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Abstract

In this paper, we introduce &rst a natural generalization of the concept of Dirichlet process,
providing signi&cant examples. The second important tool concept is the n-covariation and the
related n-variation. The n-variation of a continuous process and the n-covariation of a vector
of continuous processes, are de&ned through a regularization procedure. We calculate explic-
itly the n-variation process, when it exists, of a martingale convolution. For processes having
&nite cubic variation, a basic stochastic calculus is developed. We prove an Itô formula and
we study existence and uniqueness of the solution of a stochastic di8erential equation, in a
symmetric-Stratonovich sense, with respect to those processes.
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1. Introduction

In the last 20 years, many authors have tried to develop a stochastic calculus beyond
semimartingales. The strategy of this paper consists in ‘mimicking’ a “pathwise theory”
for the same purpose. Pathwise type integrals are de&ned very often using discretization,
as limit of Riemann sums: an interesting survey on the subject is a book of Dudley and
Norvaisa (1999). They emphasize a big historical literature in the deterministic case.
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The &rst contribution in the stochastic framework has been provided by FKollmer (1981);
through this signi&cant and simply written contribution, the author wished to discuss
integration with respect to a Dirichlet process X , that is to say a local martingale plus
a zero quadratic variation (or sometimes zero energy) process.

In the sequel this approach has been continued by Bertoin (1986); an important
break through has been realized by Lyons (1998). This author is able to integrate
pathwise when the integrator process has &nite p-variation paths, for p¿ 1, provided
those paths ful&ll a suitable condition on LMevy stochastic area. Recently, Bass et al.
(2002) implement this theory for constructing Wong–Zakai approximations for solving
SDEs directed by reversible Markov processes.

Since 1991, Russo and Vallois have developed a regularization procedure, whose
philosophy is similar to the discretization. Their techniques are similar to a pathwise
approach but are not truly pathwise. They make large use of uniform convergence in
probability (ucp) related topology. More recently, several papers have followed those
techniques, see for instance Russo and Vallois (1993, 1995, 1996), Wolf (1997) and
Errami and Russo (1998).

All those articles aimed at formulating an eOcient set of calculus rules allowing
to relate classical and non-classical models in stochastic analysis. In particular they
partially covered the following &elds.

• the anticipating calculus of Skorohod type,
• the enlargement of &ltrations tools,
• the case of Dirichlet processes,
• the case of Gaussian process.

Until now the framework was restricted to the case when the integrator is a &nite
quadratic variation process and the techniques are particularly suitable, we believe also
for teaching purposes, when the integrator is continuous. This paper constitutes a &rst
attempt to implement their tools, and a true stochastic calculus, for the case when the
integrator has a &nite n-variation process, where n is an integer greater than 2. Our
study is motivated by many examples coming from the literature, among those one can
refer to the following examples.

• The case when the integrator has the following convolution form Xt =
∫ t

0 G(t; s) dMs,
M being a local martingale, where the kernel G is a random &eld.

• Typical examples having a &nite n-variation (even in a strong sense) as the frac-
tional Brownian motion BH with H¿ 1

n . Other examples can be constructed mixing
fractional Brownian motions.

• The iterated Brownian motion (a double-sided Brownian motion indexed by an
independent Brownian motion).

This paper approach does not follow the line of Lyons and coauthors. First of all, since
our approach is only a “fac-simile” of a pathwise approach, processes having a &nite
n-(strong) variation in our case, they have &nite p-variation for p strictly bigger than
n. For instance, by Bass et al. (2002), the typical Markov process as di8usion process
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is Dirichlet, therefore it is a &nite quadratic variation process. In the Lyons approach,
it has a &nite p-variation for p¿ 2. Moreover, we aim at developing a calculus which
does not only operate with the n-variation but also with the n-covariation of a vector
of processes without any further assumption on the nature of the integrator process.

This paper is followed by a companion, by Gradinaru et al. (2001), in which one
examines calculus for a fractional Brownian motion with Hurst index H¿ 1

4 , which is
a typical (Gaussian) process having a &nite 4-variation and in the “pathwise sense” a
&nite p-variation with p greater than 4.

About fractional Brownian motion we have to acknowledge a large amount of work.
This process is, for instance, a cubic &nite variation process if the Hurst index H¿ 1

3
and it has a fourth &nite variation for H¿ 1

4 . It is a semimartingale if and only if
H = 1

2 , i.e. when it is a classical Brownian motion. Integration with respect to general
Gaussian processes has been attacked using Malliavin calculus techniques (Skorohod
integrals), see for instance Decreusefond and Ustunel (1998), Carmona and Coutin
(1998), and Alos et al. (1999, 2001). Those techniques are quite powerful and they al-
low to treat integration with respect to processes, whose variation is larger than 2. How-
ever, they cannot be easily related to Riemann sums limits and for the moment, they
cannot reach the barrier H = 1

4 . The regularization or discretization technique for those
processes has been recently performed by Errami and Russo (1998), Feyel and De La
Pradelle (1999), KlingenhKofer and ZKahle (1999), Russo and Vallois (2000), and ZKahle
(1998, 2001) in the case of &nite quadratic variation (H¿ 1

2 ). The rough path approach
of Lyons has been adapted to the fractional Brownian motion case when H ¿ 1

4 by
Coutin and Qian (2002).

We brieTy discuss now the content of the paper. In Section 2 we de&ne the concept
of n-variation of a continuous process and n-covariation of n continuous processes, for
n¿ 2. We also introduce the notion of weak Dirichlet process which is essentially the
sum of a continuous local (Ft)-martingale plus a process which is “orthogonal” to
those martingales. Examples of such processes are precisely the convolution of mar-
tingales as indicated before, but also C0;1-functions of semimartingales. Both provide
examples of non-&nite quadratic variation processes.

A large part of the paper focuses on the convolution of a local martingale. The
n-variation of that and related processes is explicitly given. If the martingale is a Brow-
nian motion, our Proposition 2.17 constitutes a generalization of Hu–Meyer formula
which appears, for instance, in Ben Arous (1989), Hu and Meyer (1988), Bardina and
Jolis (2000), and SolMe and Utzet (1990). In the case n= 2, we discuss &nite quadratic
variation processes which are not Dirichlet.

The second part of the paper is constituted by Sections 3 and 4 and concerns, in
fact, &nite strong cubic variation processes. A process X = {Xt; t ∈ [0; 1]} will be said
to have a &nite (strong) cubic variation (or 3-variation), denoted by [X ; 3], equals to
Y if

lim
�→0

1
�

∫ ·

0
(Xs+� − Xs)3 ds = Y ucp;

sup
0¡�61

1
�

∫ 1

0
|Xs+� − Xs|3 ds¡ + ∞ a:s: (1.1)
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In Section 3, we prove an Itô formula with related calculus. If a process X is of
&nite strong cubic variation, we will prove that for every f∈C3,

f(Xt) = f(X0) +
∫ t

0
f′(Xs)d◦Xs − 1

12

∫ t

0
f(3)(Xs) d[X; X; X ]s; (1.2)

where,
∫ t

0 f′(Xs)d◦X is the symmetric integral (an extension of Stratonovich integral)
de&ned as the ucp limit of

1
2�

∫ ·

0
f′(Xs)(Xs+� − Xs−�) ds:

In Section 4, we study an SDE of symmetric type driven by a bounded variation
process and a &nite cubic variation process performing Doss–Sussmann method.

Even if the results of sections 3 and 4 do not cover the whole existing literature, they
are signi&cant because they do not make other assumptions as those on the variation.
In the companion paper by Gradinaru et al. (2001), the Itô formula in the spirit (1.2)
type extends to the case of 4-variation but the Gaussian assumption on the process
is fundamental. In that paper, a signi&cant application of the notion of n-covariation
is given showing that the 4-covariation [g(B); B; B; B] exists when g is a continuous
function and B is a fractional Brownian motion with Hurst index H¿ 1

4 and it is
related to the local time of B.

2. n-covariation and n-variation processes

Throughout this paper all the processes, are assumed to be continuous, indexed by the
time variable t in [0; 1] and de&ned on the same complete probability space (�;F; P)
equipped with a &ltration F = {Ft ; t ∈ [0; 1]} satisfying the usual assumptions. Two
continuous processes X and Y which are indistinguishable will be considered equal.
Clearly, if X (t) = Y (t) a.s. for all t ∈ [0; 1], X and Y are then indistinguishable. We
recall, also, that a sequence of continuous processes {Hn(t); t ∈ [0; 1]} converges in
the sense of the uniform convergence in probability (ucp) if there exists a process H
such that the sequence of random variable sup06t61 |Hn(t) − H (t)| converges to 0 in
probability. Martingales will stand for local continuous martingales. For convenience
the processes may be extended to the real line by continuity.

We denote by BV the space of continuous functions which have bounded variation on
[0; 1]. We equip BV with the metrizable topology that is associated with the following
convergence. A sequence (vn) in BV converges to a function v if and only if vn(0) →
v(0) and dvn → dv holds with respect to the weak ∗-topology.

Along the paper, for every process X , we will freely interchange X (t) and Xt .

Remark 2.1. Let (vn) be a sequence in BV such that

sup
n

∫ 1

0
d|vn|¡∞: (2.1)

Let v+
n ; v

−
n be the increasing functions such that

vn = v+
n − v−n and |vn| = v+

n + v−n :
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Then there is a subsequence (nk) such that (v+
nk ) and (v−nk ) converge in BV. In fact,

(2.1) implies

sup
n

∫ 1

0
dv±n ¡∞:

By the Helly extraction argument, there is a subsequence (nk) such that (v+
nk ) and (v−nk )

converge, respectively, to some v1 and v2. In particular, the subsequence (|vnk |) of the
total variations converges in BV to v1 + v2.

2.1. De5nitions, notations and basic calculus

Let n¿ 2, and (X 1; X 2; : : : ; X n) be a vector of continuous processes. For any �¿ 0
and t ∈ [0; 1], we set

[X 1; X 2; : : : ; X n]�(t) =
1
�

∫ t

0

n∏
k=1

(X k
s+� − X k

s ) ds;

and

‖[X 1; X 2; : : : ; X n]�‖ =
1
�

∫ 1

0

n∏
k=1

|X k
s+� − X k

s | ds:

If [X 1; X 2; : : : ; X n]� converges ucp, when � → 0, then the limiting process is called the
n-covariation (process) of the vector (X 1; X 2; : : : ; X n), and denoted [X 1; X 2; : : : ; X n]. If
furthermore

sup
0¡�61

‖[X 1; X 2; : : : ; X n]�‖ := ‖[X 1; X 2; : : : ; X n]‖¡ + ∞ (2.2)

we will say that it exists in the strong sense. Otherwise we will only say that it exists.
If the processes {X k; k = 1; 2; : : : ; n} are all equal to a real valued process X , then

we will simple denote [X ; n] the n-covariation process of the considered vector. This
will be called the n-variation (process) of X . If n = 2 it is the quadratic variation
and denoted simply by [X ] or [X; X ], see for instance Russo and Vallois (1995, 2000).
Cubic variation will often indicate 3-variation. If X has a quadratic (resp. strong cubic)
variation, such process will stand for 5nite quadratic (resp. strong cubic) variation
process.

