Computation of Characters of the Higman-Sims Group and its Automorphism Group

J. S. Frame
Department of Mathematics, Michigan State University, East Lansing, Michigan 48823
Communicated by Walter Feit

Received March 1, 1971

TO PROFESSOR RICHARD BRAUER, TO COMMENIORATE HIS SEVENTIETH BIRTHDAY, FEBRUARY 10, 1971

1. Introduetion

A new simple group H of order $1100 \cdot 8$! was discovered in 1967 by D.G. Higman and C.C. Sims, represented as a rank three group of degree 100 with subdegrees $1,22,77$, in which the stabilizer of a point is isomorphic with the Mathieu group $M=M_{22}$ of order $11 \cdot 8![5]$. Using this information, together with the characters of M and general properties of group characters, we shall derive the character tables of H and of the automorphism groups M^{\prime} of M and H^{\prime} of H. The subgroups M of M^{\prime} and H of H^{\prime} have index 2. Examination of the character table of H suggests the existence of a doubly transitive permutation representation of H of degree 176, with point stabilizer G of order 252000 containing the simple group $U=P S U_{3}(5)$ of order 126000 [2]. Indeed Graham Higman [6] arrived independently at the simple group H through this subgroup G, which contains the alternating group A_{7} with index 100.

Principal tools used in constructing the character tables include (1) the Frobenius induce-restrict relations between irreducible characters of a group and those of a subgroup, (2) the decomposition of Kronecker powers and products, (3) the Brauer theory of p-blocks of defect 0 or 1, (4) congruence relations between the character values of an element and those of its powers, (5) orthogonality relations, and (6) the use of the square root enumerating function ζ_{t} for discovering classes of elements in H or M^{\prime} but not in M, or in H^{\prime} but not in H, whose squares are in known classes. This function is also useful in determining how certain pairs of characters of H fuse in H^{\prime}. The
mean value of $\zeta_{t}\left(\zeta_{t}-1\right)$ over a group is shown to be one less than the number of self inverse classes, and this is a useful check on characters.

Only 11 of the 24 classes of H are represented among the 12 classes of M, of which the two 7 -classes fuse into the one 7 -class of H. All but one of the remaining classes of H are represented among the classes of G. The two 11 -classes of M fuse into a single 11 -class of M^{\prime}, and the 10 classes of M^{\prime} not in M contain elements of orders $2,2,4,4,6,8,10,12,14,14$. All but the last pair represent distinct classes of H^{\prime}, and the remaining nine classes of H^{\prime} not in H or M contain elements of orders $4,6,6,8,10,20,20$, 20, 30.

Irreducible characters of M and $I I$ will be denoted by their degrees with subscripts m or h, except that the letters i, j, k or n will be used to avoid duplications when two or more characters have the same degree. The same symbols will denote irreducible characters of M^{\prime} and H^{\prime} that are positive for the class $C_{1}{ }^{\prime}$ of involutions that are 7th powers of elements of order 14, whercas their products with the alternating character 1_{m}^{\prime} or 1_{n}^{\prime} will be indicated by primes. Certain permutation chatacters will be indicated by subscripts p, and certain reducible characters by subscripts r.

2. Orders of Centralizers in the M-Classes of H

Let h_{k} of order ${ }^{\circ} h_{k}$ be an element of class $C_{s}{ }^{M}$ of M contained in the class $C_{k}{ }^{H}$ of H. Let ${ }^{\circ} N_{s}{ }^{M}$ and ${ }^{\circ} N_{k}{ }^{H}$ denote the orders of the centralizers (or normalizers) of h_{k} in M and H, respectively. Then the value $100_{p k}$ for $C_{k}{ }^{H}$ of the permutation character 100_{p} is

$$
\begin{equation*}
100_{p z i}=\sum_{s}{ }^{\circ} N_{k}^{N} /{ }^{N} N_{s}^{M} \quad \text { for all } \quad C_{s}^{M} \subset C_{k}^{H} \tag{2.1}
\end{equation*}
$$

Whenever $C_{k}{ }^{H}$ contains exactly one $C_{s}{ }^{M}$,-as is true for ten classes of H_{3}-we have ${ }^{\circ} N_{k i}{ }^{H}=100_{p k_{i}}{ }^{\circ} N_{s}{ }^{M}$.

We determine first the degrees of the irreducible constituents of 100_{p}. These are positive integers $1, d, 99-d$ such that $100(22)(77) / d(99-d)$ is a rational integral square [1]. Hence d is 22 or 77 , and H has the irreducible characters $1_{h}, 22_{h}$, and 77_{h}. We can split these uniquely in the subgroup M, since the only degrees of irreducible characters of M less than 77 are 1, 21, 45, and 55. Thus in M we have

$$
\begin{equation*}
1_{n} \stackrel{M}{=} 1_{m}, \quad 22_{h}^{M} 1_{n}+21_{m}, \quad 77_{n} \stackrel{M}{=} 1_{n}+21_{n}+55_{m} . \tag{2.2}
\end{equation*}
$$

Thus the characters $1_{h}, 22_{h}$, and 77_{h} are determined for all M-classes from the characters of M, and 100_{p} is given for all classes of H by

$$
\begin{equation*}
100_{p}=1_{m}^{H}=3\left(1_{m}\right)+2\left(21_{m}\right)+55_{m}=1_{h}+22_{h}+77_{h} . \tag{2.3}
\end{equation*}
$$

We list the eleven M-classes of H in a convenient order to display congruence relations. We denote the classes by generalized permutation class symbols $1^{n} 2^{h} 3^{e} \cdots$ [4], based on the integral-valued characters of 22_{h} and 77_{h}. Given the characters $1_{m}, 21_{m}$ and 55_{m} of M and given ${ }^{\circ} h_{k}$ and ${ }^{\circ} N_{k}{ }^{M}$, we determine $100_{p k}$ and ${ }^{\circ} N_{k}{ }^{N}$.

M-characters	${ }^{6} h_{l}$	${ }^{\mathrm{c}} \mathrm{N}_{\text {/ }}{ }^{M}$	$100_{j 2}$	${ }^{*} \mathrm{~N}_{i}{ }^{H}$	Class symbols		
$1_{m} 21_{m} 55_{m}$	1	$11 \cdot 8$!	100	$1100 \cdot 8!$	122	$1{ }^{77}$	C_{1}
$1-10$	11	11	1	11	$(11)^{2}$	$(11)^{7}$	C_{2}
$1-10$	11	11	1	11	$(11)^{2}$	$(11)^{7}$	C_{3}
$10-1$	7,7	7,7	2	7	$1 \cdot 7^{3}$	711	C_{4}
110	5	5	5	25	$1^{2} 5^{4}$	$1^{25}{ }^{15}$	C_{5}
131	3	36	10	360	$1{ }^{4} 3^{6}$	13^{24}	C_{6}
$1-1$	6	12	2	24	2"3\% ${ }^{\prime \prime}$	$12^{\circ} 3^{1} 6^{16}$	C_{7}
157	2	384	20	7680	$1^{6} 2^{8}$	$1^{132^{3} 2}$	$C_{\text {s }}$
113	4	32	8	256	$1^{2} 2^{2} 4^{4}$	$1^{5} 2^{14}{ }^{16}$	C
1 1-1	4	16	4	64	$1^{2} 2^{2} 4^{4}$	$12^{6} 4^{16}$	C_{10}
$1-11$	8	8	2	16	$2 \cdot 4 \cdot 8^{2}$	$12^{2} 4^{2} 8^{\text {® }}$	C_{11}

3. Characters for the M-Classes of H

Starting with the characters 22_{h} and 77_{h} which are known by (2.2) for the M-classes of H, we deduce others by forming Kronecker powers and products, splitting these in M, and seeing how the pieces must be combined to form irreducible H-characters. We also induce characters $d_{m}{ }^{H}$ of I from irreducible characters d_{m} of M, and note by the Frobenius reciprocity theorem that if f_{h} is an irreducible character of H then the restriction $f_{h}{ }^{M}$ of f_{h} to M contains d_{m} with the same multiplicity $v_{d f}$ that $d_{m}{ }^{H}$ contains f_{h}.

$$
\begin{equation*}
d_{m}^{H}=\sum_{f} v_{d f} f_{h}, \quad f_{h}{ }^{M}=\sum_{d} d_{m} v_{d f} . \tag{3.1}
\end{equation*}
$$

The matrix $W=V V^{T}$ can be computed from the characters of M, and the inclusion relations between classes of M and H. Each row of W indicates the splitting in M of the restriction to M of an induced character $d_{m}{ }^{H}$.

The W-matrix of scalar products of multiplicities

1_{m}	3	2	0	0	1	0	0	0	0	0	0	0
21 m	2	6	0	0	3	1	3	3	1	0	0	1
45_{u}	0	0	2	2	0	1	0	1	1	4	4	4
45_{n}	0	0	2	2	0	1	0	1	1	4	4	4
55_{m}	1	3	0	0	7	4	4	3	4	1	1	5
$99 m$	0	1	1	1	4	7	4	4	5	5	5	9
$154{ }_{m}$	0	3	0	0	4	4	14	9	10	6	6	13
$210{ }_{m}$	0	3	1	1	3	4	9	15	10	13	13	16
$231{ }_{m}$	0	1	1	J	4	5	10	10	19	11	11	21
$280{ }_{m}$	0	0	4	4	1	5	6	13	11	22	21	23
280_{n}	0	0	4	4	1	5	6	13	11	21	22	23
$385{ }_{m}$	0	1	4	4	5	9	13	16	21	23	23	36

The first row of the W-matrix gives the decomposition of the induced character $1_{m}{ }^{H}$ in (2.3). The second and fifth show the splitting of $21_{m}{ }^{H}$ and $55_{m}{ }^{H}$ which may be written as follows, by multiplying 21_{m} and 55_{m} by 100_{p}.

$$
\begin{align*}
21_{m}^{H} & =\left(22_{h}-1_{h}\right)\left(1_{h}+22_{h}+77_{h}\right)=22_{h} \times 22_{h}-1_{h}-77_{h}+22_{h} \times 77_{h} \\
& \equiv 2\left(1_{m}\right)+6\left(21_{m}\right)+3\left(55_{m}+154_{m}+210_{m}\right)+99_{m}+231_{m}+385_{m} \tag{3.3}
\end{align*}
$$

$$
\begin{align*}
55_{m}^{H}= & \left(77_{h}-22_{h}\right)\left(1_{h}+22_{h}+77_{h}\right)=77_{h} \times 77_{h}-22_{h} \times 22_{h}+77_{h}-22_{h} \\
& =1_{m}+7\left(55_{m}\right)+3\left(21_{m}+210_{m}\right)+4\left(99_{m}+154_{m}+231_{m}\right)+5\left(385_{m}\right) \\
& +280_{m}+280_{n} \tag{3.4}
\end{align*}
$$

To split $21_{m}{ }^{H}$ in H we first split $22_{h} \times 22_{h}-1_{h}$ into symmetric and alternating components, split these in M, and combine them in H.

$$
\begin{align*}
22_{h}^{[2]}-1_{h} & \stackrel{M}{=} 1_{m}+2\left(21_{m}\right)+55_{m}+154_{m} \tag{3.5}\\
22_{h}^{\left[1^{2}\right]} & \xlongequal{M} 21_{m}+210_{m} . \tag{3.6}
\end{align*}
$$

Since each irreducible H-component of $21_{m}{ }^{H}$ contains 21_{m}, character (3.6) is irreducible and (3.5) splits into two components of which one is the component 22_{h} or 77_{h} of $1_{m}{ }^{H}$. Degree divisibility checks rule out $22+230$ and leave $77+175$. Hence we have two new irreducible H-characters

$$
\begin{array}{r}
175_{h}=22_{h}^{[2]}-1_{h}-77_{h} \stackrel{M}{=} 21_{m}+154_{m} \\
231_{h}=22_{h}^{\left[1^{2}\right]} \stackrel{M}{=} 21_{m}+210_{m} \tag{3.8}
\end{array}
$$

Extracting these characters and 22_{h} and 77_{h} from $21_{m}{ }^{H}$, we have

$$
\begin{align*}
& 22_{h} \times 77_{h}-22_{h}-77_{h} \\
& \quad=21_{m}^{H}-22_{h}-77_{h}-175_{h}-231_{h}=a_{h}+b_{h} \\
& \quad \stackrel{M}{=} 2\left(21_{m}+55_{m}+154_{m}+210_{m}\right)+99_{m}+231_{m}+385_{m} . \tag{3.9}
\end{align*}
$$

This splits into two characters called a_{h} and b_{h}, both containing 21_{m} in M. Their degree sum is $a+b=1595$.

