore, it follows, from Proposition 1.1, that d(p,Tp) = 0; i.e., p is a fixed point of T in E. 
Finally, we prove that p is a unique fixed point of T in E. Suppose the contrary. Let q also be 

a ilxed point of T in E. Then we have 

d (P, q) = d (TP, Tq) 

5 @ Cm= {d (P, 4) , d (P, TP) , d (a Tq) , d (P, Tq) , d (4, TP))) 

=@(db,d). 

Hence, d(p, q) = 0, i.e., p = q, and so p is the unique fixed point of T in E. This completes the 
proof of Theorem 2.1. 

Taking @(t) = kt in Theorem 2.1, where Ic E [0, 1) is a constant and t E [O, oo), we can obtain 
the following result immediately. 

THEOREM 2.2. Let (E, d, W) be the same as in Theorem 2.1, T a quasi-contractive mapping 
satisfying condition (1.2), and {x,,} the Ishikawa type iterative sequence with errors of T defined 
by (1.5). Then the sequence {x,} converges to a unique fixed point p of T in E. 

REMARK. Theorems 2.1 and 2.2 are two new convergence theorems of the Ishikawa type sequences 
with errors for the generalized pseudocontractive mappings in convex metric spaces. These two 
theorems not only provide an affirmative answer to the open question of Hhoades and Naimpally- 
Singh in the setting of convex metric spaces, but also improve and extend the corresponding 
results in [l-8]. 

For the Mann type iterative sequence {xn} with errors, we also have the following result from 
Theorem 2.1. 

THEOREM 2.3. Let (E, d, W) be the same as in Theorem 2.1, T a generalized quasi-contractive 
mapping satisfying condition (1.4), and {x,.,} the Mann type iterative sequence ‘with errors of T 
defined by (1.7). Then the sequence {x,} converges to a unique hxed point p of T in E. 
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