Remark 2.2. (1) By de&nition, the n-covariation is a continuous process.
(2) The map (X 1; X 2; : : : ; X n) → [X 1; X 2; : : : ; X n], when it is well de&ned, is a

multi-linear symmetric application with values in the space of real valued continuous
processes.

(3) If n is even then the existence in the strong sense of the n-variation is equivalent
to the existence.

De�nition 2.3. A vector (X 1; X 2; : : : ; X m) of continuous processes is said to have all
its mutual (resp. strong) n-covariations if [X i1 ; X i2 ; : : : ; X in ] exists (resp. exists in the
strong sense) for any choice (even with repetition) of indices i1; i2; : : : ; in ∈{1; 2; : : : ; m}.
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Remark 2.4. If n = 2 and (X 1; : : : ; X m) has all its mutual brackets (or 2-covariations)
then, using Remark 2.2(3) and polarization, [X i; X j]; i; j=1; 2; : : : ; m, exist in the strong
sense. In particular, this happens when X 1; X 2; : : : ; X m are F-semimartingales.

Proposition 2.5. If (2.2) holds then [X 1; X 2; : : : ; X n] has bounded variation whenever
it exists.

Proof. According to Assumption (2.2), ! a:s:, the total variations of the measures
[X 1; X 2; : : : ; X n]� are bounded. Then since [X 1; X 2; : : : ; X n] exists, using Remark 2.1, it
must be, ! a:s:, of bounded variation.

Remark 2.6. (1) If n is even then [X ; n] is an increasing continuous process.
(2) If for every k = 1; 2; : : : ; n, ‖[X k ; n]‖ is &nite then [X 1; X 2; : : : ; X n] exists in the

strong sense whenever it exists. Moreover by HKolder inequality, we have

|[X 1; X 2; : : : ; X n]|n6 ‖[X 1; n]‖ ‖[X 2; n]‖ · · · ‖[X n; n]‖:

(3) If the n-variation [X ; n] exists in the strong sense for some n, then [X ;m] = 0
for all m¿n. In particular, for any semimartingale S, [S; n] = 0 for all n¿ 3.

(4) Suppose that [X ; n] exists in the strong sense, then for every continuous process
Y and every m¿n such that [Y ;m] exists in the strong sense, we have

[X; Y; Y; : : : ; Y︸ ︷︷ ︸
(m−1)times

] = 0:

In fact,

|[X; Y; Y; : : : ; Y︸ ︷︷ ︸
(m−1)times

]�(t)|

6 ‖[X; Y; : : : ; Y ]�‖

=
1
�

∫ 1

0
|Xs+� − Xs| |Ys+� − Ys|m−1 ds

6

(
1
�

∫ 1

0
|Xs+� − Xs|n ds

)1=n(
1
�

∫ 1

0
|Ys+� − Ys|n(m−1)=(n−1) ds

)(n−1)=n

6

(
sup

s∈[0;1]
|Ys+� − Ys|(m−n)=(n−1)

)(n−1)=n

‖[X ; n]�‖1=n‖[Y ;m]�‖(n−1)=n;

whose limit, using the uniform continuity of the process Y in [0; 1], is equal to zero.
(5) If (X 1; : : : ; X n) has a strong n-covariation, then for every vector (Y 1; Y 2; : : : ; Y m)

of continuous processes, (X 1; : : : ; X n; Y 1; Y 2; : : : ; Y m) has its strong (n + m)-covariation
equal to zero.
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(6) Let (X 1; : : : ; X n) be a vector having a strong n-covariation and Y a continuous
process. Then

1
�

∫ ·

0
Ys

n∏
k=1

(X k
s+� − X k

s ) ds =
∫ ·

0
Ys d[X 1; X 2; : : : ; X n]�(s);

converges ucp to∫ ·

0
Y d[X 1; X 2; : : : ; X n];

because, ! a:s:, ([X 1; X 2; : : : ; X n]�) converges in BV, up to a subsequence, to [X 1; : : : ; X n].

We have a stability result through C1 transformation.

Proposition 2.7. Let F1; F2; : : : ; Fn be n functions in C1(Rn). Let X =(X 1; X 2; : : : ; X n)
be a vector of continuous processes having all its strong mutual n-covariations. Then
the vector (F1(X ); F2(X ); : : : ; Fn(X )) have the same property and

[F1(X ); : : : ; Fn(X )](t)

=
∑

16i1 ;:::; in6n

∫ t

0
@i1F

1(X ) · · · @inF
n(X ) d[X i1 ; : : : ; X in ]:

Proof. Let �¿ 0. For every t ∈ [0; 1] we express

[F1(X ); : : : ; Fn(X )]�(t)

=
∑

16i1···; in6n

∫ t

0
@i1F

1(Xs) · · · @inF
n(Xs) d[X i1 ; : : : ; X in ]�(s) + R�(t);

where R� is a rest which converges ucp to zero because of the uniform continuity of
the derivatives of F1; : : : ; Fm on compacts. On the other hand, Remark 2.6(6) shows
that ∫ ·

0
@i1F

1(Xs) · · · @inF
n(Xs) d[X i1 ; : : : ; X in ]�(s); (2.3)

converges ucp, for every 16 i1; : : : ; in6 n, to∫ ·

0
@i1F

1(X ) · · · @inF
n(X ) d[X i1 ; : : : ; X in ]: (2.4)

On the other hand, a similar argument allows to show that |Fi(X ); n| is &nite for every
16 i6 n.

Remark 2.6(2) implies then the strong existence.
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2.2. Some basic examples

In the literature many examples arise for justifying the introduction of the concept
of n-covariation. We discuss some of them.

(a) The iterated Brownian motion. Let B1 be a two-sided classical Brownian motion
and B2 an independent Brownian motion. It is easy to see that B1

B2 has a &nite
4-variation equals to t.

(b) The fractional Brownian motion. A classical example of Gaussian process is given
by the fractional Brownian motion BH of Hurst index H . We recall that BH is a
mean zero with covariance.

Cov(BH
u ; BH

v ) =
1
2

(u2H + v2H − |u− v|2H ) for u; v¿ 0:

Remark 2.8. Let n be a positive integer. Using standard linear regression arguments
as in (Russo and Vallois, 2000) one can easily prove the following:

(i) If H¿ 1
n ; BH has a strong n-variation. If H ¿ 1

n then the n-variation vanishes.
(ii) If H = 1

2n ; BH has a 2n-variation equals to Cnt where Cn is the 2n-moment of a
standard N (0; 1) variable.

(iii) If H = 1
2n−1 then the 2n− 1-variation of BH is zero.

(c) The martingale convolution case. In the following subsections we aim at calcu-
lating the n-variation of processes of the type

X =
{
X (t) =

∫ t

0
G(t; s) dM (s); t ∈ [0; 1]

}
; (2.5)

where M ={M (t); t¿ 0} is a local (Ft)-continuous martingale and G : {06 s6 t
6 1} → R, is a continuous F0-measurable random &eld, which we prolongate to
R2 by setting,

G(t; s) = G(s; s) if s¿ t:

The convolution case, i.e. X (t) =
∫ t

0 G(t− s) dM (s), where G is a F0-measurable
continuous process, will be a particular case setting G(t; s) =G(t− s). We remark
that the process X is not in general a semimartingale unless that G is enough
regular. It is, for instance, the case when G has paths in W 1;2

loc . When M is a
Brownian motion and G deterministic, Goldys and Musiela (1998) have shown
that this is a necessary and suOcient condition. We remark that BrzeMzniak et al.
(2001) gives necessary and suOcient conditions on G so that X is continuous.

Later we will evaluate the n-variation of such a process, but we will &rst need
the concept of weak Dirichlet process.
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2.3. Weak Dirichlet processes

In our framework a process (Xt)t¿0 will be said (Ft)-Dirichlet process if it is
the sum of an (Ft)-local martingale M plus a zero quadratic variation (Ft)-adapted
process A, see for instance Russo and Vallois (2000).

We will say that X is a weak (Ft)-Dirichlet process if it is the sum of an (Ft)-local
martingale M plus a process A such that

[A; N ] ≡ 0 for every local (Ft)-martingale N; (2.6)

A will also be said to be a weak zero energy process.
Clearly, an (Ft)-Dirichlet process is a weak (Ft)-Dirichlet process.

Remark 2.9. The decomposition of an (Ft)-weak Dirichlet process is unique if we
require for instance M0 = 0.

Examples of such processes arise in several situations; for instance, if X is an
(Ft)-semimartingale, f∈C1(R); f(X ) is an (Ft)-Dirichlet process; if u :R+ ×R→
R is continuous such that @u=@x exists and is continuous, then (u(t; Xt))t¿0 is a weak
Dirichlet process. This property has been proved by Gozzi and Russo (2002).

Another example is furnished by the following result.

Proposition 2.10. Let M be a local (Ft)-continuous martingale, G : {06s6t61}→
R be a continuous (Fs)-measurable random 5eld. We set

Xt =
∫ t

0
G(t; s) dMs: (2.7)

Then X is a weak (Ft)-Dirichlet process with decomposition N + Z where Nt =∫ t
0 G(s; s) dMs is the martingale part and the remainder Z is a weak zero energy
process.

Proof. Setting Zt =
∫ t

0 H (t; s) dMs, with H (t; s) = G(t; s) − G(s; s), we have to show
that [Z; Y ] = 0 for every local (Ft)-continuous martingale Y .

Let so Y be a local (Ft)-continuous martingale, �¿ 0 and t ∈ [0; 1]. We have

[Z; Y ]�(t) =
1
�

∫ t

0
(Ys+� − Ys)(Zs+� − Zs) ds

=
1
�

∫ t

0
(Ys+� − Ys)

(∫ s

0
(H (s + �; u) − H (s; u)) dMu
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+
∫ s+�

s
H (s + �; u) dMu

)
ds

:= I1(�; t) + I2(�; t);

where

I1(�; t) =
1
�

∫ t

0
(Ys+� − Ys)

∫ s

0
(H (s + �; u) − H (s; u)) dMu ds

=
1
�

∫ t

0

∫ s+�

s

∫ s

0
(H (s + �; u) − H (s; u)) dMu dYv ds

=
1
�

∫ t

0

∫ v∧t

0

∫ v∧t

0∨u∨v−�
1{v6t+�} (H (s + �; u) − H (s; u)) ds dMu dYv;

using stochastic Fubini’s theorem in the last equation. Using localization arguments,
we will reduce to the case where Y and M are square integrable martingales. Then
Doob’s inequality, continuity of H and the fact that H (s; s) = 0, for every s∈ [0; 1],
show that I1(�; t) converges ucp to zero. It remains to calculate the limit of I2(�; ·).
Recall that

I2(�; t) =
1
�

∫ t

0
(Ys+� − Ys)

∫ s+�

s
H (s + �; u) dMu ds:

Using Cauchy–Schwarz inequality, we have

E

(
sup

t∈[0;1]
|I2(�; t)|

)

6E

(
1
�

∫ 1

0
|Ys+� − Ys|

∣∣∣∣
∫ s+�

s
H (s + �; u) dMu

∣∣∣∣ ds

)

6E


1

�

[∫ 1

0
(Ys+� − Ys)2 ds

]1=2 [∫ 1

0

(∫ s+�

s
H (s + �; u) dMu

)2

ds

]1=2



6

[
E

1
�

∫ 1

0
(Ys+� − Ys)2 ds

]1=2 [
E
∫ 1

0

1
�

(∫ s+�

s
H (s + �; u) dMu

)2

ds

]1=2

=

[
E

(
1
�

∫ 1

0
(Ys+� − Ys)2 ds

)]1=2 [
E
∫ 1

0

1
�

∫ u+�

u
H (s; u)2 ds d[M ]u

]1=2

;

where in the last equality we use again stochastic Fubini’s theorem. It is clear that
E 1

�

∫ 1
0 (Ys+� − Ys)2 ds converges to E([Y ]1). The continuity of H and the fact that

H (s; s) = 0, for every s∈ [0; 1], together with dominated convergence theorem show
that I2(�; ·) converges ucp to zero.
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Corollary 2.11. Let (G(·; s)) be a continuous (Fs)-adapted random 5eld. Let Zt =∫ t
0 G(t; s) dMs. Then, for every local (Ft)-martingale Y we have

[Z; Y ]t =
∫ t

0
G(s; s) d[M; Y ]s:

We are now interested in evaluating 2-covariations of martingale convolution pro-
cesses of the same nature as X introduced in (2.5).