Using (3.4), we can partially split $55_{m}{ }^{H}$ in H as follows:

$$
\begin{equation*}
55_{w t}^{H}-77_{h}=\left(77_{h}^{\left.1^{2}\right]}-22_{h}^{\left[1^{2}\right]}\right)+\left(77_{h}^{[2]}-22_{h}^{[2]}-22_{h}\right) . \tag{3.10}
\end{equation*}
$$

Since $\left.\left(22_{h}+55_{m}\right)\right)^{\left[1^{2}\right]}$ contains $22_{h}^{\left[1^{2}\right]}$, we have in M

$$
\begin{gather*}
77\left[_{h}^{\left.1^{2}\right]}-22_{h}^{\left[1^{2}\right]}-21_{m}+2\left(55_{m}+99_{m}+210_{m}+231_{m}+385_{m}\right)\right. \\
+154_{m}+280_{m}+280_{n} . \tag{3.11}
\end{gather*}
$$

This splits into two irreducible H-characters, each containing 55_{m}. One of these is a common component of $21_{m}{ }^{H}$ and $55_{m}{ }^{H}$ not in $1_{m}{ }^{H}$, so it is either a_{h} or b_{h}. Call it b_{h} and the other c_{h}. Combining (3.9) and (3.11), we have
$c_{h}-a_{h} \equiv=-21_{m}-154_{m}+99_{m}+231_{m}+280_{m}+280_{n}+385_{m}$.
Thus the characters a_{h}, b_{h}, c_{h} split in M as

$$
\begin{align*}
& a_{h} \stackrel{M}{=} 21_{m}+55_{m}+154_{m}+x_{r} \\
& b_{h} \stackrel{M}{=} 21_{m}+55_{m}+154_{m}+y_{r} \\
& c_{h} \stackrel{M}{=} 55_{m}+99_{m}+231_{m}+280_{m}+280_{n}+385_{m}+x_{r}, \tag{3.13}
\end{align*}
$$

where $x+y=1135$ and

$$
\begin{equation*}
x_{r}+y_{r}=2\left(210_{m}\right)+99_{m}+231_{m}+385_{m} . \tag{3.14}
\end{equation*}
$$

Since x is a sum of numbers $210,210,99,231,385$ such that $230+x$, $1365-x$, and $1330+x$ are all divisors of the group order, the only possible solution is found to be $x=595, a=825, b=770, c=1925$. Thus in M-classes we have

$$
\begin{align*}
825_{h} & =a_{h} \stackrel{M}{=} 21_{m}+55_{m}+154_{m}+210_{m}+385_{m}, \\
770_{h} & =b_{h} \stackrel{M}{=} 21_{m}+55_{m}+99_{m}+154_{m}+210_{m}+231_{m}, \tag{3.15}\\
1925_{h} & =c_{h} \stackrel{M}{=} 55_{m}+99_{m}+210_{m}+231_{m}+280_{m}+280_{n}+2\left(385_{m}\right) .
\end{align*}
$$

In all classes of H we have

$$
\begin{align*}
825_{h}+770_{h} & =22_{h} \times 77_{h}-22_{h}-77_{h}, \tag{3.16}\\
1925_{h}+770_{h} & =77_{h}^{\left[1^{2}\right]}-22_{h}^{\left.1^{2}\right]} . \tag{3.17}
\end{align*}
$$

Consider next the decomposition of the Kronecker cube of 22_{h}. From (3.7) and (3.8) we obtain

$$
\begin{align*}
& 22_{h} \times 231_{h}=22_{h}^{[21]}+22_{h}^{\left[1^{3}\right]} \tag{3.18}\\
& 22_{h} \times 175_{h}=22_{h}^{[21]}+22_{h}^{[3]}-22_{h}\left(1_{h}+77_{h}\right) \tag{3.19}
\end{align*}
$$

All H-components of (3.18) are contained in $21_{m}{ }^{H}+210_{m}{ }^{H}$, and must contain either 21_{m} or 210_{m}. In M we have

$$
\begin{align*}
&\left.22_{h}^{\left[1^{3}\right.}\right] \stackrel{M}{\Longrightarrow} 2\left(210_{m}+280_{m}+280_{n}\right) \tag{3.20}\\
& 22_{h}^{[21]}-22_{h} \stackrel{M}{=} 2\left(21_{m}+55_{m}+231_{m}\right)+3\left(154_{m}+210_{m}+385_{m}\right) \\
&+99_{m}+280_{m}+280_{n} . \tag{3.21}
\end{align*}
$$

The former splits into two H-characters 770_{i} and 770_{j} which agree on M. They are later found to be conjugate complex characters of H which fuse into a single character 1540_{h} of H^{\prime}.

$$
\begin{equation*}
770_{i} \stackrel{M}{=} 770_{j} \stackrel{M}{=} 210_{m}+280_{m}+280_{n} \text { in } M \text {-classcs } . \tag{3.22}
\end{equation*}
$$

The character $22_{h}^{[21]}$ contains the pair of characters 825_{h} and 770_{h} common to $21_{m}{ }^{H}$ and $55_{m}{ }^{H}$. Removing them we have a single irreducible H-character left, of degree 1925 , called 1925_{k}.

$$
\begin{align*}
1925_{k} & =22_{h}^{[21]}-22_{h}-825_{h}-770_{h} \\
& \stackrel{M}{=} 154_{m}+210_{m}+231_{m}^{\prime}+280_{m}+280_{n}+2\left(385_{m}\right) . \tag{3.23}
\end{align*}
$$

From (3.16), (3.19), and (3.23), we obtain

$$
\begin{gather*}
22_{h}^{[3]}=22_{h} \times 175_{h}+22_{h}+77_{h}-1925_{k} \tag{3.24}\\
22_{h}^{[3]}-2\left(22_{h}\right)-77_{h} \stackrel{M}{=} 2\left(21_{m}+55_{m}+210_{m}\right)+99_{m} \\
\left|4\left(154_{m}\right)\right| 231_{m} \mid 385_{m} \tag{3.25}
\end{gather*}
$$

The two characters 825_{h} and 770_{h} in (3.15) that contain 21_{m} and 55_{m} split off in (3.24) leaving $2(154, \ldots)$ in M. This yields a character of degree 308
which turns out to be irreducible in $I I^{\prime}$, but splits into two characters 154_{i} and 154 of H that agree in M.

$$
\begin{gather*}
154_{i}-154_{j}-22_{h}\left(175_{k}-77_{h}\right)-77_{h}-1925_{k} \tag{3.25}\\
=22_{h}^{[3]}-22_{h}\left(1_{i} / 77_{h}\right), \\
154_{i}{ }^{M} 154_{j}^{M} 154_{k} \text { in } M \text {-classes of } H . \tag{3.26}
\end{gather*}
$$

4. Blocks of Defecti I

We now apply the Brauer theory of p-blocks of defect 1 to obtain additional " $p d 1$ "-characters for the primes $p=3,5,7,11$. Each such block in H (or M) gives rise to a pair of blocks of H^{\prime} (or M^{\prime}), obtained one from the other by multiplying by the alternating character $1_{h}{ }^{\prime}$ (or $1_{m}{ }^{\prime}$). We determine later, but indicate now by primes, which characters in a block are negative for the involution class $C_{1}{ }^{\prime}$.

First, for $p=3$, the " $3 d 1$ "'-chain for M is

$$
\begin{gather*}
21_{m}^{\prime}-231_{m}+210_{m}=0 \text { in 3-regular classes of } M^{\prime} \\
21_{m}^{\prime}=-231_{m}=210_{m} \text { in 3-singular classes of } M^{\prime} . \tag{4.1}
\end{gather*}
$$

The corresponding chain in H contains the two characters 231_{h} and 825_{h}, found in $21_{m}{ }^{H}$, whose degrees are each $\equiv 6(\bmod 9)$. The middle character of the chain is a new character 1056_{h} which we list between 231_{h} and 825_{h} for casy checking. We have

$$
\begin{align*}
& 231_{h}^{\prime}-1056_{h}+825_{h}=0 \text { in } 3 \text {-regular classes of } H^{\prime} \tag{4.2}\\
& 231_{h}{ }^{\prime}=-1056_{h}=825_{h} \text { in 3-singular classes of } H^{\prime} .
\end{align*}
$$

This relation serves to determine 825_{h} from 231_{h}^{\prime} in 3 -singular non- M classes of H^{\prime}, and thus to calculate 770_{h} and 1925_{h} from (3.16) and (3.17) in those classes. The decomposition of 1056_{h} in M is found to be

$$
\begin{equation*}
1056_{h} \stackrel{M}{=} 2\left(231_{m}\right)+55_{m}+154_{m}+385_{m} . \tag{4.3}
\end{equation*}
$$

Thus 1056_{h} is a constituent of $55_{m}{ }^{H}$, in which 77_{h} and the characters 825_{h}, 770_{h}, and 1925_{h} of (3.15) have already been found. From (3.4), (3.10), and (3.11) we obtain

$$
\begin{gather*}
77_{h}^{[2]}-22_{h}^{[22]}-22_{h}-1056_{h}-825_{h}=847_{r} \\
\stackrel{M}{=} 2\left(55_{m}+99_{m}\right)+154_{m}+385_{m} . \tag{4.4}
\end{gather*}
$$

This reducible character 847_{r} must have just two components, since it lies in $55_{m}{ }^{H}$, and each must contain 55_{m} and 99_{m}. Since $539=7^{2} .11$ is not a factor of ${ }^{\circ} \mathrm{H}$, the two characters have degrees 693 and 154 .

$$
\begin{align*}
& 693_{h} \stackrel{M}{=} 55_{m}+99_{i n}+154_{m}+385_{m}, \tag{4.5}\\
& 154_{h} \xlongequal{M} 55_{m}+99_{m} . \tag{4.6}
\end{align*}
$$

We note the decompositions in H :

$$
\begin{gather*}
77_{h}^{[2]}-22_{h}^{[2]}=22_{h}+1056_{h}+825_{h}+693_{h}+154_{h}, \tag{4.7}\\
55_{\prime^{\prime \prime}}==77_{h}+1056_{h}+825_{h}+770_{h}+1925_{h}+693_{h}+154_{h} . \tag{4.8}
\end{gather*}
$$

We also split $22_{h} \times 154_{h}$ in M and combine the pieces, which include three 55_{m} 's, to obtain the check formula

$$
\begin{equation*}
22_{h} \times 154_{h}=770_{h}+1925_{h}+693_{h} . \tag{4.9}
\end{equation*}
$$

Next, for $p=5$, the $5 d 1$-chain for M is found to be

$$
\begin{align*}
& 1_{m}-99_{m}+231_{m}-154_{m^{\prime}}^{\prime}+21_{m}^{\prime}=0 \text { in 5-regular classes, } \tag{4.10}\\
& 1_{m}=-99_{m}=231_{m}=-154_{m}^{\prime}=21_{m}^{\prime} \text { in 5-singular classes. }
\end{align*}
$$

Since $55_{m}{ }^{H}$ is a sum of 5 -indecomposable characters of H which contains just two $5 d 1$-characters 825_{h} and 1925_{h}, these two yield an indecomposable character of H. Besides these and the characters 175_{n} and 1925_{k}, the $5 d$ l-block of H contains a new fifth character of degree $175+1925+1925-825=$ 3200. The $5 d 1$-chain for H is

$$
\begin{gather*}
175_{h}-825_{h}+1925_{h}-3200_{h}+1925_{k}=0 \text { in } 5 \text {-regular classes, } \\
175_{h}-825_{h}=1925_{h}=-3200_{h}=1925_{k} \text { in } 5 \text {-singular classes. } \tag{4.11}
\end{gather*}
$$

This is later seen to be a $5 d 1$-chain for H^{\prime} also. In M, we decompose 3200_{h} as follows:

$$
\begin{equation*}
3200_{k} \stackrel{M}{=} 99_{m}+154_{m}+210_{m}+2\left(231_{m}+280_{m}+280_{n}\right)+3\left(385_{m}\right) . \tag{4.12}
\end{equation*}
$$

This character is the fifth of seven H-characters in $99_{m}{ }^{H}$. We calculate in M.