From now on, for the sequel of this Section 2, we decompose the process X as

X = N + Z (2.8)

with N will stand for the local (Ft)-continuous martingale given by

Nt =
∫ t

0
G(s; s) dMs; t ∈ [0; 1]

and Z for the (Ft)-adapted process,

Zt =
∫ t

0
H (t; s) dMs =

∫ 1

0
H (t; s) dMs

with H (t; s) = G(t; s) − G(s; s), (t; s)∈ [0; 1]2. For (t; s) �∈ [0; 1]2, H will be extended
putting zero.

We formulate the following assumption:

(H2) [G(·; u); G(·; v)]�(t);
converges ucp for (u; v; t) belonging to [0; 1]3. In particular, [G(·; u); G(·; v)] exists (in
the strong sense) for all (u; v)∈ [0; 1]2.

Proposition 2.12. Under assumption (H2) we set

A(t) = A1(t) + A2(t); t ∈ [0; 1];

where

A1(t) =
∫ t

0
[G(·; s);G(·; s)]1 d[M ]s;

A2(t) = 2
∫ t

0

∫ s2

0
[G(·; s1);G(·; s2)]1 dMs1 dMs2 :

Then

[Z; Z] = A and [Z; N ] = 0: (2.9)

In particular [X; X ] = [N ] + A.

Remark 2.13. Since [Z; Z] and A1 are increasing processes, A2 is forced to be of
bounded variation.

Corollary 2.14. The process X in Proposition 2.10 is a 5nite quadratic variation
process which is not a Dirichlet process unless [Z] = 0.
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Remark 2.15. By Proposition 2.10, X is a weak (Ft)-Dirichlet process.

Proof of the Corollary 2.14. Let again consider the decomposition N+Z of Proposition
2.10. If X were Dirichlet by the uniqueness of weak Dirichlet decomposition, one would
get [Z] = 0.

We remark that under (H2), [Z; Z] can be written as

[Z; Z](t) = 2
∫ t

0

∫ s2

0
[G(·; s1);G(·; s2)]1 d◦Ms1 d◦Ms2 ; (2.10)

where d◦ means that the integral is in Stratonovich sense.
In general let f(t; s); (t; s)∈ [0; 1]2, be an F0-measurable continuous random &eld.

We set

I◦2 (f)(t) =
∫ t

0

∫ s2

0
f(s1; s2) d◦Ms1 d◦Ms2 :

Classical Itô–Stratonovich calculus (Remark 3.2(2)) implies that,

I◦2 (f)(t) =
∫ t

0

∫ s2

0
f(s1; s2) dMs1 dMs2 +

1
2

∫ t

0
f(s; s) d[M ]s: (2.11)

2.4. Gaussian case

We suppose that the martingale M is a Brownian motion W = {Wt; t ∈ [0; 1]}, so
that

Xt =
∫ t

0
G(t; s) dWs: (2.12)

Under assumption (H2), Proposition 2.12 gives the following expression for the 2-
variation (quadratic variation):

[X ]t =
∫ t

0
G(s; s)2 ds + At;

where A = A1 + A2 with

A1(t) =
∫ t

0
[G(·; s);G(·; s)]1 ds

A2(t) = 2
∫ t

0

∫ s2

0
[G(·; s1);G(·; s2)]1 dWs1 dWs2 ; t ∈ [0; 1]:

We will now make the link with the study of the quadratic variation of a Gaussian
process given by Russo and Vallois (2000).
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Russo and Vallois (2000) considered a (mean zero) Gaussian process with covariance
function

K(u; v) = E(Xu Xv); u; v∈ [0; 1]:

If X is of the form (2.12) then obviously,

K(u; v) =
∫ u∧v

0
G(u; s)G(v; s) ds:

Russo and Vallois (2000) de&ned the concept of 2-planar variation for K which was
given by

lim
�;+→0

1
�+

∫
[0;1]2

(��;+K(u; v))2 du dv; (2.13)

with

��;+K(u; v) = K(u + �; v + +) + K(u; v) − K(u; v + +) − K(u + �; v);

provided that the limit in (2.13) exists for any t ∈ [0; 1]. By Russo and Vallois (2000)
the concept of energy process En(X ) was de&ned as,

En(X )(t) = lim
�→0

E
(

1
�

∫ t

0
(Xs+� − Xs)2 ds

)
:

It was easily shown that

En(X )(t) = lim
�→0

∫ t

0
��; �K(s; s) ds: (2.14)

Remark 2.16. (1) A careful analysis on (2.13) and (2.14) shows the following
properties.

(a) The 2-planar variation of K equals

4E
∫ t

0

∫ s2

0
[G(·; s1);G(·; s2)]21 ds1 ds2 = E(A2

2(t)):
(b)

En(X )(t) = E
∫ t

0
G(s; s)2 ds +

∫ t

0
E[G(·; s);G(·; s)]1 ds

= E
[∫ ·

0
G(s; s) dWs

]
(t) + E(A1(t)):

(2) For illustration consider the case G(t; s) = Bt−s, where B is a Brownian motion
independent of W , which can be considered F0-measurable. Then the process
{Xt =

∫ t
0 Bt−s dWs; t ∈ [0; 1]} is well de&ned and Proposition 2.12 gives that,

[X; X ](t) =
t2

2
:

In fact in this case A2(t) = 0 since [B; B·−s] = 0 for all s∈ [0; 1].
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2.5. n-variation of martingale convolutions

To extend this calculus in order to evaluate the n-variation process of X , we will
need an explicit expression of (N )n for any n¿ 3 and N continuous (Ft)-martingale.
As we will see, this expression will somehow generalize (2.11).

Notation. Let n¿ 3, k ∈{1; 2; : : : ; [n=2]}. We denote by , = (,1; : : : ; ,n−k) a permu-
tation of {1; 2; : : : ; n − k} such that the &rst k elements of ,−1 are chosen arbitrarily
among {1; 2; : : : ; n − k} and the n − 2k remaining are taken at the sequel. We de-
note by -n

k that family of permutations ,. We remark that its cardinal is given by
Ck

n−k = (n− k)!=k!(n− 2k)!.

Let Y be a &nite quadratic variation process, and k ∈{1; 2; : : : ; [n=2]}. With ,∈-n
k

we associate

,Y = ,([Y ]; : : : ; [Y ]︸ ︷︷ ︸
ktimes

; Y; : : : ; Y︸ ︷︷ ︸
n−2ktimes

) = (,1
Y ; : : : ; ,

n−k
Y );

we remark that, for all l∈{1; 2; : : : ; n− k},

,l
Y =

{
[Y ] if ,(l)∈{1; 2; : : : ; k};
Y if ,(l)∈{k + 1; k + 2; : : : ; n− k}:

(2.15)

We denote by Pn
k (Y ) the set of ,Y where ,∈-n

k .
Now we give a generalization of Hu–Meyer formula. For the proof see the

Appendix A.

Proposition 2.17. Let n¿ 3 and {f(s1; : : : ; sn); (s1; : : : ; sn)∈ [0; 1]n} be a continuous,
symmetric and F0-measurable random 5eld. We set,

I◦n (f)(t) :=
∫ t

0

∫ sn

0
· · ·
∫ s2

0
f(s1; : : : ; sn) d◦Ms1 · · · d◦Msn :

Then

I◦n (f)(t) =
[n=2]∑
k=0

1
2k

∑
,∈-n

k

∫ t

0

∫ sn−k

0
· · ·
∫ s2

0
f(s,−1(1); s,−1(1); : : : ; s,−1(k); s,−1(k);

s,−1(k+1); s,−1(k+2); : : : ; s,−1(n−k)) d,1
M (s1) · · · d,n−k

M (sn−k): (2.16)

Corollary 2.18. Let M = {Mt; t ∈ [0; 1]} be any (Ft)-continuous martingale, then for
all n¿ 3,

(Mt)n =
[n=2]∑
k=0

n!
2k

∑
,∈-n

k

∫ t

0

∫ sn−k

0
· · ·
∫ s2

0
d,1

M (s1) · · · d,n−k
M (sn−k): (2.17)
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Proof. Itô–Stratonovich formula shows that

(Mt)n = n!I◦n (1)(t);

so that we can apply Proposition 2.17.

As a consequence of Proposition 2.17 we also obtain the following.

Proposition 2.19. If the martingale M is a Brownian motion W then (2.16) and (2.17)
become, respectively,

I◦n (f)(t) =

[n=2]∑
k=0

1
2k

∫ t

0

∫ sn−k

0
· · ·
∫ sk+2

0

∫ t

0

∫ sk

0
· · ·
∫ s2

0
f(s1; s1; : : : ; sk ; sk ; sk+1; sk+2; : : : ; sn−k)

×ds1 · · · dsk dWsk+1 · · · dWsn−k :

and

(Wt)n =
[n=2]∑
k=0

n!tk

2kk!

∫ t

0

∫ sn−2k

0
· · ·
∫ s2

0
dWs1 · · · dWsn−2k ; t ∈ [0; 1]:

Proof. (Wt)n follows immediately from the &rst expression. The evaluation of I◦n (f)
is given in Appendix A.

Using Proposition 2.17 and classical convergence properties of Itô integrals we get
the following.

Corollary 2.20. Let (F�(s1; : : : ; sn); (s1; : : : ; sn)∈ [0; 1]n)�¿0 be a sequence of F0

-measurable continuous and symmetric random 5elds which converges ucp to a con-
tinuous random 5eld F when � goes to 0. Then∫ t

0

∫ sn

0
· · ·
∫ s2

0
F�(s1; : : : ; sn) d◦Ms1 · · · d◦Msn

→�→0

∫ t

0

∫ sn

0
· · ·
∫ s2

0
F(s1; : : : ; sn) d◦Ms1 · · · d◦Msn

where the convergence holds ucp.

Lemma 2.21. Let 16p6 n. The covariation [N; : : : N︸ ︷︷ ︸
p times

; Z; : : : Z︸ ︷︷ ︸
(n−p) times

] is identically zero.

Proof. (i) Suppose &rst p¿ 2. The existence of [N ;N ] in the strong sense and
Remark 2.6(5) imply

[N; : : : N︸ ︷︷ ︸
p times

; Z; : : : Z︸ ︷︷ ︸
(n−p) times

] = 0 for all p¿ 2
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(ii) It remains to discuss the case p = 1. This will follow by an adaptation of the
proof of Proposition 2.10.