$$
\begin{gather*}
99_{m}^{H}-770_{h}-1925_{h}-3200_{h}-693_{h}-154_{h} \\
=3158_{r} M 45_{m}+45_{m}+45_{n}+154_{m}+210_{m}+231_{i n} \\
+2\left(99_{m}+280_{m}+280_{n}\right)+3\left(385_{m}\right) . \tag{4.13}
\end{gather*}
$$

This reducible character 3158_{r} splits into exactly two irreducible H characters, each containing 99_{m}. They are real of different even degrees, since 3158 is not the sum of two odd divisors of ${ }^{\circ} \mathrm{H}$. Since $3158=1(\bmod 77)$ the degrees have remainders 0 or 1 both $(\bmod 7)$ and $(\bmod 11)$, so the remainders $(\bmod 154)$ are either 0 and 78 or 22 and 56 . The only solution with summands dividing ${ }^{\circ} I I$ is

$$
\begin{equation*}
3158_{r}=1408_{h}+1750_{h} . \tag{4.14}
\end{equation*}
$$

The H-character which contains $99_{m}+45_{m} \div 45_{n}$ has degree divisible by 7 , so it is 1750_{h}. It is an indecomposable (mod 5), since 5^{3} divides 1750 . It is also a constituent of $45_{m}{ }^{H}$ which is a sum of 5 -indecomposables of H of degree 4500 , whose decomposition in M is
$45_{m}{ }^{H} \stackrel{M}{=} 2\left(45_{m}-45_{n}\right)+99_{m}+210_{m}+231_{m}+4\left(280_{m}+280_{n}+385_{n}\right)$
provided that the 7 -classes of M fuse in H. Otherwise a third 45_{m} replaces one 45_{n} in (4.15). Subtracting 1750_{h} from $45_{m}{ }^{H}$ we obtain a 5 -indecomposable character 2750_{h} which is irreducible if the 7 -classes of M fuse in H, or which splits into two characters with complex values on the two 7-classes otherwise.
To settle this question we cxamine the 7 -blocks of M and H. For M the 7 -chain is

$$
\begin{equation*}
1_{m}-55_{m}+99_{m}-45_{m n}=0 \text { in } 7 \text {-regular classes } \tag{4.16}
\end{equation*}
$$

The $7 d 1$-characters in $1_{m}{ }^{H}$ arc 1_{k} and 22_{k}, in $55_{m}{ }^{H}$ are 825_{h} and 1056_{k}, and in $99_{m}{ }^{H}$ are 3200_{h} and 1408_{h}. This requires that the remaining $7 d \mathrm{I}-$ character have degree

$$
\begin{equation*}
1+22-825-1056+3200 \div 1408=2750 . \tag{4.17}
\end{equation*}
$$

Hence the degree is not 1375, and the 7 -classes of M fuse in H. From the 7 -indecomposable 21_{m} we see that $22_{h}+825_{h}$ is a 7 -indecomposable of H. Similar reasoning gives the 7 -chain for $I I$ and H^{\prime} :

$$
\begin{array}{r}
1_{h}-1056_{h}+3200_{h}-2750_{h}+1408_{h}-825_{h}+22_{h}=0 \\
\text { in 7-regular classes. } \tag{4.18}
\end{array}
$$

This determines the difference $2750_{h}-1408_{h}$, which equals the difference $45_{m}^{I I}-3158_{r}$, but does not separate out the character 1750_{h}.

For additional information we consider the $11 d 1$-blocks of M and M. In M, we have

$$
\begin{equation*}
1_{m}-21_{m}+210_{m}-280_{m n}+\left(45_{m}+45_{n}\right)-0 \text { for } 11 \text {-regular classes. } \tag{4.19}
\end{equation*}
$$

Here the conjugate characters 280_{m} and 280_{n} are equal ($\bmod 11$) and their sum $280_{m}+280_{n}$ joins with each of the characters $210_{m}, 45_{m}$, and 45_{n} to form 11-indecomposables of degrees 770 and 605 in M.

Hence in (4.19) each of the characters 45_{m} and 45_{n} in the indecomposable 2750_{h} of H brings with it a pair $280_{m}+280_{n}$, and if 210_{m} is not in 1750_{k}, it brings to both 11 -indecomposables 1408_{h} and 2750_{h} of $I I$ the 11 -indecomposable $\left(210_{m}+280_{m}+280_{n}\right)$ of M. The character 1408_{h} must be divisible by 2^{7} on the class C_{8} of $3.5^{2} .7 .11$ involutions that lie in the center of a Sylow 2-group. Hence it is 0 for C_{8}. Since $99_{m}+154_{m}=13,385_{m} \quad$ I and $\left(210_{m}+280_{m}+280_{n}\right)=-14$ on class C_{8}, we obtain the following decompositions:

$$
\begin{gather*}
45_{m}^{H}=2750_{h}+1750_{h}, \tag{4.20}\\
1408_{h}^{M} 99_{m}-154_{m}-210_{m}+280_{m}+280_{n}+385_{m}, \\
1750_{n}^{M} 45_{m}+45_{n} \div 99_{m}+231_{n}+280_{m}+280_{n}+2\left(385_{m}\right), \tag{4.21}\\
2750_{k}{ }^{M} 45_{m}+45_{n}+210_{m}+3\left(280_{m}+280_{n}\right)+2\left(385_{m}\right) .
\end{gather*}
$$

To determine the $11 d 1$-block of H, we first compute the product $22_{h},<154_{i}$ and split it in M.

$$
\begin{gather*}
22_{k} \times 154_{i} \stackrel{M}{=} 21_{m}+55_{m}+99_{m}+4\left(154_{m}\right)+2\left(210_{m}-231_{m}\right) \\
+280_{m}+280_{n}+3\left(385_{m}\right) . \tag{4.22}
\end{gather*}
$$

Since $22_{k} \times 175_{k}$ contains 154_{i} it follows that $22_{k} \times 154_{i}$ contains 175_{k}, and we deduct $21_{m}+154_{m}$ to obtain a reducible character of degree 3213 . The only irreducible H-characters whose restrictions to M contain both 99_{m} and 154_{m}, but not 21_{m}, are $3200_{h}, 1408_{h}$ and 693_{h}. Since $3213-3200$ is too small we reject 3200 . If 1408_{h} is in 3213_{r}, then there must also be a component of $55_{m}{ }^{H}$ that contains neither 21_{m} nor 99_{m}. This must be 1056_{k}. The remaining character of degree 749 contains $154_{m}, 210_{m}$, and 385_{m}, but no two of, these have a sum that divides ${ }^{\circ} H$; so we reject $1408_{\text {" }}$. If $693_{\text {" }}$ is extracted, the remaining character is of degree 2520.

$$
\begin{gather*}
22_{k} \times 154_{j}=22_{h} \times 154_{j} \times 175_{h}+693_{k}+2520_{k}, \tag{4.23}\\
2520_{h} \because 2\left(154_{m}: 210_{m}=231_{m}: 385_{m}\right) \mid 280_{m}=280_{n} . \tag{4.24}
\end{gather*}
$$

The degree of this character divides ${ }^{\circ} H$ and is congruent to $1(\bmod 11)$. Either it is irreducible or it splits into two conjugate characters of degree 1260.

So far we have found the $11 d 1$-characters $1_{h}, 175_{h}, 1750_{h}, 3200_{h}$, and possibly 2520_{k} or $1260_{j}, 1260_{j}$. Since $22_{k} \times 22_{k}$ contains $1_{h} \div 175_{k}$ and $22_{\|} \times 154_{i}$ contains $175_{k}, 2520_{\text {t }}$, the IId1-chain for H is,
$1_{h}-175_{h}-2520_{h}-3200_{h}+1750_{h}-896_{i j}=0$ in 11-regular classes.

It is not possible to replace 2520_{h} by 1260 , since the degrees of the modular irreducibles would then be $1,174,1086,2114$ and -364 , and a negative degree is not possible. Hence 2520_{h} is irreducible in H, and there is a pair of conjugate characters 896_{i} and 896_{j} which agree for 11 -regular classes, but assume complex values $(-1 \pm i \sqrt{11}) 2$ in the two 11 -singular classes.

Since the $7 d 1$-block and the $11 d 1$-block have been completed, all remaining irreducible H-characters have degrees divisible by 77, and they vanish in classes C_{2}, C_{3}, and C_{4}. In class C_{5} of 5 -elements, the sum of squares of characters, 24, lacks 1 from the centralizer order ${ }^{c} N_{m} H^{\prime} \quad 25$, so a missing character has the value - 1. The scalar product with the identity class determincs the degree to be 1386 . It is not in the representation of $I I$ induced by any character of M of degrec less than 154 , so it contains 231_{m}, and 3855_{m}. Completion of the inducing table requires

$$
\begin{equation*}
1386_{n} \therefore 210_{m}-231_{m} \quad 280_{m}+280_{n}+385_{m} \tag{4.26}
\end{equation*}
$$

A check shows that the sum of squares of degrees is ${ }^{*} H$, so all characters are accounted for.

5. The Seuare Root Codnting Function ζ_{t}

'The value of

$$
\begin{equation*}
\left.c_{i}=:=\frac{1}{{ }^{0} G} \sum_{y \in G} \chi^{i}\left(g^{2}\right)=\sum_{t} \zeta_{t} X_{t}^{i}\right\rangle_{t}^{G} \tag{5.1}
\end{equation*}
$$

was shown by Frobenius to be 1,0 , or -1 according as the irreducible character χ^{i} belongs to a real representation, a representation with complex character, or a "symplectic type" representation which has real character of even degree but is not similar to any real representation. Here ζ_{i} denotes the number of square roots in G of an element g_{t} of class C_{t}, and is computable by the formula

$$
\begin{equation*}
\zeta_{t}==\sum_{s} \zeta_{s} \sum_{i} \chi_{s}{ }^{i} \chi_{t}{ }^{i}{ }^{0} N_{s}{ }^{i}==\sum_{i} c_{i} \chi_{t}^{i} . \tag{5.2}
\end{equation*}
$$

Theorem. If a finite group G has r self-inverse ("real") classes, then

$$
\begin{equation*}
\sum_{t} \zeta_{i}\left(\zeta_{t}-1\right) N_{t}^{G}=r-1 \tag{5.3}
\end{equation*}
$$

Proof. We count the number of solutions $x, y \in C, y=1$ of the equipalent equations

$$
\begin{gather*}
(x y)^{2}=x^{2} \tag{5.4}\\
x^{-1} y x=y^{-1} \tag{5.5}
\end{gather*}
$$

In (5.4) there are ${ }^{9} G N_{t}^{G}$ choices for x^{2} in class C_{1}, and for each x^{2} there are ζ_{i} values of x and $\zeta_{f}-1$ values of $y \neq 1$. In (5.5) there are $\gamma-1$ choices for the class C_{t} of y, and then ${ }^{\circ} G /{ }^{\circ} N_{t}{ }^{G}$ choices for y and ${ }^{\circ} N_{t}{ }^{G}$ choices for x. We equate the two counts and divide by ${ }^{\circ} G$ to get (5.3).

6. Character Values for the Non-M-Clases of H

Since H has 24 irreducible characters, it has 24 conjugacy classes, of which 11 are M-classes, six more contain elements whose squares are in $M=M_{22}$. The subgroup M has the two pairs of conjugate complex characters $45_{m}, 45_{n}$, and $280_{m}, 280_{n}$, but has no irreducible symplectic characters. A character of a group H induced from a real character of a subgroup M can contain irreducible symplectic components only with even multiplicity. Thus from the induce-restrict table from M to H we see that the only candidate for a symplectic character of H is 2520_{h}. The characters 896_{i} and 896_{j} are conjugate complex, and the pairs $770_{i}, 770_{j}$ and $154_{i}, 154_{j}$ are either real or complex. All other irreducible characters of H are of real type.

The centralizer orders ${ }^{\circ} N_{k}{ }^{H}$ for $k=2,3,4,5$ are the odd numbers 11, 11, 7 , and 25, so each element in these classes has exactly one square root (an element of odd order) and $\zeta_{k}=1$. The character sums for these classes are 1 if the two complex characters 896_{i} and $89 \sigma_{j}$ for which $c_{i}=0$ are omitted. Hence c_{i} must be 1 for each of the three characters $2520_{h}, 154_{i}$, and 154_{j}. These belong to real representations. In class C_{11} there are $256 / 16=16$ elements of order 8 whose squares are a fixed element of C_{8}, so $\zeta_{8} \geqslant 16$. Here the character sum is only 12 if the two -2 's in characters 770_{i} and 770_{i} are counted, but it is 16 if they are omitted. Hence these characters are a conjugate complex pair with $c_{i}=0$. All characters except $770_{i}, 770_{j}, 896_{i}$, and 896_{j} are of real type with $c_{i}=1$.

Let $\zeta_{k}{ }^{\prime}$ of the square roots of an element of class C_{k} lie in M-classes of H, and $\zeta_{i:}^{\prime \prime}-\zeta_{k}-\zeta_{i}{ }^{\prime}$ in non- M-classes of H. Noting that the squares of elements
in classes $C_{7}, C_{8}, C_{9}, C_{10}, C_{11}$ lie, respectively, in $C_{6}, C_{1}, C_{8}, C_{8}$ and C_{9}, we compute $\zeta_{\mu}^{\prime \prime} / N_{k}{ }^{H}$ as follows:

k	1	2	3	4	5	6	7	8	9	10	11
N^{H}	$1100 \cdot 8$!	11	11	7	25	360	24	7680	256	64	16
\check{S}_{\sim}	$1+55(385)$	1	1	1	1	26	2	152	16	8	0
ζ_{6}	$1 \div 15(385)$	1	1	1	1	16	0	150	16	0	0
$3_{2}^{\prime \prime}$	40(385)	0	0	0	0	10	2	2	0	8	0
	1/2880	0	0	0	0	1/36	$1 / 12$	1/3840	0	$1 / 8$	0

Thus there are non- M-classes of elements of orders $2,6,12,4$, and 8 whose squares are in M-classes. The elements of order 2 and 4 have centralizer orders divisible by 5 , as do the elements of order 3 in class C_{6}. Hence there are elements of order 5 not in class C_{5} (where ${ }^{\circ} N_{5}{ }^{H} \cdots 25$) that commute with elements of orders 2 , or 4 , or 3 producing product elements of orders 10, 20, and 15, respectively. One such class contains the center elements of a Sylow 5 -subgroup, and for this class 5^{3} divides ${ }^{\circ} N_{2}{ }^{H}$.

We form the sums \sum^{\prime} and $\Sigma^{\prime \prime}$ of $1 / N_{l}{ }^{H}$ over the M-classes and non- M classes with squares in M, respectively, and subtract from 1 to find the sum $\sum^{\prime \prime \prime}$ over the remaining "type 3 " classes.

$$
\begin{align*}
& \sum^{\prime}\left(1 N_{k}^{H}\right)=16125+38-3256 \text { (for } M \text {-classes) } \tag{6.2}\\
& \sum^{\prime \prime}\left(1 / N_{k}^{H}\right)=12880+136+1 / 12 \div 1 / 3840+18, \tag{6.3}\\
& \sum^{\prime \prime \prime}\left(1 N_{k}^{H}\right)=1500+1300+415 . \tag{6.4}
\end{align*}
$$

Since the permutation character $100_{p}=1_{h}+22_{h}+77_{h}$ vanishes in the non-M-classes of H, many characters can be expressed in terms of the value of 22_{h}. We record a few relations for easy reference:

$$
\begin{align*}
& 77_{h}-1_{h}-22_{h}+100_{p}, \\
& 231_{h}=22_{h}^{1^{2}{ }^{2}} \text {, } \\
& 175_{h}=-=22_{k}^{[2]}-1_{h}-77_{h}=-231_{h}-22_{h} \times 77_{h}\left(\bmod 100_{p}\right) \text {, } \\
& 825_{h} ; 770_{h}=22_{h} \times 77_{h}+1_{h}-100_{p}, \tag{6.5}\\
& \left.1925_{h}-770_{h}=777_{h}^{1^{2}}\right]-231_{h} \text {, } \\
& 1925_{k}=22_{h}^{[22]}-22_{h} \times 77_{h}+77_{k}, \\
& 770, \cdots 770_{j}=221_{h}^{1^{3}} 1 \text {, } \\
& \text { 151, } 151_{3}=-22_{n}^{[3]}-22_{n} \times 77_{n}-22_{n} \text {. }
\end{align*}
$$

In addition, we recall the relations (4.9) and (4.23), and note that $22_{h} \times 154_{i}=22_{h} \times 154_{j}$; so the characters 154_{i} and 154_{j} can differ only in classes for which $22_{h}=0$. Similarly, the characters 770_{i} and 770_{j} can differ only in classes for which $77_{h}=0$, since $77_{h} \times 770_{i}=77_{h} \times 770_{j}$. From (4.20) we also obtain

$$
\begin{equation*}
2750_{h}+1750_{h}=0 \text { in non- } M \text {-classes. } \tag{6.6}
\end{equation*}
$$

The non-M-classes of H may be described as follows:
C_{12} and C_{13}. Let class C_{12} contain elements of order 8 whose squares are in C_{19}. These are of type $2 \cdot 4 \cdot 8^{2}$ in 22_{h} or $1^{-12} \cdot 4^{38} 8^{8}$ in 77_{h}. Such elements form either a single class with ${ }^{\circ} N_{12}^{H}=8$ or two classes with ${ }^{\circ} N_{12}^{H}={ }^{\circ} N_{13}^{H}=16$. In either case, the character values for the eight characters of odd degree are $\pm I$ and the rest are 0 or ± 2. If $22_{k}=0$, the relations (6.5) and (4.9) determine the odd values in order to be ($1,-1,1,-1,1,1,-1,-1$). We check that $\zeta_{12}=0$, and check orthogonality with all the M-classes. If there are two classes of such 8 -elements, the remaining nonzero χ_{22}^{i} must be 2 and -2 in two characters of the same degree which are equal for all M-classes. These must be the characters 154_{i} and 154_{j}, and we verify later they cannot vanish on these classes, since they are equal in all classes for which $22_{k} \neq 0$.
C_{14}. Since ${ }^{\circ} N_{6}{ }^{H}=360$ is divisible by 5 , the 3 -elements in class 6 commute with elements of order 5 not in C_{5} to form products of order 15 forming class C_{14}. Since $\chi_{14}^{i} \equiv \chi_{\theta}{ }^{i}(\bmod 5)$ we take least residucs $(\bmod 5)$ of χ_{14}^{i} and find that 15 values are ± 1 and the rest 0 . The sum of squares is ${ }^{\circ} N_{14}^{H}=15$, and scalar products with the 13 known rows of the table vanish. 'Type symbols are $1^{-13} \cdot 5 \cdot 15$ and $3^{-15} \cdot 15^{5}$.
C_{15}. This class contains elements of order 5 that are cubes of elements of order 15 in C_{14}. Since $\chi_{15}^{i}=\chi_{14}^{i}(\bmod 3)$ and $\chi_{15}^{i}=\chi_{1}^{i}(\bmod 5)$, the character values are determined $(\bmod 15)$. If we take least residues, the sum of squares gives ${ }^{\circ} N_{15}^{H}=300$, which is a multiple of 75 as it should be. Scalar prolucts with the known classes vanish. Type symbols are $1^{2} 5^{4}$ and 1.35^{16}.
C_{16}. Since $\zeta_{15}=16$, there are 15 elements of order ten whose squares are a fixed element of C_{15}. Since $15 / 300=1 / 20$, these elements account for $1 / 20$ of the elements of H. Since the 15 -elements in C_{14} do not commute with involutions in H to produce elements of order $30, N_{15}^{H}$ does not contain elements of order 30 , so ${ }^{\circ} N_{16}^{H}$ is not divisible by 3 . It divides $300 / 3$, but is at least 20 . Since $\chi_{16}^{i}=\chi_{15}^{i}(\bmod 2)$ there are 12 odd values of χ_{16}^{i}. If we try $77_{h}=-1$ and $22_{h}:=0$, we obtain values whose scalar product with C_{13} does not vanish. If $77_{h}=1$, then $22_{k}=-2$, and the values obtained satisfy $\chi_{16}^{i}=\chi_{1 ;}^{i}(\bmod 4)$. Scalar products check out, and $\zeta_{16}=0$. Type symbols are $1 \cdot 2^{2} 10^{2}$ and $1 \cdot 2^{-2} 10^{8}$.
C_{17}. The fifth powers of elements in C_{16} are involutions not in C_{8}, since $\chi_{16}^{i} \chi_{8}{ }^{i}(\bmod 5)$. These must be the missing involutions not in M-classes, and we expect that ${ }^{\circ} N_{17}^{H}=2880$. Using the two congruences $\chi_{17}^{i}=\chi_{16}^{i}(\bmod 5)$ and $\chi_{17}^{i}=\chi_{1}{ }^{i}(\bmod 4)$, we may determine the characters $(\bmod 20)$, but least residues do not produce a sum of squares of 2880 . The values must be divisible by 16 for the characters $3200_{h}, 1408_{h}, 896_{i}$ and 896_{j} whose degrees are divisible by 128. These conditions together with formulas (6.5) and others do determine the characters, and scalar products check. Type symbols are $1 \cdot 2^{12}$ and $1 \cdot 2^{34}$.
C_{18}. The involutions in C_{17} commute with elements of order 3 in C_{6} to form products of order 6 in C_{18} whose squares are in C_{6}. When we solve the congruences $\chi_{18}^{i} \cdots \chi_{17}^{i}(\bmod 3)$ and $\chi_{18}^{i} \equiv \chi_{6}{ }^{i}(\bmod 2)$, taking least residues $(\bmod 6)$, we obtain the square sum ${ }^{\circ} N_{18}^{H}=36$, as expected. Scalar products check out, and $\zeta_{18}=0$. Type symbols are $1^{-2} 2^{3} 6^{3}$ and $1.2^{2} 6^{12}$.
C_{19}. For class C_{19} we assign the elements of order 12 whose squares are in C_{7}. Since $\zeta_{7}=2$, we get ${ }^{\circ} N_{19}^{\mu}=12$. Since just twelve $\chi_{7}{ }^{i}$ are odd, the corresponding χ_{19}^{i} are ± 1, and the rest are 0 . Since $22_{h} \rightarrow 0$, we have $77_{h}=-1$. Most of the signs of the odd values χ_{19}^{i} are determined by the relations (6.5), and the rest by orthogonality. Type symbols are $3^{2} 4 \cdot 6^{2} 12$ and $1^{-1} 2 \cdot 3^{2} 4 \cdot 6(12)^{5}$.
C_{21}, C_{21}, C_{22}, and C_{23}. Cubes of the elements of C_{19} are elements of order 4 in C_{20}, whose squares are in C_{8}. As shown above, ${ }^{\circ} H / 3840$ elements in non- M-classes have their squares in C_{8}. At least one class of these must have a centralizer order divisible by 5 , so there must be elements of order 20 in non- M-classes. Their squares of order 10 account for another class. There must be elements of order 5 not yet listed that lie in the centralizer of a Sylow 5 -subgroup and for which 5^{3} divides the centralizer order. Also the complex characters 770_{i} and 770_{j} must differ on a pair of inverse classes having clements of the same order. These must be two classes of elements of order 20, which we call C_{21} and C_{22}. Class C_{23} contains their squares, which are of order 10 , and whose 5 th powers lie in C_{8}. Since $\chi_{23}^{i} \equiv \chi_{8}{ }^{i}(\bmod 5)$, we take the least residues $(\bmod 5)$ of the values χ_{23}^{i} as a first guess for characters of C_{23}. The sum of squares is 20 . This is the smallest possible value for $N_{k}{ }^{H}$ for $k=21,22,23$. Since $4 \cdot 5^{3}$ divides ${ }^{\circ} N_{24}^{H}$, its smallest possible value is 500. For these values the sum $\sum 1 /{ }^{\circ} N_{k}{ }^{H}$ checks out to 1 . Hence these ${ }^{\circ} N_{k}{ }^{H}$ cannot be larger. The characters of C_{23} are determined by congruence (mod 5) with C_{8}. Now the characters in classes C_{21} and C_{22} differ only for 770_{i} and 770_{j}, where they are complex numbers θ and $\bar{\theta}$. Since $2 A \theta=20 / 2$, we have $\theta \bar{\theta}=5$. Since θ is a complex sum of 770 twentieth roots of unity, $\theta=-5^{1 / 2} i$. The congruence $\chi_{23}^{i} \equiv \chi_{21}^{i}(\bmod 2)$ shows that $\chi_{21}^{i}=1$, except for the values θ and $\bar{\theta}$ just described. An orthogonality check shows that all non-zero
values of 3200_{h} and 1408_{h} have been found, so these characters vanish in the last six classes. Then the modular theory shows that for the last four classes, all 5 -singular, the characters $175_{h}, 825_{h}, 1925_{h}$ and 1925_{k} in the defect 1 block with 3200_{h} vanish, and also characters 2750_{h} and 1750_{h} of defect 0 all vanish. This information, with relations (6.5) and the fact that $\zeta_{21}=0$, determines the characters for C_{21} and C_{22}. We next determine the characters for $C_{20}(\bmod 30)$ by observing $\chi_{20}^{i} \equiv \chi_{19}^{i}(\bmod 3), \chi_{20}^{i}=\chi_{8}^{i}(\bmod 2)$ and $\chi_{20}^{i}=\chi_{21}^{i}(\bmod 5)$. Since 2^{8} divides ${ }^{\circ} N_{20}^{H}=3840$, and $\left.2^{9}\right|^{\circ} H$, it follows that 2^{m-1} divides χ_{20}^{i} if 2^{m} divides the degree $\chi_{1}{ }^{i}$. Hence the characters in C_{20} for $3200_{h}, 1408_{h}, 896_{i}$ and 896_{j} are divisible by 2^{6} and must vanish, while 16 divides 1056_{h} and 4 divides 2520_{h} in C_{20}. These are uniquely determined. Relations (6.5) can be used to resolve the few uncertainties among the remaining characters. Check that $\zeta_{20}=0$. Type symbols for C_{21} and C_{22} are $1^{-1} 24^{15} 5^{-1} 10 \cdot 20$ and $12^{-1} 4 \cdot 5 \cdot 10 \cdot 20^{3}$. Classes C_{20}, C_{22}, C_{23}, and C_{24} all contain powers of elements from C_{21}.
C_{24}. This final class of H contains the elements of the center of a Sylow 5-subgroup of H, which are squares of elements in C_{23}. The congruences $\chi_{24}^{i}=\chi_{23}^{i}(\bmod 4)\left(\right.$ except in $\left.770_{i}, 770_{j}\right)$ and $\chi_{24}^{i}=\chi_{1}^{i}(\bmod 5)$ determine the character values for $C_{24}(\bmod 20)$. If least residues are used, the sum of squares is found to be 460 instead of 500 , and $\zeta_{24}=6$ instead of 26 . By changing the value of 1386_{h} from -9 to 11 , the right values are obtained. Formulas (6.5) are verified, and the completed table satisfies the orthogonality conditions. Thus the character table of H was calculated using very little knowledge about the group.