We are now ready to calculate the n-variation of process X , under the following
assumption:

(Hn) [G(·; s1); : : : ; G(·; sn)]�(t)
converges ucp for (s1; s2; : : : ; sn; t) belonging to [0; 1]n+1. In particular, [G(·; s1); : : : ;
G(·; sn)] exists for all (s1; : : : ; sn)∈ [0; 1]n, which constitutes the natural generalization
of (H2).

Theorem 2.22. Under assumption (Hn) we set

A(t) = n!
∫ t

0

∫ sn

0
· · ·
∫ s2

0
[G(·; s1); : : : ; G(·; sn)](1) d◦Ms1 · · · d◦Msn ;

t ∈ [0; 1]. Then

[X ; n] = [Z ; n] = A;

where, we recall that Zt =
∫ t

0 (G(t; s) − G(s; s)) dMs.

Proof. We recall the decomposition of the process X ,

Xt = Nt + Zt; t ∈ [0; 1];

where Z = {∫ 1
0 H (t; s) dMs; t ∈ [0; 1]}, with H (t; s) = G(t; s) − G(s; s), is a continuous

(Ft)-adapted process. We recall that

H (t; s) = 0 for all 06 t6 s6 1:

(i) We &rst prove that [Z ; n] = A. Now we take �¿ 0 and t ∈ [0; 1] and

[Z ; n]�(t) =
1
�

∫ t

0
(Zs+� − Zs)n ds

=
1
�

∫ t

0

(∫ 1

0
(H (s + �; u) − H (s; u)) dMu

)n

ds:

We set

Fs;�(u) := H (s + �; u) − H (s; u); and Ns;�(v) :=
∫ v

0
Fs;�(u) dMu

for all s¡ t, and u; v∈ [0; 1]. This gives

[Z ; n]�(t) =
1
�

∫ t

0
(Ns;�(1))n ds:

Let v∈ [0; 1]. Itô–Stratonovich formula gives

(Ns;�(v))n = n!
∫ v

0

∫ sn

0
· · ·
∫ s2

0

n∏
k=1

(H (s + �; sk) − H (s; sk))2 d◦Ms1 · · · d◦Msn :
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Using the stochastic Fubini’s theorem we get

[Z ; n]�(t) = n!
∫ 1

0

∫ sn

0
· · ·
∫ s2

0
[H (·; s1); · · · ; H (·; sn)]�(t)d◦Ms1 · · · d◦Msn :

Since [G(·; s1); : : : ; G(·; sn)] exists and it is equal to [H (·; s1); : : : ; H (·; sn)]; Corol-
lary 2.20 and the fact that,

[H (·; s1); H (·; s2); : : : ; H (·; sn)](t) = 0; sn ¿ t;

allow to show that [Z ; n] = A.
(ii) It remains to show that [X ; n]=[Z ; n]. Using the multi-linearity of the n-covariation

map we have that

[X ; n] =
n∑

p=1

Cp
n [N; : : : ; N︸ ︷︷ ︸

p times

; Z; : : : ; Z︸ ︷︷ ︸
(n−p) times

] + [Z ; n]

The result follows by (i) in this proof and Lemma 2.21.

Under suitable assumptions, applying Theorem 2.22 and Proposition 2.17 we obtain
the following illustration.

Example 2.23. (1) The cubic variation of the process X is given by

[X ; 3](t) = 3!
∫ t

0

∫ s3

0

∫ s2

0
[G(:; s1);G(:; s2);G(:; s3)](t) d◦Ms1 d◦Ms2 d◦Ms3

= 3!
∫ t

0

∫ s3

0

∫ s2

0
[G(:; s1);G(:; s2);G(:; s3)](t) dMs1 dMs2 dMs3

+
3!
2

∫ t

0

∫ s2

0
[G(:; s1);G(:; s1);G(:; s2)](t) d[M ]s1 dMs2

+
3!
2

∫ t

0

∫ s2

0
[G(:; s1);G(:; s2);G(:; s2)](t) dMs1 d[M ]s2 :

(2) Suppose that the martingale M is a Brownian Motion W . Then the 4-variation
of the process X are given by

[X ; 4](t) = 4!
∫ t

0

∫ s4

0

∫ s3

0

∫ s2

0
[G(:; s1);G(:; s2);G(:; s3);G(:; s4)](t)

×d◦Ws1 d◦Ws2 d◦Ws3 d◦Ws4

= 4!
∫ t

0

∫ s4

0

∫ s3

0

∫ s2

0
[G(:; s1);G(:; s2);G(:; s3);G(:; s4)](t)
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×dWs1 dWs2 dWs3 dWs4

+
4!
2

∫ t

0

∫ s3

0

∫ t

0
[G(:; s1);G(:; s1);G(:; s2);G(:; s3)](t) ds1 dWs2 dWs3

+
4!
22

∫ t

0

∫ s2

0
[G(:; s1);G(:; s1);G(:; s2);G(:; s2)](t) ds1 ds2:

We observe that those variations can also be obtained using Hu–Meyer formula.

2.6. True convolution case

Suppose that G(t; s) = G(t − s) for all {06 s; t6 1}. The process X is then given
by

X (t) =
∫ t

0
G(t − s) dMs:

Assumption (Hn) becomes here:

(H′n) [/s1G; /s2G; : : : ; /snG]�(t);

where /sG(t)=G(t−s), converges uniformly for (s1; s2; : : : ; sn; t) belonging to [0; 1]n+1.
In particular, [/s1G; : : : ; /snG] exists for all (s1; : : : ; sn)∈ [0; 1]n.

Corollary 2.24. Under assumption (Hn′) if the following process,

A(t) =
∫ t

0

∫ sn

0
· · ·
∫ s2

0
[/s1G; : : : ; /snG](t) d◦Ms1 · · · d◦Msn ;

is continuous, then the process X has the following decomposition,

X = G(0)M + Z;

where Z(t) =
∫ t

0 (G(t − s) − G(0)) dM (s) and [Z ; n] = A.

3. Stochastic calculus with respect to �nite cubic variation continuous processes

We are interested in a stochastic calculus with respect to &nite strong cubic variation
(or 3-variation) continuous processes.

In this stochastic calculus, the symmetric integral will play a similar role of the
forward integral in the case of the stochastic calculus with respect to &nite quadratic
variation continuous processes, by Russo and Vallois (2000). We start by recalling,
from Russo and Vallois (1995), the de&nition and some properties.
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3.1. Symmetric integral

De�nition 3.1. Let X , Y be two continuous processes. For any �¿ 0 and t ∈ [0; 1] we
set,

I◦� (Y; dX )(t) =
1
2�

∫ t

0
Ys(Xs+� − Xs−�) ds:

If the process I◦� (Y; dX ) converge ucp, when � goes to zero, then the limit will be
denoted by

∫ t
0 Yd◦X , and called the symmetric integral.

Remark 3.2. (1) It is easy to prove that the symmetric integral
∫ t

0 Yd◦X , if it exists,
is the ucp limit of

J ◦
� (Y; dX )(t) =

1
2�

∫ t

0
(Ys+� + Ys)(Xs+� − Xs) ds:

(2) The symmetric integral
∫ t

0 Yd◦X coincides with the Stratonovich one when X
and Y are two semimartingales. More precisely,∫ t

0
Y d◦X =

∫ t

0
Y dX +

1
2

[Y; X ]: (3.1)

(3) If the process X is of bounded variation then
∫ t

0 Y d◦X is well de&ned, it is
equal to the integral

∫ t
0 Y dX in Stieltjes sense, and has bounded variation.

(4) By de&nition, the symmetric integral is a continuous process. If both processes
X and Y are {Ft ; t ∈ [0; 1]}-adapted then, since the &ltration satis&es the usual as-
sumptions, the integral process

∫ ·
0 Y d◦X , if it exists, is an adapted process.

(5) We have an integration by parts formula,∫ t

0
Y d◦X = YX (t) − YX (0) −

∫ t

0
X d◦Y;

provided that one of the two integrals exists.

3.2. Itô formulae

We recall that, e.g. Russo and Vallois (2000), in the case where X is a continuous
process with &nite quadratic variation and f∈C2, we have

f(Xt) = f(X0) +
∫ t

0
f′(Xs) d◦X:

In the case of &nite strong cubic variation continuous processes we have the following.

Proposition 3.3. Let X be a real valued process with 5nite strong cubic variation,
and f∈C3. Then

f(Xt) = f(X0) +
∫ t

0
f′(Xs) d◦Xs − 1

12

∫ t

0
f(3)(Xs) d[X; X; X ]s: (3.2)
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Remark 3.4. (1) In particular the symmetric integral above exists.
(2) Using Proposition 2.7, Eq. (3.2) is equivalent to

f(Xt) = f(X0) +
∫ t

0
f′(Xs) d◦Xs − 1

12
[f′′(X ); X; X ](t):

Proof. Recall a Taylor-type formula,

f(b) = f(a) + f′(a)(b− a) +
1
2
f′′(a)(b− a)2

+
1
6
f(3)(a)(b− a)3 + R(a; b)(b− a)3; (3.3)

for every a; b∈R, where,

R(a; b) =
∫ 1

0

22

2
(f(3)(2a + (1 − 2)b) − f(3)(a)) d2:

Let �¿ 0 and s∈ [0; 1]. Applying (3.3) we get that

f(Xs+�) = f(Xs) + f′(Xs)(Xs+� − Xs) +
1
2
f′′(Xs)(Xs+� − Xs)2

+
1
6
f(3)(Xs)(Xs+� − Xs)3 + R(Xs; Xs+�)(Xs+� − Xs)3 (3.4)

and

f(Xs) = f(Xs+�) − f′(Xs+�)(Xs+� − Xs) +
1
2
f′′(Xs+�)(Xs+� − Xs)2

− 1
6
f(3)(Xs+�)(Xs+� − Xs)3 − R(Xs+�; Xs)(Xs+� − Xs)3: (3.5)

Calculating the di8erence between (3.4) and (3.5), dividing by 2� and integrating over
[0; t] we get,

1
�

∫ t

0
(f(Xs+�) − f(Xs)) ds =

1
2�

∫ t

0
(f′(Xs+�) + f′(Xs))(Xs+� − Xs) ds

− 1
4�

∫ t

0
(f′′(Xs+�) − f′′(Xs))(Xs+� − Xs)2 ds

+
1

12�

∫ t

0
(f(3)(Xs+�) + f(3)(Xs))(Xs+� − Xs)3 ds

+
1
2�

∫ t

0
(R(Xs; Xs+�) + R(Xs+�; Xs))(Xs+� − Xs)3ds:
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First, since f(X ) is a continuous process, we observe that

1
�

∫ t

0
(f(Xs+�) − f(Xs)) ds

converges ucp to f(Xt) − f(X0). By de&nition of cubic variation,

1
4�

∫ t

0
(f′′(Xs+�) − f′′(Xs))(Xs+� − Xs)2 ds;

converges ucp to 1
4 [f

′′(X ); X; X ](t). We have,

1
12�

∫ t

0
(f(3)(Xs+�) + f(3)(Xs))(Xs+� − Xs)3 ds

=
1
6�

∫ t

0
f(3)(Xs)(Xs+� − Xs)3 ds +

1
12

[f(3)(X ); X; X; X ]�(t):

The &rst term converges ucp to 1
6

∫ t
0 f(3)(X ) d[X; X; X ] by Remark 2.6(6). The second

one converges to the bracket [f(3)(X ); X; X; X ] that vanishes following Remark 2.6(5).
Moreover, using the uniform continuity of both f′′ and X on compacts, and the fact
that [X ; 3] exists strongly, we have that

1
�

∫ t

0
(R(Xs; Xs+�) + R(Xs+�; Xs))(Xs+� − Xs)3 ds

converges ucp to 0. Finally, using Remark 3.2(1)

1
2�

∫ t

0
(f′(Xs+�) + f′(Xs))(Xs+� − Xs) ds

is forced to converge ucp to
∫ t

0 f′(X ) d◦X . So the result follows.

We give now multi-dimensional extension of Proposition 3.3. For this aim we intro-
duce some notations.

Notations and De�nitions. Let X = (X 1; X 2; : : : ; X n), and Y = (Y 1; Y 2; : : : ; Y n) be two
vectors of continuous processes. We set

I◦� (Y; ·dX )(t) =
1
2�

n∑
k=1

∫ t

0
Y k
s (X k

s+� − X k
s−�) ds:

If the process I◦� (Y; ·dX ) converges ucp, when � goes to zero, then the limiting process
will be denoted by

∫ ·
0 Y · d◦X . This integral is in the spirit of Chatelain and Stricker

(1995) for semimartingales.

If for every k = 1; 2; : : : ; n,
∫ ·

0 Y k d◦X k is well de&ned, then∫ ·

0
Y · d◦X =

n∑
k=1

∫ ·

0
Y k d◦X k:
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Let Z = (Zi; j)16i; j6n be a Rn×n matrix of continuous processes. We set,

[X; Z; Y T]�(t) =
1
�

n∑
i; j=1

∫ t

0
(X i

s+� − X i
s )(Z

i; j
s+� − Zi; j

s )(Y j
s+� − X j

s ) ds;

where Y T is the transposition of vector Y . If the process [X; Z; Y T]� converges ucp,
when � goes to zero, then the limiting process, denoted by [X; Z; Y T], will de&ne the
3-covariation of (X; Z; Y ). If, furthermore,

‖[X; Z; Y T]‖ := sup
0¡�61

1
�

n∑
i; j=1

∫ 1

0
|X i

s+� − X i
s‖Zi; j

s+� − Zi; j
s ‖Y j

s+� − X j
s | ds¡∞;

then we will say that [X; Z; Y T] exists in the strong sense.
If, for every i; j = 1; 2; : : : ; n, the 3-covariation process (or strong 3-covariation)

[X i; Zi; j ; Y j] exists, then [X; Z; Y T] strongly exists and it is equal to
∑

i; j [X i; Zi; j ; Y j].
If F is a function of class C1, we set ∇F(X ) = (@1F(X ); : : : ; @nF(X )), and Hess

F(X ) = (@i; jF(X )) 16i6n
16j6n

in the case when F is of class C2.

Proposition 3.5. Let F ∈C3(Rn) and X = (X 1; X 2; : : : ; X n) be a vector of continuous
processes having all its mutual strong 3-covariations. Then

F(Xt) = F(X0) +
∫ t

0
∇F(X ) · d◦X − 1

12
[X;HessF(X ); X T](t):

In particular the symmetric integral above exists.

Remark 3.6. If
∫ ·

0 @kF(X ) d◦X k exists for all k = 1; 2; : : : ; n, then F(X ) is given
explicitly by,

F(Xt) = F(X0) +
n∑

i=1

∫ t

0
@iF(X ) d◦X i − 1

12

∑
16i; j; k6n

∫ t

0
@ijkF(X ) d[X i; X j; X k ]:

Proposition 3.7. Let X =(X 1; X 2; : : : ; X m) be a vector of continuous processes having
its mutual strong 3-covariations and S =(S1; : : : ; Sp) a vector of continuous processes
having its mutual 2-covariations. We set Y = (X; S). Let F ∈C3;2(Rm × Rp). Then

F(Yt) = F(Y0) +
∫ t

0
∇F(Y ) · d◦Y − 1

12

∑
16i; j; k6m

∫ t

0
@ijkF(Y ) d[X i; X j; X k ]:

(3.6)

Remark 3.8. If we replace S with V , a vector of bounded variation processes then
(3.6) holds even when F belongs to C3;1(Rm×Rp) only. Moreover, if

∫ t
0 @iF(Y ) d◦X i

exists for all i = 1; : : : ; m, then

F(Yt) = F(Y0) +
m+p∑
i=1

∫ t

0
@iF(Y ) d◦Y i − 1

12

∑
16i; j; k6m

∫ t

0
@ijkF(Y ) d[X i; X j; X k ]:
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3.3. On chain-rule formulae

Let X = (X 1; X 2; : : : ; X n) be a vector of continuous processes, and Z a real process.
Suppose that (Z; X ) has all its mutual strong 3-covariations. The aim here, is to evaluate
integrals of the type

∫ t
0 Z d◦’(X ), where ’∈C3(Rn).

Proposition 3.9. If
∫ ·

0 Z∇’(X ) · d◦X exists then
∫ ·

0 Z d◦’(X ) is well de5ned and it
is given by∫ t

0
Z d◦’(X ) =

∫ t

0
Z∇’(X ) · d◦X − 1

4
[X; Z∇’(X ); X T](t)

+
1
6

∫ t

0
Z d[X;Hess’(X ); X T]; t ∈ [0; 1]: (3.7)

Remark 3.10. (1) Using Proposition 2.7, (3.7) is explicitly given by∫ t

0
Z d◦’(X ) =

∫ t

0
Z∇’(X ) · d◦X − 1

4

∑
16i; j6n

∫ t

0
@ij’(X ) d[Z; X i; X j]

− 1
12

∑
16i; j; k6n

∫ t

0
Z@ijk’(X ) d[X i; X j; X k ]: (3.8)

Recall that, when all the integrals
∫ t

0 Z@i’(X ) d◦X i, i = 1; : : : ; n, are well de&ned then,∫ t
0 Z∇’(X ) · d◦X =

∑n
i=1

∫ t
0 Z@i’(X ) d◦X i.

(2) If X is a real valued process with &nite strong cubic variation, and ’ a C3

function such that
∫ t

0 Z’′(X ) d◦X exists, then (3.8) becomes∫ t

0
Z d◦’(X ) =

∫ t

0
Z’′(X ) d◦X − 1

4

∫ t

0
’′′(X ) d[Z; X; X ]

− 1
12

∫ t

0
Z’(3)(X ) d[X; X; X ]: (3.9)

(3) As an application, we get an integration by parts formula. Let (X; Y; Z) be a
vector of continuous processes having all its mutual strong 3-covariations. Suppose
that,

∫ t
0 ZX d◦Y and

∫ t
0 ZY d◦X exist. Setting ’(x; y) = xy, Proposition 3.9 gives

[X; Y; Z](t) = 2
(∫ t

0
ZX d◦Y +

∫ t

0
ZY d◦X −

∫ t

0
Z d◦X Y

)
:

On the other hand, it is not diOcult to show, directly, that previous formula holds
when two of previous integrals exist.

Proof. We suppose that n=1. The proof of the general case is similar. Let �¿ 0, and
s∈ [0; 1]. We multiply, respectively, Eqs. (3.4) and (3.5) (identifying f with ’) by Zs
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and Zs+�. Then calculating the di8erence, dividing by 2� and integrating over [0; t] we
get

1
2�

∫ t

0
(Zs+� + Zs)(’(Xs+�) − ’(Xs)) ds

=
1
2�

∫ t

0
(Zs+�’′(Xs+�) + Zs’′(Xs))(Xs+� − Xs) ds

− 1
4�

∫ t

0
(Zs+�’′′(Xs+�) − Zs’′′(Xs))(Xs+� − Xs)2 ds

+
1

12�

∫ t

0
(Zs+�’(3)(Xs+�) + Zs’(3)(Xs))(Xs+� − Xs)3 ds

+
1
2�

∫ t

0
(ZsR(Xs; Xs+�) + Zs+�R(Xs+�; Xs))(Xs+� − Xs)3 ds:

The term on the left-hand side of the equality converges ucp to
∫ t

0 Z d◦’(X ). Using
similar arguments as those in the proof of the Proposition 3.3 we see that, the &rst
term on the right-hand side converges to

∫ t
0 Z d◦’′(X ); the second one converges to

− 1
4 [Z’′′(X ); X; X ] and Proposition 2.7 tells that

[Z’′′(X ); X; X ](t) =
∫ t

0
’′′(X ) d[Z; X; X ] +

∫ t

0
Z’(3)(X ) d[X; X; X ]:

Using the fact that the third term converges to,
1
6

∫ t

0
Z’(3)(X ) d[X; X; X ]

and the last term to zero we get (3.9).

We give a small generalization of Proposition 3.9.

Remark 3.11. Let X = (X 1; X 2; : : : ; X n) be a vector of continuous processes, and Z
a continuous process such that (Z; X ) has all its mutual strong 3-covariations. Let
S = (S1; : : : ; Sm) be a vector of continuous processes with &nite mutual 2-covariations
(resp. with bounded variation). We set Y =(X; S). If for every function ’∈C3;2(Rn+m)
(resp. ∈C3;1(Rn+m))∫ t

0
Z@i’(Y ) d◦Y i exist for all i = 1; : : : ; n + m;

(resp.
∫ t

0 Z@i’(Y ) d◦X i exist for all i = 1; : : : ; n) then
∫ ·

0 Z d◦’(Y ) exists and is given
by ∫ t

0
Z d◦’(Y ) =

n+m∑
i=1

∫ t

0
Z@i’(Y ) d◦Y i − 1

4

∑
16i; j6n

∫ t

0
@ij’(Y ) d[Z; X i; X j]

− 1
12

∑
16i; j; k6n

∫ t

0
Z@ijk’(Y ) d[X i; X j; X k ]:
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3.4. Generalized symmetric vector cubic variation process

Let X be a real valued continuous process with &nite strong cubic variation. Using
Proposition 3.3, we easily see that the integral

∫ ·
0 f(X ) d◦X is well de&ned for every

f∈C2. However, if X =(X 1; X 2; : : : ; X n) is a vector of continuous processes, the exis-
tence of its mutual strong 3-covariations, is not a suOcient condition for guaranteeing
the existence of

∫ t
0 f(X ) d◦X k ; k = 1; 2; : : : ; n. For this reason, we need the concept of

symmetric vector cubic variation (SVCV) process.

De�nition 3.12. A vector of continuous processes X = (X 1; X 2; : : : ; X n) is a SVCV
process if the following assumptions are ful&lled.

(i) ‖[X i; : : : ; X i]‖¡∞; i = 1; 2; : : : ; n,
(ii)

∫ ·
0 f(X ) d◦X i exists for every f∈C2(Rn), i = 1; 2; : : : ; n,

(iii)
[∫ ·

0
f1(X ) d◦X i;

∫ ·

0
f2(X ) d◦X j;

∫ ·

0
f3(X ) d◦X k

]

=
∫ ·

0
f1(X )f2(X )f3(X ) d[X i; X j; X k ];

for every f1; f2; f3 ∈C2(Rn) and 16 i; j; k6 n:

Remark 3.13. If (X 1; : : : ; X n) is an SVCV process, then, in particular, it has
all its strong 3-mutual covariations. This is a consequence of Remark 3.10(3) and
Proposition 3.9.