7. Characters of the M^{\prime}-Classes of H^{\prime}

The automorphism group H^{\prime} of the Higman-Sims group H is a group of order $2200 \cdot 8$! which contains H as a subgroup of index 2 , and has a permutation representation with character $100_{p}=1_{h}+22_{h}+$ 77_{h} on the cosets of a subgroup M^{\prime} which is the automorphism group of $M=M_{22}$. Using only this specific information about H^{\prime}, we compute its characters.

Each of the first eighteen characters d_{h} of H induces a pair of associated characters d_{l} and $d_{h}{ }^{\prime}$ of H^{\prime} of the same degree. The alternating character $1_{h}{ }^{\prime}$ is negative on the non- H-classes C_{h}^{\prime} of H^{\prime}, and we set $d_{h}{ }^{\prime}=d_{h} \nless 1_{h}{ }^{\prime}$, where the first nonzero value of $d_{h}-d_{h}{ }^{\prime}$ is positive. Thus $d_{h} \geqslant 0$ on the class of involutions $C_{\mathbf{1}}{ }^{\prime}$. To determine whether or not the pairs of characters 154_{i} and $154_{j}, 770_{i}$ and $770_{j}, 896_{i}$ and 896_{j} fuse or not in H^{\prime}, and whether the fused representation is of real or symplectic type we examine the
differences $\zeta_{t}^{\prime}=\zeta_{t}^{H^{\prime}}-\zeta_{t}{ }^{H}$ between the number of square roots in H^{\prime} or H of an clement of class C_{t}, and demand that this be nonnegative. Its value is

$$
\begin{equation*}
\zeta_{t}^{\prime}=\zeta_{i}^{H}+\left(c_{1}-2\right)\left(154_{i}+154_{j}\right)_{t}+c_{3}\left(770,+770_{j}\right)_{t}+c_{3}\left(896_{i}+896_{j}\right)_{t} \tag{7.1}
\end{equation*}
$$

where $c_{i}=1$ for real fused characters, $c_{i}=-1$ for symplectic fused characters, $c_{i}=0$ for complex unfused characters, but $c_{1}=2$ if the real characters 154_{i} and 154_{j} of H each induce two real irreducible characters of H^{\prime}. For $t=14,18,19$ the inequalities

$$
\begin{align*}
& \zeta_{14}^{\prime}=1+\left(c_{1}-2\right) 2+c_{2}(0)+c_{3}(2) \geq 0 \tag{7.2}\\
& \zeta_{19}^{\prime}=0+\left(c_{1}-2\right)(-2)+r_{2}(-2)+c_{3}(0) \geqslant 0 \tag{7.3}\\
& \zeta_{18}^{\prime}=0+\left(c_{1}-2\right)(-2)+c_{2}(2)+c_{3}(-4) \geqslant 0 \tag{7.4}
\end{align*}
$$

imply that $2-c_{1}=c_{2}=c_{3}$. If H^{\prime} were the direct product of H with an outside involution, no characters fuse and $c_{2}=0$. Otherwise, $c_{i} \quad 1$ and the three character pairs fuse into real characters $308_{k}, 1540_{k}$ and 1792_{k} sof H^{\prime}, respectively, which vanish on classes outside H. Besides these three self-associated characters, I^{\prime} has 18 pairs of associated characters, all real. Table 3 lists one character from each associated pair.

The three pairs of characters of H which fuse in H^{\prime} differ in H, respectively, on classes C_{12} and C_{13}, C_{21} and C_{22}, C_{2} and C_{3}, so these pairs of H-classes fuse in H^{\prime}, leaving $21 H$-classes in $H I^{\prime}$. We seck the characters of the 18 classes of I^{\prime} not in H, denoted $C_{1}{ }^{\prime} \cdots C_{18}^{\prime}$. Of the first ten of these, all but C_{8}^{\prime} are represented in M^{\prime}. Class C_{4} of H^{\prime} splits into two 7 -classes C_{4} and $C_{4}{ }^{*}$ of M^{\prime}, and class $C_{2}{ }^{\prime}$ of H^{\prime} splits into two 14 -classes $C_{2}{ }^{\prime}$ and $C_{2}^{\prime \prime \prime}$ of M^{\prime}. Each other class of M^{\prime} is denoted by the symbol $C_{s}{ }^{\prime}$ for the class of H^{\prime} in which it lies.

We next derive the ten centralizer orders ${ }^{\text {a }} N_{s}$ ' of the non- M-classes C ' of M^{\prime} from the centralizer orders ${ }^{\circ} N_{t}$ of the eight classes C_{t} of M^{\prime} in which the squares of $C_{s}{ }^{\prime}$ elements are found, and from the number $\zeta_{t}{ }^{\prime}$ of square roots of an element of C_{t} that lie in non-M-classes of M^{\prime}. The latter is found by subtracting from $\zeta_{t}=\sum_{i} x_{t}^{i}$ (since $c_{i}=1$) the ratios ${ }^{0} N_{t} N_{\text {, for }} M$ classes C_{s} with squares in C_{t}. For the eight classes C_{t} with $\zeta_{t}^{\prime}>0$ we list the values of ζ_{t}^{\prime} 'and ${ }^{\circ} N_{t}$, the orders ' m_{s} ' of square roots m_{s} ', and the classes $C_{s}{ }^{\prime}$ and centralizer orders ${ }^{\circ} N_{s}$ for $m_{s}{ }^{\prime}$.

C_{t}	C_{1}	C_{4}	$C_{4}{ }^{*}$	C_{5}	C_{6}	C_{7}	C_{8}	C_{9}
ζ_{t}	1716	1	1	1	6	2	20	4
N_{t}	$22 \cdot 8!$	14	14	10	72	24	768	64
m_{s}^{\prime}	2	14	14	10	6	12	4	8
C_{s}^{\prime}	$C_{1}{ }^{\prime}, C_{10}^{\prime}$	$C_{2}{ }^{\prime}$	$C_{2}^{\prime \prime}$	$C_{9}{ }^{\prime}$	C_{3}^{\prime}	$C_{4}{ }^{\prime}$	$C_{5}{ }^{\prime}, C_{6}^{\prime}$	$C_{7}{ }^{\prime}$
N_{s}^{\prime}	2688,640	14	14	10	12	12	96,64	16

The last line of the table is ${ }^{\circ} N_{s}{ }^{\prime}-{ }^{\circ} N_{t /} / \zeta_{t}^{\prime}$ in the six cases where this is an integer. In the other two cases, $t=1$ and $8, \zeta_{t}{ }^{\prime}=\sum^{\circ} N_{t}{ }^{\circ} N_{s}{ }^{\prime}$ is a sum of two factors of ${ }^{\circ} N_{t}$, to be determined by conditions on the two values of ${ }^{\circ} N_{s}$ '. Only one class of involutions, called $C_{1}{ }^{\prime}$, contains the 7 th powers of $14-$ elements in C_{2}^{\prime} or $C_{2}^{\prime \prime}$, and no involutions commute with 11 -elements. Only one class of involutions, called C_{10}^{\prime}, contains the 5 th powers of 10 -elements in $C_{9}{ }^{\prime}$. Hence $\zeta_{1}{ }^{\prime}=1716$ is the sum of a multiple ${ }^{\circ} N_{1} /{ }^{\circ} N_{1}{ }^{\prime}$ of 55 and a multiple ${ }^{\circ} N_{1}{ }^{\circ} N_{10}^{\prime}$ of 77 , and these can only be 330 and 1386. Thus ${ }^{c} N_{1}{ }^{\prime}=2688$ and $^{\circ} N_{10}^{\prime}=640$. Similarly only one of the classes of 4-clements, say C_{5}^{\prime}, contains cubes of 12 -elements in $C_{4}{ }^{\prime}$. Hence 3 divides ${ }^{\circ} N_{5}^{\prime}$ ' and ${ }^{\circ} N_{8} /{ }^{\circ} N_{6}{ }^{\prime}$ but not ${ }^{\circ} N_{6}{ }^{\prime}$, so $\zeta_{8}{ }^{\prime}=20=8+12$, and ${ }^{\circ} N_{5}{ }^{\prime}=96,{ }^{\circ} N_{6}{ }^{\prime}=64$.

Congruence relations $(\bmod p)$ between the characters of an element and of its p-th power furnish much information about the irreducible characters in the non- M-classes of M^{\prime}. First, a character is even or odd according as the known character of the square is even or odd. Second, the small size of ${ }^{\circ} N_{s}{ }^{\prime}$ in classes $C_{2}{ }^{\prime}, C_{2}^{\prime \prime}, C_{3}{ }^{\prime}, C_{4}{ }^{\prime}, C_{7}{ }^{\prime}$ and $C_{9}{ }^{\prime}$ (namely $14,14,12,12,16,10$) forces all the even-valued characters to vanish. Thirdly, since $C_{1}{ }^{\prime}$ contains the 7 th powers of elements of $C_{2}{ }^{\prime}$, and the cubes of elements in $C_{3}{ }^{\prime}$, and has its squares in C_{1}, the character values in C_{3}^{\prime} must be odd multiples of 7 for $21_{m}, 231_{m}$ and 385_{m}, multiples of 14 for 154_{m} and 210_{m}, and are not divisible by 7 for $45_{m}, 45_{n}, 55_{m}, 99_{m}$. They must be multiples of 3 for degrees $45,99,385$, and 560 , but not for the rest. For 55_{m} and 99_{m} they are congruent to $\pm 1(\bmod 14)$ and for 45_{m} and 45_{n} they are congruent to $:-3$ (mod 14). 'The least possible values of the ten characters d_{m} with positive values on $C_{1}{ }^{\prime}$ are as follows:

$$
\begin{array}{llllllllllll}
\text { Character: } & 1_{m} & 21_{m} & 45_{m} & 45_{n} & 55_{m} & 99_{m} & 154_{m} & 210_{m} & 231_{m} & 385_{m} \\
\text { Value on } C_{1}^{\prime}: & 1, & 7, & 3, & 3, & 13, & 15, & 14, & 14, & 7, & 21 . \tag{7.6}
\end{array}
$$