Now we state some results that we will need in the next section.

Lemma 3.14. Let X = (X 1; X 2; : : : ; X m) be an SVCV process, and ’ :Rm → Rn a
function of class C3. We set

Y = (’1(X ); ’2(X ); : : : ; ’n(X )) = ’(X ):

Then Y is again an SVCV process.

Proof. We will prove (i)–(iii) of De&nition 3.12.

(i) It follows by similar arguments to the proof of Proposition 2.7.
(ii) For every f∈C2(Rn) and i = 1; 2; : : : ; n;

∫ ·
0 f(Y ) d◦Y i exists using the fact that

X is an SVCV process and Remark 3.10(1).
(iii) Let fk ∈C2(Rn), k = 1; 2; 3. We apply successively Proposition 3.9 with Z =

f1(’(X )), f2(’(X )) and f3(’(X )) and we obtain∫ ·

0
fk(Y ) d◦Y i =

m∑
j=1

∫ ·

0
fk(’(X ))@j’i(X ) d◦X j + Vi(·)

for every i = 1; : : : ; n and k = 1; 2; 3, where Vi is a bounded variation continuous
process. Consequently, (iii) follows from the fact that X is an SVCV process,
Remark 2.6(3) and (4).
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Proposition 3.15. Let X be a real valued continuous process with 5nite strong cubic
variation and V = (V 1; V 2; : : : ; V n) a vector of bounded variation processes. Then
(X; V ) is an SVCV process.

Proof. We can verify points (i)–(iii) of the de&nition of SVCV process.
Point (i) is obvious. Concerning (ii), let f∈C2(R1+n). Remark 3.2(3) says that∫ ·

0 f(X; V ) d◦V i, i=1; : : : ; n coincide with the classical Stieltjes integrals. On the other
hand, we set F(x; v) =

∫ x
0 f(y; v) dy, where v = (v1; : : : ; vn); F belongs to C3;2(R1+n).

Remark 3.8 (Itô formula) tells that
∫ t

0 f(X; V ) d◦X is well de&ned by∫ t

0
f(X; V ) d◦X = F(Xt; Vt) + A(t);

where

A(t) =−F(X0; V0) −
n+1∑
i=2

∫ t

0
@iF(Xs; Vs) d◦V i

s

− 1
12

∫ t

0

@2f
@x2 (Xs; Vs)d[X; X; X ]; t ∈ [0; 1]:

Now we prove (iii). Let g; h∈C2(R1+n). Since∫ ·

0
f(Xs; Vs) d◦V i;

∫ ·

0
g(Xs; Vs) d◦V i and

∫ ·

0
h(Xs; Vs) d◦V i;

i = 1; : : : ; n, are bounded variation processes, Remark 2.6(4) tells that it remains to
prove [∫ ·

0
f(X; V ) d◦X;

∫ ·

0
g(X; V ) d◦X;

∫ ·

0
h(X; V ) d◦X

]

=
∫ ·

0
f(X; V )g(X; V )h(X; V ) d[X; X; X ]: (3.10)

As at the beginning of the proof, we can write∫ t

0
g(X; V ) d◦X = G(Xt; Vt) + B(t);

∫ t

0
h(X; V ) d◦X = H (Xt; Vt) + C(t); t ∈ [0; 1];

where G(x; v) =
∫ x

0 g(y; v) dy and H (x; v) =
∫ x

0 h(y; v) dy. Processes B and C have
bounded variation. Using Remark 2.6(4) and Proposition 2.7 we obtain (3.10).

Corollary 3.16. A 5nite strong cubic variation process is an SVCV process.

As a consequence of Itô formula (Remark 3.8), we have the following result.
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Remark 3.17. Let 7 be a &nite strong cubic variation process. We denote by V(7)
the class of processes

Xt = X0 +
∫ t

0
’(7; V 1; : : : ; V n) d◦7 + V 0

t ;

where n∈N∗, V 1; : : : ; V n; V 0, are bounded variation processes and ’∈C2;1(R1+n).
V(7) coincides with the set of processes { (7t ; V 1

t ; : : : ; V
m
t ); t ∈ [0; 1]}, where m∈N∗,

V 1; : : : ; V m are bounded variation processes and  ∈C3;1(R1+m).

We conclude this section with a useful lemma which provides a chain-rule formula
for di8erentiating integral processes.

Lemma 3.18. Let 7; Z be two continuous processes, V = (V 1; : : : ; V n) a vector of
bounded variation processes. We suppose that (7; Z; V ) is an SVCV process. Let
’ = (’(r; v))∈C2;1(R1+n), where v = (v1; : : : ; vn). We set

Xt =
∫ t

0
’(7; V ) d◦7; t ∈ [0; 1]:

Then the integral process
∫ ·

0 Z d◦X exists and it is given by∫ ·

0
Z d◦X =

∫ ·

0
Z’(7; V ) d◦7− 1

4

∫ ·

0

@’
@r

(7; V ) d[Z; 7; 7]: (3.11)

Proof. We set :(r; v) =
∫ r

0 ’(u; v) du. : is obviously of class C3;1. Since (7; V ) has
all 3-strong covariations, applying Proposition 3.5 we get,

:(7t ; Vt) = :(70; V0) +
∫ t

0
’(7; V ) d◦7 +

n∑
i=1

∫ t

0

@:
@vi

(7; V ) dV i

− 1
12

∫ t

0

@2’
@r2 (7; V ) d[7; 7; 7]:

Since (7; Z; V ) is an SVCV process and by mean of Lemma 3.14,∫ t

0
Z d◦X =

∫ t

0
Z d◦:(7; V ) −

n∑
i=1

∫ t

0
Z

@:
@vi

(7; V ) dV i

+
1
12

∫ t

0

@2’
@r2 (7; V ) d[7; 7; 7]: (3.12)

On the other hand, Remark 3.11 tells that,∫ t

0
Z d◦:(7; V ) =

∫ t

0
Z ’(7; V ) d◦7 +

n∑
i=1

∫ t

0
Z

@:
@vi

(7; V ) dV i

− 1
4

∫ t

0

@’
@r

(7; V ) d[Z; 7; 7] − 1
12

∫ t

0
Zs

@2’
@r2 (7; V ) d[7; 7; 7]:

(3.13)

(3.12) and (3.13) show (3.11).



286 M. Errami, F. Russo / Stochastic Processes and their Applications 104 (2003) 259–299

Remark 3.19. Let (X 2; : : : ; X n) be a vector of bounded variation processes and X 1 a
&nite strong cubic variation process. Then the conclusion of Lemma 3.14 holds even
when ’∈C3;1(R× Rn−1).

4. On an SDE which is driven by �nite cubic variation continuous processes

We aim here to study stochastic di8erential equations driven by &nite strong cu-
bic variation continuous process. We will operate with Doss–Sussmann (Doss, 1977;
Sussmann, 1977) transformation.

Let 7={7t ; t ∈ [0; 1]} (resp. V ={Vt; t ∈ [0; 1]}) be a real process with &nite strong
cubic variation (resp. bounded variation).

We are interested in one equation of the type:


dXt = ,(Xt) ◦ d7t + b(t; Xt) dVt;

X0 = 2;
(4.1)

where , :R→ R (resp. b : [0; 1] × R→ R) is of class C3(R) (resp. continuous), such
that, ,′ ,′′ are bounded. We suppose moreover that b is locally Lipschitz with linear
growth (uniformly in t, with respect to the second variable x), 2 any random variable
F1-measurable.

De�nition 4.1. A real process X will be called solution of Eq. (4.1) if the following
assumptions are ful&lled:

(i) X0 = 2,
(i) (X; 7) is an SVCV process,

(iii) For every Z =  (X; 7), where  ∈C∞(R2), we have,∫ t

0
Z d◦X =

∫ t

0
Z,(X ) d◦7− 1

4

∫ t

0
,,′(X ) d[Z; 7; 7]

+
∫ t

0
Zsb(s; Xs) dVs: (4.2)

Remark 4.2. (1) If X is a solution of (4.1), taking Z = 1, we observe in particular
that X solves the integral equation

Xt = 2 +
∫ t

0
,(X ) d◦7 +

∫ t

0
b(s; Xs) dVs:

(2) If X is a solution of (4.1) then (4.2) remains true for every Z =  (X; 7), with
 ∈C2(R2).
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In fact, using Banach Steinhaus theorem (Dunford and Schwarz, 1967, Chapter II.1),
and Proposition 2.7 we can prove that

 �→
∫ t

0
 (X; 7) d◦X =

∫ t

0
 (X; 7) ,(X ) d◦7− 1

4

∫ t

0
,,′(X ) d[ (X; 7); 7; 7]

+
∫ t

0
 (Xs; 7s)b(s; Xs) dVs;

is linear and continuous operator with values in the space of continuous processes,
equipped with the uniform convergence in probability. So by regularizing and passing
to limit we have (iii) for every  ∈C2.

Let F : [0; 1] × R → R be the Tow generated by ,, de&ned as the solution of the
following equation:


@F
@r

(r; x) = ,(F(r; x));

F(0; x) = x:

(4.3)

Since , is of class C3, for any r ∈R, F(r; :) is a C3-di8eomorphism on R. We set

H (r; x) = F−1(r; x); (4.4)

where the inverse is taken with respect to the variable x. H is again of class C3.
We state, &rst, the uniqueness result.

Proposition 4.3. There is at most one solution to (4.1). Moreover if X is a solution
of (4.1), then it is equal to F(7; Y ) where Y is the unique solution to the following
equation:

Yt = H (70; 2) +
∫ t

0

@H
@x

(7s; F(7s; Ys))b(s; F(7s; Ys)) dVs

+
1
12

∫ t

0
(,,′2(F(7s; Ys)) + ,2,′′(F(7s; Ys)))

@H
@x

(7s; F(7s; Ys)) d[7; 7; 7]s:

(4.5)

Proof. We recall some relations involving F and H established by Russo and Vallois
(2000).