Since the sum of squares is $1344={ }^{0} N_{1}^{\prime} / 2$, these are the exact values. Their negatives are the values of the associated characters $d_{m}{ }^{\prime}$ which are not tabulated. The self associated character 560_{m} which vanishes is also omitted. 'The characters 45_{m} and 45_{n} have irrational values c and \bar{c} on C_{2}^{\prime} and $C_{2}^{\prime \prime}$, where $c=(-1+i \sqrt{7}) / 2$ is the sum of three seventh roots of unity. The
remaining rational values on $C_{2}{ }^{\prime}$ are obtained by congruence $(\bmod 7)$ with C_{1}^{\prime} and $(\bmod 2)$ with C_{4}. (We omit class $C_{2}^{\prime \prime}$ in listing characters of M^{\prime} below, since it is inverse to $C_{2}{ }^{\prime}$ and fuses with $C_{2}{ }^{\prime}$ in H^{\prime}). Likewise the character values of C_{3}^{\prime} are obtained by congruence $(\bmod 3)$ with C_{3}^{\prime} and $(\bmod 2)$ with C_{f}.

$$
\begin{array}{lllllllllll}
C_{2}^{\prime}: & 1 & 0 & c & c & -1 & 1 & 0 & 0 & 0 & 0 \\
C_{3}^{\prime}: & 1 & 1 & 0 & 0 & 1 & 0 & -1 & -1 & 1 & 0 . \tag{7.7}
\end{array}
$$

In both cases we double the sum of squared absolute values to obtain the centralizer orders ${ }^{c} N_{s}{ }^{\prime}=14$ or 12 . Since $C_{2}{ }^{\prime}$ is 7 -singular and $C_{3}{ }^{\prime}$ is 3singular, we can now determine the $7 d 1$ - and $3 d 1$-blocks of M^{\prime} from those of M. Thus we have

$$
\begin{array}{rl}
1_{m}-55_{m}+99_{m}-45_{m} & 0 \\
21_{m}^{\prime}-231_{m}+210_{m}=0 & \text { in 7-regular classes } \tag{7.9}\\
21_{m}^{\prime}=-231_{m} & =210_{m}
\end{array} \quad \text { in 3-regular classes }, ~ 子
$$

Note that $21_{m}{ }^{\prime}=-21_{m}$ outside M. The product of each of these p-blocks by the alternating character gives an associated p-block of M^{\prime}.

For the class $C_{5}{ }^{\prime}$ of 4 -elements that are cubes of 12 -elements in $C_{4}{ }^{\prime}$, the values must be ± 3 on the character $45_{m}, 45_{n}, 99_{m}$, and 385_{m} of odd degree which vanish on C_{4}. The squares of the other six nonzero d_{m}-characters sum to $96 / 2-4\left(3^{2}\right)=12$, so the values are 2 for even degrees 154 and 210 , and 1 for the rest. Characters of involutions in C_{10}^{\prime} are congruent $(\bmod 2)$ to their degrees and $(\bmod 5)$ to the characters of 10 -elements in $C_{9}{ }^{\prime}$. Hence they are +5 for degrees $45,55,385$, they are ± 4 or ± 6 for 154_{m}, and ± 1, ± 9 or 11 for degrees $21,99,231$. The values +9 or 11 for 21_{m} would imply the values $\left(9^{2}-21\right) / 2=20$ or 50 for $210_{m}=21_{m}^{\left[1^{2}\right]}$, which are too big. Hence 21_{m} is ± 1 and 210_{m} is $\left(1^{2}-2 \mathrm{I}\right) / 2=-10$ on C_{10}^{\prime}. The sum of squares in C_{10}^{\prime} for $99_{m}, 154_{m}$, and 231_{m} is $640 / 2-1^{2}-1^{2}-4\left(5^{2}\right)-10^{2}=$ 118 , so the three remaining squares are $1^{2}, 6^{2}, 9^{2}$. From the $3 d 1$-block relation (7.9) we find that $21_{m} \ldots 1$ and $231_{m}=-9$ on C_{10}^{\prime}, so $99_{m}^{2}=1$. From the $7 d 1$-block relation (7.8) we get $99_{m}=-1$ on C_{10}^{\prime}. The scalar product of C_{1}^{\prime} and C_{10}^{\prime} now forces 154_{m} to be 6 , and determines the signs of the values, ≤ 5. The character values in C_{9}^{\prime} are the least residues $(\bmod 5)$ of those in C_{10}^{\prime}. Thus for $C_{9}{ }^{\prime}$ and C_{10}^{\prime} we have

| Character: | 1_{m} | 21_{m} | 45_{m} | 45_{m} | 55_{m} | 99_{m} | 154_{m} | 210_{m} | 231_{m} | 395_{m} |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Value on $C_{9}^{\prime}:$ | 1 | -1 | 0 | 0 | 0 | -1 | 1 | 0 | 1 | 0, |
| Value on $C_{10}^{\prime}:$ | 1 | -1 | -5 | -5 | 5 | -1 | 6 | -10 | -9 | 5. |

The $5 d 1$-block relation is now seen to be

$$
\begin{equation*}
1_{m}-99_{m}+231_{m}-154_{m}^{\prime}+21_{m}^{\prime}=0 \text { on } 5 \text {-regular classes. } \tag{7.11}
\end{equation*}
$$

The character 21_{m} can now be evaluated on all non- M-classes of M^{\prime}. It is 7 on $C_{1}{ }^{\prime}, 0$ on $C_{2}{ }^{\prime}$ and $C_{2}^{\prime \prime}$, and ± 1 on all other classes except for the 4-elements of $C_{6}{ }^{\prime}$, where it is an odd number x. Since the sum of $\left(21_{m}{ }^{2}-1_{m}{ }^{2}\right)_{s}{ }^{\prime} N_{s}{ }^{\prime}$ vanishes over the $C_{s}{ }^{\prime}$, we have

$$
\begin{equation*}
\left(7^{2}-1\right) / 2688+2(0-1) / 14+\left(x^{2}-1\right) / 64=0 \tag{7.12}
\end{equation*}
$$

Thus $x==3$. Omitting class $C_{2}^{\prime \prime}$, and inserting an asterisk for class C_{8}^{\prime} which is not in M^{\prime}, we have

$$
21_{m}=(7,0,1, \pm 1, \pm 1, \pm 3, \pm 1, *,-1,-1)
$$

The scalar product with 1_{m} vanishes only if signs are such that

$$
\begin{equation*}
21_{m}=(7,0,1,-1,-1,3,1, *,-1,-1) . \tag{7.13}
\end{equation*}
$$

The alternating Kronecker square of $21_{1 n}$ is

$$
\begin{equation*}
210_{m}=(14,0,-1,1,-2,2,0, *, 0,-10) . \tag{7.14}
\end{equation*}
$$

From the $3 d 1$-relation (7.9) we obtain

$$
\begin{equation*}
231_{m}-(7,0,1,-1,-1,-1,-1, *, 1,-9) . \tag{7.15}
\end{equation*}
$$

Since $21_{m}^{2}=1_{m}+21_{m}+55_{m}+154_{m}-210_{m}$, we have

$$
\begin{equation*}
55_{m}+154_{m}=(27,-1,0,0,3,3,-1, *, 1,11) \tag{7.16}
\end{equation*}
$$

Previous results show that both 3 's split as $1+2$. Congruences (mod 3) then split both 0's as $1-1$. Thus

$$
\begin{align*}
55_{m} & =(13,-1,1,1,1,1,-1, *, 0,5), \\
154_{m} & =(14,0,-1,-1,2,2,0, *, 1,6) . \tag{7.17}
\end{align*}
$$

Now the 5d1-block relation (7.11) determines

$$
\begin{equation*}
99_{m}=(15,1,0,0,3,-1,-1, *,-1,-1) \tag{7.18}
\end{equation*}
$$

and the $7 d 1$-block relation (7.8) determines

$$
\begin{equation*}
45_{w}=(3,(c, \bar{c}), 0,0,3,-1,1, *, 0,-5) \tag{7.19}
\end{equation*}
$$

Finally, since $21_{m} \times 45_{m}-385_{m}-560_{m}$ and $560_{m} \cdots 0$, we have

$$
\begin{equation*}
385_{m}=(21,0,0,0,-3, \quad 3,1, *, 0,5) . \tag{7.20}
\end{equation*}
$$

'This completes the character table of M^{\prime} in 'Table 1 .
TABLE I
Characters of the Automorphism Group M^{\prime} of M_{22}

ElementClass orders													
Cl_{1}	1	$1_{\text {ifi }}$	21 m	$45_{r \prime}$	45^{\prime}	$55^{\prime \prime}$	$99_{\text {II }}$	$15 t_{m}$	$210{ }_{m}$	$231{ }_{m}$	385	560 m	$22 \cdot 8!$
C_{2}	11	1	-- 1	1	1	0	0	0	1	0	0	\cdots	11
C_{4}	7	1	0	c	\bar{i}	1	1	0	0	0	0	0	14
C^{*}	7	1	0	\bar{c}	c	\cdots	1	0	0	0	0	0	14
Cs	5	1	1	0	0	0	-1	1	0	1	0	0	10
0	3	1	3	0	0	1	0	1	3	\cdots	- 2	2	72
C_{7}	6	1	- 1	0	0	1	0	1	-1	1	--2	2	24
Cs	2	1	5	--3	- 3	7	3	10	2	7	1	-16	768
C_{3}	4	1	1		1	3	3	2	-2	1	1	0	64
C_{10}	4	1	1	1	1	- 1	-1	2	--2	1	1	0	32
C_{11}	8	1	-1	1	- 1	1	1	0	0	- 1	1	-	16
$C_{1}^{\prime \prime}$	2	1	7	3	3	13	15	14	14	7	21	.	2688
C_{2}	14	1	0		\bar{c}	-1	1	0	0	0	0	.	14
$C^{\prime \prime}$	14	1	0	\bar{c}	c	-1	1	0	0	0	0	.	14
C	6	1	1	0	0	I	0	- 1	- -1	-	0	.	12
$C_{4}{ }^{\prime}$	12	1	\cdots	0	0	1	0	- 1	1	-1	0	.	12
C_{5}	4	1	-1	3	3	1	3	2	-2	1	- 3	.	96
$C_{6}{ }^{\prime}$	4	1	3	1	-1	1	\cdots	2	2	1	3		64
\cdots	8	1	1	1	1	-1	1	0	0	--1	1		16
Ca_{3}	10	I	- 1	0	0	0	- 1		0	1	0		10
C_{11}	2	1	1	--5	--5	5	- 1	6	- 10	-9	5		640

The characters of H^{\prime} can now be cvaluated on the nine classes of H^{\prime} represented in M^{\prime} but not in H. From (7.13) and (7.17) we find the value on these classes of $3\left(1_{m}\right) \div 2\left(21_{m}\right)+55_{m}$, which is the restriction to M^{\prime} of the permutation character $100_{p}=1_{h} \therefore 22_{k}+77_{h}$. We then multiply by the centralizer orders ${ }^{\circ} N_{s}{ }^{\prime}$ in M^{\prime} found in (7.5) to obtain the centralizer orders ${ }^{\circ} N_{*}^{H^{\prime}}$ for I^{\prime}, except that half the product is used for the fused class $C_{2}{ }^{\prime}$. We describe each class by its cycle symbol for the character 22_{h}.

I^{\prime} Class:	C_{1}^{\prime}	C_{2}^{\prime}	C_{3}^{\prime}	C_{4}^{\prime}	C_{5}^{\prime}	C_{6}^{\prime}	C_{7}^{\prime}	C_{9}^{\prime}	C_{10}^{\prime},
Class type:	$1^{8} 2^{7}$	$1 \cdot 7 \cdot 14$	$1^{2} 23^{2} 6^{2}$	$4 \cdot 6 \cdot 12$	$2^{3} 4^{4}$	$1^{4} 24^{4}$	$1^{2} 48^{2}$	$2 \cdot 10^{2}$	2^{11},
$100_{n}:$	30	2	6	2	2	10	4	1	6,
$N_{S}^{N^{\prime}}:$	80640	14	72	24	192	640	64	10	3840.