@H
@r

(r; x) = −,(x)
@H
@x

(r; x): (4.6)

@2H
@r@x

(r; x) = −,′(x)
@H
@x

(r; x) − ,(x)
@2H
@x2 (r; x): (4.7)
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Deriving those relations, we can prove the following:

@2H
@r2 (r; x) = ,,′(x)

@H
@x

(r; x) + ,2(x)
@2H
@x2 (r; x); (4.8)

@3H
@r@x2 (r; x) = −,′′(x)

@H
@x

(r; x) − 2,′(x)
@2H
@x2 (r; x) − ,(x)

@3H
@x3 (r; x); (4.9)

@3H
@r2@x

(r; x) = (,
′2(x) + ,,′′(x))

@H
@x

(r; x)

+ 3,,′(x)
@2H
@x2 (r; x) + ,2(x)

@3H
@x3 (r; x): (4.10)

@3H
@r3 (r; x) =−(,,

′2(x) + ,2,′′(x))
@H
@x

(r; x)

− 3,2,′(x)
@H 2

@x2 (r; x) − ,3(x)
@3H
@x3 (r; x): (4.11)

Now, let X be a solution of (4.1) and set Y =H (7; X ). Obviously X = F(7; Y ). Since
(7; X ) is an SVCV process, in particular all its mutual strong 3-covariations exist; H
is of class C3 so Proposition 3.5 tells then that

Yt = Y0 +
∫ t

0

@H
@r

(7; X ) d◦7 +
∫ t

0

@H
@x

(7; X ) d◦X

− 1
12

[(7; X );HessH (7; X ); (7; X )T](t);

where Y0 = H (70; 2) and

[(7; X );HessH (7; X ); (7; X )T](t)

=
∫ t

0

@3H
@r3 (7s; Xs) d[7; 7; 7]s + 3

∫ t

0

@3H
@r2@x

(7s; Xs) d[7; 7; X ]s

+ 3
∫ t

0

@3H
@r@x2 (7s; Xs) d[7; X; X ]s +

∫ t

0

@3H
@x3 (7s; Xs) d[X; X; X ]s:

X being a solution of (4.1), we choose Z = @H=@x in (4.2); using Remark 4.2(2) we
obtain∫ t

0

@H
@x

(7; X ) d◦X

=
∫ t

0

@H
@x

(7; X ),(X ) d◦7
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− 1
4

∫ t

0
,,′(X ) d

[
@H
@x

(7; X ); 7; 7
]

+
∫ t

0

@H
@x

(7s; Xs)b(s; Xs) dVs

=
∫ t

0

@H
@x

(7; X ),(X ) d◦7− 1
4

∫ t

0
,,′(X )

@2H
@x2 (7; X ) d[X; 7; 7]

− 1
4

∫ t

0
,,′(X )

@2H
@r@x

(7; X ) d[7; 7; 7] +
∫ t

0

@H
@x

(7s; Xs)b(s; Xs) dVs;

where in the second equality we use Proposition 2.7.
Using Remark 4.2(1) and the fact that (7; X ) an SVCV process we get

d[7; 7; X ]s = ,(Xs) d[7; 7; 7]s;

d[7; X; X ]s = ,2(Xs) d[7; 7; 7]s;

d[X; X; X ]s = ,3(Xs) d[7; 7; 7]s:

So, identities (4.6), (4.9), (4.10) and (4.11) show that

[(7; X );HessH (7; X ); (7; X )T](t)

=
∫ t

0
(2,,′2(Xs) − ,2,′′(Xs))

@H
@x

(7s; Xs) d[7; 7; 7]s:

and ∫ t

0

@H
@x

(7; X ) d◦X =
∫ t

0

@H
@x

(7s; Xs)b(s; Xs) dVs

−
∫ t

0

@H
@r

(7; X ) d◦7 +
1
4

∫ t

0
,,

′2(X )
@H
@x

(7; X ) d[7; 7; 7]:

This gives that

Yt = Y0 +
∫ t

0

@H
@x

(7s; Xs) b(s; Xs) dVs

+
1
12

∫ t

0
(,,

′2(Xs) + ,2,′′(Xs))
@H
@x

(7s; Xs) d[7; 7; 7]s:

X being equal to F(7; Y ), Y is then a solution of (4.5).
The proof will be concluded by the following remark.

Remark 4.4. Eq. (4.5) is in fact a random di8erential equation which is driven by
bounded variation processes and it has a unique solution.
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In fact, in the proof of Proposition 5.3 of Russo and Vallois (2000) there are elements
to prove that,

(t; x) �→ (,,
′2(F(7t ; x)) + ,2,′′(F(7t ; x)))

@H
@x

(7t ; F(7t ; x))

(t; x) �→ b(t; F(7t ; x))
@H
@x

(7t ; F(7t ; x))

belong, ! a.s., to the LL class constituted by locally Lipschitz and of linear growth
functions. Therefore, Eq. (4.5) has exactly one solution because of classical propositions
of Protter (1990).

We can now state the most important result of this section.

Theorem 4.5. Let 7 (resp. V) be a 5nite strong cubic (resp. bounded) variation real
process. Let , :R→ R (resp. b : [0; 1]×R→ R) be of class C3(R) (resp. continuous),
such that ,′; ,′′ are bounded. We suppose moreover that b is locally Lipschitz with
linear growth (uniformly in t, with respect to the second variable x), 2 any random
variable. Let Y be the unique solution to (4.5) and F the Eow generated by ,. Then
X = F(7; Y ) is the unique solution of (4.1).

Proof. Recall that Y is a bounded variation continuous process. We have to prove that
X = F(7; Y ) solves (4.1), i.e. (i)–(iii) of De&nition 4.1.

(i) X0 = F(70; H (70; 2)) = 2 because of (4.4).
(ii) Using Proposition 3.15 and Lemma 3.14, we get that F(7; Y ) is an SVCV process.
(iii) Let  ∈C∞(R2) and Z =  (X; 7). We apply Proposition 3.9 and Remark 3.10(1)

to get∫ t

0
Z d◦X =

∫ t

0
Z

@F
@r

(7; Y ) d◦7 +
∫ t

0
Z

@F
@x

(7; Y ) dY

− 1
4

∫ t

0

@2F
@r2 (7; Y ) d[Z; 7; 7] − 1

12

∫ t

0
Z

@3F
@r3 (7; Y ) d[7; 7; 7]:

We remark that
∫ t

0 Z @F
@r (7; Y ) d◦7 exists since (Z; 7; Y ) is an SVCV process by

Lemma 3.14.
We need a few relations involving F and H . Since F(r; H (r; x))= x, taking the

derivative with respect to x we obtain

@F
@x

(r; H (r; x))
@H
@x

(r; x) = 1: (4.12)

We apply the operator @=@r to the &rst identity of (4.3):

@2F
@r2 = ,,′(F(r; x)): (4.13)

@3F
@r3 = ,,

′2(F(r; x)) + ,2,′′(F(r; x)): (4.14)
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Using (4.3), (4.12)–(4.14), and the fact that Y is the solution of (4.5), we have∫ t

0
Zs d◦Xs =

∫ t

0
Zs ,(Xs) d◦7s +

∫ t

0
Zsb(s; Xs) dVs

− 1
4

∫ t

0
,,′(X ) d[Z; 7; 7]:

This implies that X solves (4.1).

4.1. On the integral equation

The de&nition we gave, of a solution to the di8erential problem (4.1), may appear
unusual. One may ask if the following integral problem is well stated:

X (t) = 2 +
∫ t

0
,(X ) d◦7 +

∫ t

0
b(s; Xs) dVs: (4.15)

For this integral equation, it is hard to imagine that uniqueness will hold in the class
of all continuous processes, even adapted if 2 is F0-measurable. However uniqueness
(and existence) will be shown in the class V(7), de&ned in Remark 3.17, of processes

Xt = X0 +
∫ t

0
’(7s; V 1

s ; : : : ; V
n
s ) d◦7s + V 0

t ;

where ’=’(r; v)∈C2;1(R1+n) for some positive integer n and bounded variation pro-
cesses V 1; : : : ; V n, V 0.

Proposition 4.6. Integral Eq. (4.15) has a unique solution in the class V(7); this one
coincides with the solution of diFerential problem (4.1).

Proof. Existence is provided by Theorem 4.5 setting Z=1. In order to prove uniqueness
we will show that a solution to (4.15) in V(7) will solve problem (4.1).

Let X be such a solution. Clearly we have X0 = 2. Using Proposition 3.15, Remark
3.19, Lemma 3.14 and Remark 3.17, it follows that (X; 7) is an SVCV process. It
remains to prove (iii) of De&nition 4.1.

Let Z =  (X; 7), where  a C∞ function.∫ t

0
Z d◦X =

∫ t

0
Zs d◦

(
2 +
∫ s

0
,(X ) d◦7 +

∫ s

0
b(u; Xu) dVu

)

=
∫ t

0
Zs d◦

(∫ s

0
,(X ) d◦7

)
+
∫ t

0
Zs b(s; Xs) dVs:

We observe in fact that (7; Z; X ) is an SVCV process; Remark 3.17 says that X is of
the form  (7; V 1; : : : ; V m); therefore, Lemma 3.18 tells that∫ t

0
Zs d◦

(∫ s

0
,(X ) d◦7

)
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=
∫ t

0
Z,(X ) d◦7− 1

4

∫ t

0

@ 
@r

(7; V 1; : : : ; V m),′(X ) d[Z; 7; 7]

=
∫ t

0
Z,(X ) d◦7− 1

4

∫ t

0
,′(X ) d[Z; X; 7];

where in the second equality we use Proposition 1. Using the SVCV properties and
(4.15), we get that

d[Z; X; 7] = ,(X ) d[Z; 7; 7]:

So, ∫ t

0
Z d◦X =

∫ t

0
Z,(X ) d◦7− 1

4

∫ t

0
,,′(X ) d[Z; 7; 7] +

∫ t

0
Zsb(s; Xs) dVs:

(iii) is then established.

4.2. Example: linear SDE

Let 7 be a process with &nite strong cubic variation, and 2 any random variable.
We consider the following equation:

dXt = Xt ◦ d7t ;

X0 = 2: (4.16)

In this case, the Tow is given by F(r; x) = x exp(r), and H (r; x) = x exp(−r). The
ordinary di8erential equation (4.5) becomes,

Yt = 2 exp(−70) +
1
12

∫ t

0
Ys d[7; 7; 7]s;

whose unique solution is the following process:

Yt = 2 exp(−70) exp
(

1
12

[7; 7; 7]t

)
; t ∈ [0; 1]:

This gives, using Theorem 4.5, that the unique solution of (4.16) is given by

Xt = 2 exp(−70) exp
(

1
12

[7; 7; 7](t) + 7(t)
)

; t ∈ [0; 1]:
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Appendix A.