The induce-restrict table (Table 2) from M to $I I$ can be used as an induce-restrict table from M^{\prime} to H^{\prime}, if it is modified to show which of the two associated characters χ_{k} or χ_{k}^{\prime} in $d_{m}^{H^{\prime}}$ corresponds to χ_{h} in $d_{m}{ }^{\prime \prime}$. If χ_{h} occurs once, we indicate a multiplicity 1 ; whercas if $\chi_{n}{ }^{\prime}$ occurs instead, we indicate I^{\prime}. If $\chi_{i \prime}$ appears twice we show 2 , whereas if both χ_{n} and $\chi_{n}{ }^{\prime}$ occur we show 2^{\prime}, and if χ_{4}^{\prime} occurs twice we show $2^{\prime \prime}$. To determine which is present, we examine the signs in the involution class $C_{1}{ }^{\prime}$.

We defne 22_{k} to be $1_{m}+21_{m}$ in the M^{\prime}-classes of H^{\prime}, and readily verify that all the irreducible components of the restriction to M^{\prime} of $22_{\mu^{2}}{ }^{2}$ have positive values on $C_{1}{ }^{\prime}$. Thus in the M^{\prime}-classes of H^{\prime} we compute
$77_{k} \quad 1_{m}+21_{m}+55_{m}, \quad 175_{h}-21_{m}+154_{m}, \quad 231_{h}=21_{m}+210_{m}$.

The composite characters $825_{h}+770_{h}$ and $1925_{h}+770_{h}$ defined by (3.16) and (3.17) have values 139 and 161, respectively, on class C_{1}^{\prime} of H^{\prime}, so in formulas (3.15) the characters all must have positive values on C_{1} ', except that the pair $280_{m}+280_{n}$ is fused into 560_{m} which vanishes on C_{1}. Hence $825_{h}, 770_{h}$, and 1925_{h} are defined by (3.15) in all M^{\prime}-classes of H^{\prime}. However, the character 1925_{k} in (3.23) has the value $9 \cdot 8 \cdot 7 / 3-8-139=21$ in C_{1}^{\prime}, and is a sum of 5 -indecomposables when restricted to $M T^{\prime}$. Hence by (7.11), 154_{m} goes with $231_{m}{ }^{\prime}$, and the decomposition of 1925_{k} in M^{\prime}-classes must be

$$
\begin{equation*}
1925_{k}=154_{m}-210_{m}+231_{m}{ }^{\prime}+560_{m}+385_{m}+385_{m}{ }^{\prime} . \tag{7.23}
\end{equation*}
$$

The character 1056_{n} in H was found in (4.2) to belong in a $3 d 1$-block with 231_{h} and 825_{h}, whose values on $C_{1}{ }^{\prime}$ are 21 and 69 . Since ${ }^{\circ} C_{1}^{\prime}=1100$, and 32 divides 1056, the character on $C_{1}{ }^{\prime}$ is a multiple of 8 , and cannot be $21+69=90$. Hence $1056_{h}=48$ on C_{1}^{\prime} and the $3 d$ 1-chain (4.2) links $231_{h}{ }^{\prime}$ with 1056_{h} in a 3-indecomposable character. This determines $1056_{i t}$ on the M^{\prime}-classes. Its decomposition in M^{\prime} is

$$
\begin{equation*}
1056_{h} \stackrel{M^{\prime}}{=} 55_{m}+154_{m}+231_{m}+231_{m}^{\prime}+385_{m} . \tag{7.24}
\end{equation*}
$$

Since the reducible character $693_{h}+154_{h}$ of (4.4) has the value 91 on $C_{1}{ }^{\prime}$, all the components of its restriction to M^{\prime} are positive on $C_{1}{ }^{\prime}$, and formulas (4.5) and (4.6) give 693_{h} and 154_{h} without modification. Their values 63 and 28 on C_{1}^{\prime} are checked by (4.9).

Since 3200 and 1408 are both divisible by 2^{7}, their character values on the class $C_{1}{ }^{\prime}$ of order 1100 are divisible by 2^{5}. The values of the characters $175_{k}, 825_{k}, 1925_{k}$, and 1925_{k} on C_{1}^{\prime} are $21,69,91,21$, respectively. The only combinations of signs which give a positive sum divisible by 32 are
TABLE II
'The Frobenius Induce-Restrict 'Table for the Automorphism Groups M ' of M_{22} and H ' of the Higman-Sims Simple Group H

M^{\prime}	H^{\prime}	1_{h}		$77 h$		$231{ }_{h}$		825_{h}		1925		3200_{k}		$2750{ }_{h}$		$693{ }_{h}$		1386_{h}		308 h		1792,
			$22 \ldots$		175_{h}		1056		770		1925:		1408 ¢		1750 n		154		$2520{ }_{n}$		1540_{h}	
$1{ }_{m}$		1	1	1	.	.	-	-	-	-	.	.	.	-	-	.
21_{m}		.	1	1	1	1	.	1	1	.	-	.	.	.	-	-	.	.	.	-	-	-
45_{m}		-	-	.	.	.	-	1	1
45_{n}		-	-	-	.	-	-	.	.	1	1	.	-	-	-	.	.	-
55_{m}		.	-	1	.	.	1	1	1	1	1	1
99 m		1	1	.	1	1	.	1	1	1	-	\cdot	\cdot	.	.
$154{ }_{m}$.	.	.	1	-	1	1	1	.	1	1	1	.	.	1	.	.	2	$1 *$	-	.
210 m		1	.	1	1	1	1	1	1	1	-	.	-	1	$2 '$	-	1%	.
231 m		.	,	.	-	.	2	.	1	1	$1{ }^{\prime}$	2^{\prime}	-	\cdot	1	-	.	1	2	.	-	1 *
$385{ }_{m}$		1	1	.	2	2	3	1	2^{\prime}	2	1	.	1	2	-	.	1*
560_{m}		-	.	1*	1^{*}	2*	1 *	3*	1^{*}	.	-	1^{*}	1*	.	2	1

[^0]$21-69+91+21=64$ or $\pm 21+69+91 \mp 21=160$. The latter gives too large a value to the sum of squares for class $C_{1}{ }^{\prime}$ and must be rejected. Hence $3200_{h}=64$ on $C_{1}{ }^{\prime}$ and the chain (4.11) is valid in all classes of I^{\prime}. However, the decomposition (4.12) in M must be modified for M^{\prime}. Since 3200_{h} is a sum of 5 -indecomposables in M^{\prime}, we see by (7.11) that 99_{m} goes with 231_{m}, but 154_{m} goes with 231_{m}, so
$3200_{k}=99_{m}+154_{m}+210_{m}+231_{m}+231_{m}^{\prime}+2\left(560_{m}+385_{m}\right)+385_{m}$.

Since the value of 1408_{h} given by (4.21) must be a multiple of 32 on class $C_{1}{ }^{\prime}$ where $99_{m}, 154_{m}, 210_{m}$ and 385_{m} have values $15,14,14,21$, the only possible combination of signs is $15+14+14+21=64$. Thus the value of 1408_{h} on C_{1}^{\prime} is 64 and (4.21) gives 1408_{h} for M^{\prime} classes of H^{\prime}. Then (4.13) makes $3158_{r}=134$, (4.14) makes $1750_{h}=70$, and (4.20) makes $2750_{h}=20$ on $C_{1}{ }^{\text {. }}$. Formula (4.21) holds for the decomposition of 1750_{h} in M^{\prime}, but the formula for 2750_{h} must be modified by changing one of the 385_{m} to $385_{s m}$ '.

The sum of the squares of the values on H^{\prime} of those 16 computed characters is 8 ! so the characters 1386_{h} and 2520_{n} must vanish on C_{1}. Hence in (4.24) the pairs of characters of degree $154,210,231$, and 385 must be replaced by pairs of associated characters whose sum vanishes on all M^{\prime}-classes of H^{\prime}. Taking the sum of squares on the other cight M^{\prime}-classes of H^{\prime}, we find the magnitudes of the character values of 1386_{h}, and then determine the signs by orthogonality. This completes the characters for the M^{\prime}-classes of H^{\prime}.

8. Characters of Non-M'-Classes of H^{\prime}

We next calculate the orders of centralizers of non- M^{\prime}-classes of H^{\prime} by evaluating the number of square roots $\zeta_{t}=\sum_{i} \chi_{t}{ }^{i}$ of an element in class C_{t} of H^{\prime}, subtracting the numbers in H-classes, and computing the numbers $\zeta_{t}{ }^{\prime}$ and $\zeta_{2}^{\prime \prime}$ that lie respectively in M^{\prime}-classes and non- M^{\prime}-classes of H^{\prime} not represented in H. The nine non- M^{\prime}-classes $C_{s}^{\prime \prime}$ have squares in seven classes C_{t} :

C_{t}	C_{6}	C_{9}	C_{14}	C_{15}	C_{16}	C_{17}	C_{23}	
ζ_{1}	52	32	2	26	2	72	6	
ζ_{l}^{\prime}	10	8	0	0	0	0	0	
$\zeta_{1}^{\prime \prime}$	16	8	1	10	2	72	4	
Λ_{t}^{\prime}	720	512	30	600	40	5760	40	
x_{s}	6	8	30	10	20	4	20	
$C_{s}^{\prime \prime}$	$C_{11}^{\prime}, C_{12}^{\prime}$	C_{8}^{\prime}	C_{13}^{\prime}	C_{14}^{\prime}	C_{15}^{\prime}	C_{16}^{\prime}	C_{17}^{\prime}	C_{18}^{\prime}
N_{s}^{\prime}	48,720	64	30	60	20	80	20	20

In each case here the ratio ${ }^{\circ} N_{i} / \sigma_{1}^{\prime \prime}$ is an integer, but for $t=6$ and 23 this integer cannot be ${ }^{\circ} N_{s}$, since it is not a multiple of the order x_{s} of an element in the class. A splitting must occur for these two cases, but not for the other five cases. Just one of the two classes of 6 -elements with squares in C_{6} contains 5 th powers of elements of order 30 ; so $\zeta_{31}^{\prime \prime}$ splits as 15 -- 1 or $10 \quad 66$. Since the cubes of elements in the other class C_{11}^{\prime} lie in C_{10}^{\prime}, the integer " N_{11}^{\prime} divides 3840 and cannot be 72 . It is 48 . Since 20 divides both $N_{1 ;}$ and $N_{i 8}$, and since the sum of their reciprocals is $\zeta_{23}^{\prime \prime} N_{23}=1 / 10$, it follows that both are 20 . Thus the remaining centralizer orders for H^{\prime} are given in the last line of (8.1).

The class C_{11}^{\prime} was assigned to 6 -elements whose cubes are involutions in C_{10}^{\prime}. These must exist since " $N_{10}^{\prime}-3840$ is divisible by 3 . The characters in C_{11}^{\prime} are congruent $(\bmod 3)$ to the characters of their cubes in C_{10}^{\prime} and $(\bmod 2)$ to the characters of their squares in C_{6}. Values between -2 and $\quad 2$ which satisfy these conditions $(\bmod 6)$ have square sum 48 equal to N_{11}; so these values are exact.

Next we calculate the character 22_{h} in all remaining classes. We observe from (3.18), (3.19), and (3.25) that

$$
\begin{align*}
22_{h}\left(231_{h}-175_{h}\right)- & 1540_{h}-308_{h} \\
& 0 \text { for non- } H \text {-classes of } H^{\prime} . \tag{8.2}
\end{align*}
$$

Since the permulation character 100_{p} vanishes on non- M-classes of H^{\prime}, we have

$$
\begin{align*}
77_{h} & =-1_{h} \cdots-22_{k} \text { for non- } M \text {-classes, } \tag{8.3}\\
175_{k}+231_{h} & =22_{k}^{*}-1_{h}-77_{h} \\
& =22_{k}\left(22_{k}+1_{h}\right) \text { for non- } M \text {-classes. } \tag{8.4}
\end{align*}
$$

If x denotes an element of some non- M^{\prime}-class of H^{\prime}, then

$$
\begin{align*}
22_{k}\left(x^{2}\right)= & 22_{k}^{[21}(x) \cdots 22_{k}^{\left[1^{2}\right]}(x) \\
& 1 ; 77_{n}(x)+175_{k}(x) \cdots 231_{k}(x) \tag{8.5}
\end{align*}
$$

Hence by (8.3) we have

$$
\begin{equation*}
22_{h}\left(x^{2}\right)+22_{h}(x)=175_{h}(x)-231_{h}(x) . \tag{8.6}
\end{equation*}
$$

Theorm 8.1. The character calue $22_{h}(x)$ for x in a class of H^{\prime} not represented in H or M is either equal to 0 or to minus the character $22_{k}\left(x^{2}\right)$ of the square of the element:

$$
\begin{equation*}
22_{h}(x)=0 \text { or }-22_{l}\left(x^{2}\right) \text { for non-H, nom-M'-classes. } \tag{8.7}
\end{equation*}
$$

The proof follows from (8.2) and (8.6).

In classes $C_{13}^{\prime}, C_{17}^{\prime}$, and C_{18}^{\prime} the character 22_{h} is odd; so it cannot be 0 . Hence Theorem 8.1 applies and their values of 22_{h} are $1,-1,-1$, respectively. Since the 30 -elements of C_{13}^{\prime} have their 5 th powers in C_{12}^{\prime} and their cubes in C_{14}^{\prime}, character 22_{\hbar} cannot vanish on these classes and must have values -4 and -2 by Theorem 8.1. In the class C_{15}^{\prime} of 20 -elements, where ${ }^{*} N_{15}^{\prime \prime}=20$, the character values have the same parity as in the class C_{16} that contains the squares. Hence the odd values in C_{15}^{\prime} are 1 or -1 and the even values all vanish. Thus 22_{h} is 0 in C_{15}^{\prime} and also in the class C_{16}^{\prime} of 4 -elements which are 5 th powers of elements in C_{15}^{\prime}. The one remaining value of 22_{h} for the 8 -elements in class C_{8}^{\prime} is found to be -2 by forming the scalar product of 22_{k} with 1_{h}. The character values of 22_{h}, the orders of elements, and the class types for the nine H^{\prime} classes not represented in $I I$ or M^{\prime} are the following:

Class	C_{8}^{\prime}	C_{11}^{\prime}	C_{12}^{\prime}	C_{13}^{\prime}	C_{14}^{\prime}	C_{15}^{\prime}	C_{16}^{\prime}	C_{17}^{\prime}	C_{18}^{\prime}
Element order	8	6	6	30	10	20	4	20	20
22_{k}	-2	0	-4	1	-2	0	0	-1	-1

Class Type $\begin{array}{llllllllll}1^{2} & 48^{2} & 2^{2} 6^{3} & \overline{1}^{4} 3^{4} 6 & \overline{35} \cdot 15 / \overline{1} & \overline{1} 5^{2} 10 & \overline{2} \cdot 20 & \overline{2} \cdot 4^{5} & \overline{1} 4^{-1} \cdot 5 \cdot 20\end{array}$
Knowing the character 22_{h}, we then compute 77_{h} from (8.3), 231_{h} from $22_{h}^{\left[1^{2}\right]}$, and 175_{h} from (8.6), in all classes of (8.8). Then in 3 -singular classes we compute 825_{h} and 1056_{h} from 231_{h} by the $3 d 1$-block relation (7.9), and in 5 -singular classes we compute $825_{h}, 1925_{h}, 1925_{k}$, and 3200_{h} from 175_{h} by the $5 d 1$-block relation (7.11). Since only classes $C_{8}{ }^{\prime}$ and C_{16}^{\prime} are neither 3 -singular nor 5 -singular, we easily find the value of 825_{h} on the classes of (8.8)

$$
825_{h}=(1,2,-6,-1,-1,1,1,0,0)
$$

Then $770_{k}, 1925_{h}$, and 1925_{k} are found for all classes from (6.5), 1056_{h} is determined in 3 -regular classes by (7.9) and 3200_{h} is found in 5-regular classes from (7.11).

In classes C_{15}^{\prime} and C_{16}^{\prime} the only remaining nonzero values are in characters of degree 1408 and 693 . These are found by scalar products with $C_{1}{ }^{\prime}$ characters to be $-1,4$ for 1408_{h} and 1,1 for 693_{h}. The scalar product of 3200_{h} and 1408_{h} involves $-1 / 20-4^{2} / 80=-1 / 4$ on classes C_{15}^{\prime} and C_{16}^{\prime}; so 3200_{h} and 1408_{h} must be equal on all other non- H-classes of H^{\prime}. The character 693_{h} is now determined by (4.9) and is completely checked by scalar products with class C_{15}^{\prime}.

Now scalar products with class $C_{2}{ }^{\prime}$ determine the values of 2750_{h}. The vanishing of $45_{m}{ }^{H}$ on non- M^{\prime}-classes shows that $1750_{h}=-2750_{h}$ on these classes. Scalar products with classes $C_{3}{ }^{\prime}$ and C_{4}^{\prime} determine 154_{h} and check the calculations, and scalar products with $C_{9}{ }^{\prime}$ determine $\mathbf{1 3 8 6}_{k}$.
TABLE IIIa
Characters of the Automorphism Group H^{\prime} of the IIgman-Sims Simple Group H for Classes Represented in the Subgroup H

[^1]TABLE IIIb
Characters of the Automorphism Group H^{\prime} of the Higman-Sims Group H for classes not Represented in the Subgroup H

Class	Class type	1_{n}	$22_{\text {h }}$	77 h	175_{h}	2314		825 h	770_{h}	1925 h		$3200{ }_{h}$	$2750{ }_{h}$			$693 n$	1386			${ }^{\circ} N_{k}^{H \prime}$
							056h				1925k		1408 h		1750 h		$154 h$		2520_{h}	
$C_{1}{ }^{\prime}$	$1^{8} 2^{7}$	1	8	21	21	21	48	69	70	91	21	64	64	20	70	63	28	0	0	80640
$C_{2}{ }^{\prime}$	1-7.14	1	1	0	0	0	--1	-1	0	0	0	1	1	-1	0	0	0	0	0	14
$\mathrm{C}_{3}{ }^{\prime}$	$1^{2} 2 \cdot 3^{2} 6^{2}$	1	2	3	0	0	0	0	1	1	-3	--2	-2	-1	1	0	1	0	0	72
$C_{4}{ }^{\prime}$	4-6.12	1	0	1	-2	0	0	0	-1	1	1	0	0	1	-1	0	1	0	0	24
$C_{5}{ }^{\prime}$	$2^{3} 4^{4}$	1	0	1	1	-3	0	-3	2	--5	1	0	0	4	2	3	4	0	0	192
$C_{6}{ }^{\prime}$	$1^{4} 2 \cdot 4^{4}$	1	4	5	5	5	0	5	6	-5	5	0	0	0	$\rightarrow 10$	--1	0	4	0	640
$C_{7}{ }^{\prime}$	$1^{2} 4 \cdot 8^{2}$	1	2	1	1	1	0	1	-2	-1	1	0	0	2	2	-1	- 2	-2	0	64
Cg^{\prime}	T ${ }^{2} 4 \cdot 8^{2}$	1	-2	1	1	1	0	1	-2	- 1	1	0	0	-2	2	-1	2	2	0	64
$C_{9}{ }^{\prime}$	$2 \cdot 10^{2}$	1	0	0	0	-1	1	0	0	0	0	0	0	0	0	0	--1	1	0	10
C_{10}^{\prime}	2^{11}	1	0	5	5	-11	16	5	-10	-5	5	0	0	-20	-10	15	4	--24	0	3840
C_{11}^{\prime}	$2^{2} 6^{3}$	1	0	-1	2	-2	-2	2	-1	1	-1	0	0	1	- 1	0	1	0	0	48
C_{12}^{\prime}	$\overline{1}^{4} 3^{4} 6$	1	-4	3	6	6	6	-6	-5	1	-9	4	4	5	--5	0	1	0	0	720
C_{13}^{\prime}	$\overline{1}^{-1} \overline{3} \cdot \overline{5} \cdot 15$	1	1	-2	1	1	1	-1	0	1	1	-1	-1	0	0	0	1	0	0	30
C_{14}^{\prime}	$\overline{1}^{2} 5^{2} 10$	1	-2	1	1	1	-2	-1	0	1	1	-1	--- 1	0	0	3	- 2	0	0	60
C_{15}^{\prime}	2. 20	1	0	-1	-1	,	0	1	0	-1	--1	1	- -1	0	0	1	0	0	0	20
C_{16}^{\prime}	$2 \cdot 4^{5}$	1	0	-1	-1	1	0	1	0	-1	-1	--4	4	0	0	1	0	0	0	80
C_{17}^{\prime}	1 $\cdot 4^{-15} \cdot 20$,	-1	0	0	0	0	0	1	0	0	0	0	0	0	--1	0	-1	$5^{1 / 2}$	20
C_{18}^{\prime}	$\overline{1} \cdot 4^{-15} \cdot 20$	1	-1	0	0	0	0	0	1	0	0	0	0	0	0	-1	0	- 1	$-5^{1 / 2}$	20

Note: 'The associates of these characters are not listed. The ir values are the negatives of the values in this table. The self-associated characters $308_{h}, 1540_{h}$ and 1792_{n} are 0 in these classes.

Orthogonality checks by classes show that 2520_{h} must vanish on all non- H classes of H^{\prime} except the pair C_{17}^{\prime} and C_{18}^{\prime}. Here 2520_{h} assumes the irrational real values $\pm \sqrt{5}$.

This completes the character table of the automorphism group H^{\prime} of the Higman Sims simple group.

9. Permutation Characters and Subgroups

The character $176_{p}=1_{h}+175_{h}$ is found to be a non-negative integral character on H satisfying all the obvious requirements for a permutation character of H. However, it is negative on class $C_{4}{ }^{\prime}$ of 12-clements of H^{\prime}. This suggests the existence of a subgroup G of index 176 in $I I$, which would have index 352 in H^{\prime} with permutation character $\mathbf{I}_{h}+1_{h}{ }^{\prime}+175_{h}+175_{h}{ }^{\prime}$ in H^{\prime}, but no subgroup of index 176 in H^{\prime}. As a further check, the nonzero values of 176_{p} on classes C_{k} divide the corresponding centralizer orders ${ }^{\circ} N_{k}{ }^{H}$ to produce values of ${ }^{\circ} N_{k}{ }^{G}$ for a subgroup G of index 176 and order 252000. We restrict the characters of H and split them to find the table of irreducible characters of G. These resemble the characters of the simple group $U=P S U_{3}(5)$ of order 126,000 [2], and we look for a permutation character of H of degrec 352. We find two of these:

$$
\begin{align*}
& 1_{h}+175_{h}+22_{h}+154_{i}, \\
& 1_{h}+175_{h}+22_{h}+154_{j} . \tag{9.1}
\end{align*}
$$

These differ only in the classes C_{12} and C_{13} of elements of order 8 ; so it appears that H contains two nonconjugate subgroups each isomorphic with $\mathrm{PSU}_{3}(5)$. The induce-restrict table is easily found, since the characters of U are known and those of H can be split in U. The supposed subgroup G of H contains the alternating group A_{7} with index 100. Graham Higman [6] used this subgroup G, rather than M_{22}, in discovering independently a simple group later shown to be isomorphic to the simple group of D. G. Higman and C. C. Sims.

Referencis

1. J. S. Frame, The degrees of the irreducible components of simply transitive permutation groups, Duke Math. J. 3 (1937), 8-17.
2. J. S. Frame, Some irreducible monomial representations of hyperorthogonal groups, Duke Math. J. 1 (1935), 442-448.
3. J. S. Frame, Congruence relations between the traces of matrix powers, Can. J. Math. 1 (1949), 303-304.
4. J. S. Frame, The classes and representations of the groups of 27 lines and 28 bitangents, Ann. Mat. Pura Appl. 32 (1951), 83-119.
5. D. G. Higman and C. C. Sims, A simple group of order 44352000 , Math. Z. 105 (1968), 110-113.
6. Graham Higman, On the simple group of D. G. Higman and C. C. Sims, Illinois J. Math. 13 (1969), 74-80.

[^0]: Note: Only one chatacter from cach associated pair in M^{\prime} and H^{\prime} is listed in the table, usually the one with positive values on class C_{1}. The table entries $1^{\prime}, 2,3$ mean that one of the components is the associated chatracter, and 0 , 1 , or 2 components are the one listed. The entrics $1^{*}, 2^{*}, 3^{*}$ mean that both the indicated character and its associate appear in the self-associated character with the indicated multiplicity.

[^1]: Note: The entries indicated by an asterisk in each of the self-associated characters $308_{h}, 1540_{h}$, and 1792_{h} split in H as follows: $0=2-2$ for $308_{h}, 0=5^{1 / 2} i-5^{1 / 2} i$ in 1540_{h}, and $-1=\frac{1}{2}\left(-1+11^{1 / 2} i\right)+\frac{1}{2}\left(-1-11^{1 / 2} i\right)$ for 1792_{h}.