Proof of Proposition 2.17. We will proceed by recurrence. We will start with n = 3,
however, the case n = 2 may be considered done by (2.11). Using Itô–Stratonovich
calculus we get

I◦3 (f)(t) =
∫ t

0

∫ s3

0

∫ s2

0
f(s1; s2; s3) d◦Ms1 d◦Ms2 d◦Ms3

=
∫ t

0

∫ s3

0

∫ s2

0
f(s1; s2; s3) dMs1 d◦Ms2 d◦Ms3

:= I1 + I2;

where

I1 =
∫ t

0

(∫ s3

0

∫ s2

0
f(s1; s2; s3) dMs1 dMs2

)
d◦Ms3

I2 =
1
2

∫ t

0

([∫ ·

0
f(s1; ·; s3) dMs1 ; M

]
s3

)
d◦Ms3 :

Now

I1 =
∫ t

0

∫ s3

0

∫ s2

0
f(s1; s2; s3) dMs1 dMs2 dMs3

+
1
2

[∫ ·

0

∫ s2

0
f(s1; s2; ·) dMs1 dMs2 ; M

]
(t):

Using Corollary 2.11, with G(t; s2) =
∫ s2

0 f(s1; s2; t) dMs1 , we get

I1 =
∫ t

0

∫ s3

0

∫ s2

0
f(s1; s2; s3) dMs1 dMs2 dMs3

+
1
2

∫ t

0

∫ s2

0
f(s1; s2; s2) dMs1 d[M ]s2 ;

moreover, using again the same Corollary with G(t; s1) = f(s1; t; s3), we get[∫ ·

0
f(s1; ·; s3) dMs1 ; M

]
t
=
∫ t

0
f(s1; s1; s3) d[M ]s1 :

This implies that

I2 =
1
2

∫ t

0

∫ s3

0
f(s1; s1; s3) d[M ]s1 d◦Ms3

=
1
2

∫ t

0

∫ s2

0
f(s1; s1; s2) d[M ]s1 dMs2 :
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This gives

I◦3 (f)(t) =
∫ t

0

∫ s3

0

∫ s2

0
f(s1; s2; s3) dMs1 dMs2 dMs3

+
1
2

∫ t

0

∫ s2

0
f(s1; s2; s2) dMs1 d[M ]s2

+
1
2

∫ t

0

∫ s2

0
f(s1; s1; s2) d[M ]s1 dMs2 :

Now let n¿ 3, and suppose that the statement of Proposition 2.17 holds for all m6 n.
We have

I◦n+1(f)(t) =
∫ t

0

∫ sn+1

0
· · ·
∫ s2

0
f(s1; : : : ; sn+1) d◦Ms1 · · · d◦Msn+1

=
∫ t

0

(∫ sn+1

0
· · ·
∫ s2

0
f(s1; : : : ; sn+1) d◦Ms1 · · · d◦Msn

)
dMsn+1

+
1
2

[∫ ·

0

∫ sn

0
· · ·
∫ s2

0
f(s1; : : : ; sn; ·) d◦Ms1 · · · d◦Msn−1 dMsn ;M

]
t

:= I1 + I2;

where sn plays the role of t.
Using induction hypothesis for m = n, and renaming the variable sn+1 with sn+1−k ,

we have

I1 =
[n=2]∑
k=0

1
2k

∑
,∈-n

k

∫ t

0

∫ sn+1−k

0

∫ sn−k

0
· · ·
∫ s2

0
f(s,−1(1); s,−1(1); : : : ; s,−1(k); s,−1(k);

s,−1(k+1); s,−1(k+2); : : : ; s,−1(n−k); sn+1−k)d,1
M (s1) · · · d,n−k

M (sn−k) dMsn+1−k ;

,∈-n
k is extended trivially to ,∈-n+1

k setting ,n+1−k = n + 1 − k.
Using Corollary 2.11 with

G(t; sn) =
∫ sn

0
· · ·
∫ s2

0
f(s1; : : : ; sn; t) d◦Ms1 · · · d◦Msn−1

we get

I2 =
1
2

∫ t

0

(∫ sn

0
· · ·
∫ s2

0
f(s1; : : : ; sn; sn) d◦Ms1 · · · d◦Msn−1

)
d[M ]sn :

Using this time the induction hypothesis for m = n − 1 and renaming the variable sn
with sn−l, we obtain

I2 =
[(n−1)=2]∑

l=0

1
2l+1

∑
,∈-n−1

l

∫ t

0

∫ sn−l

0

∫ s(n−1)−l

0
· · ·
∫ s2

0
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×f(s,−1(1); s,−1(1); : : : ; s,−1(l); s,−1(l);

s,−1(l+1); s,−1(l+2); : : : ; s,−1(n−1−l); sn−l; sn−l)

×d,1
M (s1) · · · d,n−1−l

M (sn−1−l) d[M ]sn−l
:

We change the variable l with k = l+1, so 16 k6 [(n−1)=2]+1=[(n+1)=2] which
gives that

I2 =
[(n+1)=2]∑

k=1

1
2k

∑
,∈-n−1

k−1

∫ t

0

∫ s(n+1)−k

0
· · ·
∫ s2

0

×f(s,−1(1); s,−1(1); : : : ; s,−1(k−1); s,−1(k−1);

s,−1(k); s,−1(k+1); : : : ; s,−1(n−k); sn+1−k ; sn+1−k)

×d,1
M (s1) · · · d,(n−1)−(k−1)

M (sn−k) d[M ]s(n+1)−k
:

For given ,∈-n−1
k−1, we de&ne ,̃∈-n+1

k by

,̃i =

{
,i for i = 1; 2; : : : n− k;

k for i = n + 1 − k:

Recall that we have to prove

I1 + I2 =
[(n+1)=2]∑

k=0

1
2k

∑
,∈-n+1

k

∫ t

0

∫ s(n+1)−k

0
· · ·
∫ s2

0

×f(s,−1(1); s,−1(1); : : : ; s,−1(k); s,−1(k);

s,−1(k+1); s,−1(k+2); : : : ; s,−1((n+1)−k))

×d,1
M (s1) · · · d,n−k

M (sn−k) d,(n+1)−k
M (sn+1−k):

To obtain it we have just to see that

Pn+1
0 (M) =




M;M; : : : ; M︸ ︷︷ ︸

(n+1) times




=


,


M;M; : : : ; M︸ ︷︷ ︸

(n+1) times




 ;

where ,i = i, i = 1; : : : ; n + 1. For all 16 k6 [(n + 1)=2], we have

Pn+1
k (M) =




,([M ]; : : : ; [M ]︸ ︷︷ ︸

k times

; M; : : : ; M︸ ︷︷ ︸
n−2k times

); M


 ; ,∈-n

k



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∪




,([M ]; : : : ; [M ]︸ ︷︷ ︸

(k−1) times

; M; : : : ; M︸ ︷︷ ︸
(n−1)−2(k−1) times

); [M ]


 ; ,∈-n−1

k−1




= {(,M ;M); ,∈-n
k} ∪ {(,M ; [M ]); ,∈-n−1

k−1};

where previous union is disjoint.

Remark. We recall that the cardinality of Pn
k (M) (resp. Pn−1

k−1(M)) equals Ck
n−k (resp.

Ck−1
n−k ). Therefore, the cardinality of Pn+1

k (M) is Ck
n+1−k as expected by combinatorial

calculus.

Proof of Proposition 2.19. It remains to prove the following property: for all n¿ 3,
and every k = 1; : : : ; [n=2],

Ln
k(t) :=

∑
,∈-n

k

∫ t

0

∫ sn−k

0
· · ·
∫ s2

0

×f(s,−1(1); s,−1(1); : : : ; s,−1(k); s,−1(k); s,−1(k+1); : : : ; s,−1(n−k))

×d,1
W (s1) · · · d,n−k

W (sn−k)

=
∫ t

0

∫ sn−k

0
· · ·
∫ sk+2

0

∫ t

0

∫ sk

0
· · ·
∫ s2

0

×f(s1; s1; : : : ; sk ; sk ; sk+1; sk+2; : : : ; sn−k)

×ds1 · · · dsk dWsk+1 · · · dWsn−k :

We will prove by induction. We start proving the case n = 3. We have,

P3
0(W ) = {(W;W;W )}

P3
1(W ) = {([W ]; W ); (W; [W ])}:

This gives

L3
0(t) =

∫ t

0

∫ s3

0

∫ s2

0
f(s1; s2; s3) dWs1 dWs2 dWs3 ;

and

L3
1(t) =

∫ t

0

∫ s2

0
f(s1; s1; s2) ds1 dWs2 +

∫ t

0

∫ s2

0
f(s1; s2; s2) dWs1 ds2

=
∫ t

0

∫ s2

0
f(s1; s1; s2) ds1 dWs2 +

∫ t

0

∫ t

s1
f(s1; s2; s2) ds2 dWs1
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=
∫ t

0

∫ s2

0
f(s1; s1; s2) ds1 dWs2 +

∫ t

0

∫ t

s2
f(s1; s1; s2) ds1 dWs2

=
∫ t

0

∫ t

0
f(s1; s1; s2) ds1 dWs2 :

This means that the Proposition is true for n = 3.
Now let n¿ 3, and suppose that the statement of the Proposition holds for all m6 n.

Recall that, for all 16 k6 [(n + 1)=2], we have

Pn+1
k (W ) = {(,W ;W ); ,∈-n

k} ∪ {(,W ; [W ]); ,∈-n−1
k−1};

where the union is disjoint. Therefore

Ln+1
k (t) = I1 + I2;

where

I1 =
∑
,∈-n

k

∫ t

0

(∫ s

0

∫ sn−k

0
· · ·
∫ s2

0

×f(s,−1(1); s,−1(1); : : : ; s,−1(k); s,−1(k); s,−1(k+1); : : : ; s,−1(n−k); s)

× d,1
W (s1) · · · d,n−k

W (sn−k)
)

dWs:

and

I2 =
∑

,∈-n−1
k−1

∫ t

0

(∫ s

0

∫ sn−k

0
· · ·
∫ s2

0

×f(s,−1(1); : : : ; s,−1(k−1); s,−1(k−1); s,−1(k); : : : ; s,−1(n−k); s; s)

× d,1
W (s1) · · · d,n−k

W (sn−k)
)

ds:

Using the hypothesis for m = n, and renaming s with sn+1−k , we have

I1 =
∫ t

0

∫ sn+1−k

0

∫ sn−k

0
· · ·
∫ sk+2

0

∫ sn+1−k

0

∫ sk

0
· · ·
∫ s2

0

×f(s1; s1; : : : ; sk ; sk ; sk+1; sk+2; : : : ; sn+1−k)

×ds1 · · · dskdWsk+1 · · · dWsn−k dWsn+1−k :

Using now the induction hypothesis for m = n− 1, we have

I2 =
∫ t

0

∫ s

0

∫ sn−k

0
· · ·
∫ sk+1

0

∫ s

0

∫ sk−1

0
· · ·
∫ s2

0

×f(s1; s1; : : : ; sk−1; sk−1; sk ; sk+1; : : : ; sn−k ; s; s)
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×ds1 · · · dsk−1 dWsk · · · dWsn−k ds

=
∫ t

0

∫ t

sn−k

∫ sn−k

0
· · ·
∫ sk+1

0

∫ s

0

∫ sk−1

0
· · ·
∫ s2

0

×f(s1; s1; : : : ; sk−1; sk−1; sk ; sk+1; : : : ; sn−k ; s; s)

×ds1 · · · dsk−1 dWsk · · · dWsn−k−1 ds dWsn−k

=
∫ t

0

∫ sn−k

0
· · ·
∫ sk+1

0

∫ t

sn−k

∫ s

0

∫ sk−1

0
· · ·
∫ s2

0

×f(s1; s1; : : : ; sk−1; sk−1; sk ; sk+1; : : : ; sn−k ; s; s)

×ds1 · · · dsk−1 ds dWsk · · · dWsn−k−1 dWsn−k :

Renaming s with sk , sk with sk+1; : : : ; sn−k with sn+1−k , we obtain

I1 =
∫ t

0

∫ sn+1−k

0
· · ·
∫ sk+2

0

∫ t

sn+1−k

∫ sk

0

∫ sk−1

0
· · ·
∫ s2

0

×f(s1; s1; : : : ; sk ; sk ; sk+1; sk+2; : : : ; sn+1−k)

×ds1 · · · dsk dWsk+1 · · · dWsn+1−k :

This gives that

I1 + I2 =
∫ t

0

∫ sn+1−k

0
· · ·
∫ sk+2

0

∫ t

0

∫ sk

0

∫ sk−1

0
· · ·
∫ s2

0

×f(s1; s1; : : : ; sk ; sk ; sk+1; sk+2; : : : ; sn+1−k)

×ds1 · · · dsk dWsk+1 · · · dWsn+1−k :
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