
Nevus Distribution in a Utah Melanoma Kindred with a
Temperature-Sensitive CDKN2A Mutation

To the Editor:

We recently reported in the Journal our longitudinal
phenotypic observations of a well-characterized Utah me-
lanoma kindred carrying a temperature-sensitive mutation
(V126D) in CDKN2A (Florell et al, 2004). The V126D muta-
tion, which co-segregates with melanoma susceptibility
(Kamb et al, 1994), results in a p16 protein with diminished
capacity to bind CDK4/CDK6, inhibit Rb phosphorylation,
and induce exit from the cell cycle (G1 arrest) at physiologic
temperatures (Parry and Peters, 1996). As this mutation was
associated with increased nevus size and number in this
family (Meyer et al, 1992; Florell et al, 2004), we hypothe-
sized that given its temperature sensitivity it might also be
associated with excess formation of nevi and/or melanomas
on warmer regions of the body, defined as the head, neck,
and trunk. Here we report nevus and melanoma distribution
data derived from 29 family members and 11 spouse con-
trol subjects over an average interval of 15 y.

This study was approved by the Institutional Review
Board at the University of Utah and was conducted ac-
cording to Declaration of Helsinki principles. All subjects
agreed to participate and informed written consent was
obtained. The subjects were not aware of their CDKN2A
mutation status. A total of 13 V126D mutation carriers and
16 non-carriers were examined, with 11 married-in spouses
serving as a control group. All participants were examined in
this study and initially 15 y ago by the same dermatologist
(L. J. M.), who was also unaware of subject mutational sta-
tus. The initial and follow-up examinations were conducted
in a similar fashion and included a total body skin exam in
which location and size of all nevi � 2 mm in diameter were
recorded on a body map diagram as described (Florell et al,
2004). The head, neck, and trunk were considered ‘‘warm’’
regions and the extremities ‘‘cold’’ regions. Invasive me-
lanomas were confirmed by the Utah Cancer Registry, by
obtaining the pathology report, and/or by review of histo-
logic slides by dermatopathologists (S. R. F. and R. M. H.).
The nevus count and nevus density data were analyzed
using multiple linear regression with appropriate differ-
ences, constructed for each subject, as response variables.
Carrier status, age at first visit, and gender were used as
explanatory variables in the multiple regression analysis.

Nevus distribution data were analyzed by absolute
number of nevi and by the mean change of nevi in warm
and cold regions over time. As shown in Fig 1, mutation

carriers developed more nevi on warm regions than non-
carrier or spouse control subjects (p¼0.004), but the car-
riers, non-carriers, and spouse control subjects showed
a similar rate of nevus development on cold regions
(p¼0.07). Because CDKN2A mutation carriers are more
prone to nevus development in this family (Meyer et al,
1992; Florell et al, 2004), we also evaluated nevus distribu-
tion based on the mean change of nevi and nevus density in
warm and cold regions over the 15 y follow-up period. In
this way, we minimized the possibility that the preponder-
ance of warm-region nevi in CDKN2A mutation carriers was
merely reflective of a nevogenic effect of CDKN2A mutation.
Mutation carriers demonstrated a significant increase in the
mean change of nevus number and density on the warm
regions, as compared with the non-carriers and spouse
control subjects. The mean change in these parameters
was not significantly different in the cold regions (Table I).
Four V126D CDKN2A mutation carriers developed 11 inva-
sive melanomas, six on warm regions (55%) and five on
cold regions (45%), which was not statistically significant. A
significant difference in nevus distribution was not observed
in a second Utah melanoma kindred with a promoter-region
CDKN2A mutation (�34 G4T) over a 15-interval (12
mutation carriers, 11 non-carriers, and 11 spouse control
subjects; Fig 1).

There is precedent for temperature-sensitive mutations
resulting in a demonstrable clinical phenotype. The well-
known temperature-sensitive tyrosinase mutation (‘‘Siam-
ese cat mutation’’) occurs in both cats and mice, producing
an increased relative pigmentation in the cooler areas of the
body such as the tips of the ears, tail, and paws (Searle,
1968). An analogous human tyrosinase mutation confers a
temperature-dependent distribution of pigmentation in hu-
man carriers (Giebel et al, 1991; King et al, 1991). In addi-
tion, although skin temperature regulation is complex and
depends on thermoregulatory and environmental factors
(Houdas and Ring, 1982; Wenger, 1995), the normal fluc-
tuations in body temperature appear to encompass a range
that would impact V126D CDKN2A function. Studies meas-
uring skin temperature in warm, neutral, and cold conditions
suggest that core regions (head and trunk) are, on average,
warmer than the extremities in neutral (261C–271C) and cold
environments (Folk, 1974; Webb, 1992; Wenger, 1995), but
skin temperature in warm environments (341C) is similar
over the entire integument (Folk, 1974). Temperature meas-
urements of skin in a comfortable environment are slightly
higher in warm body regions and have been measured at
341C–351C as compared with 311C–341C in the cooler ex-
tremities (Houdas and Ring, 1982; Webb, 1992). Thus, theAbbreviations: TND, total nevus density; TNN, total nevus number

Copyright r 2005 by The Society for Investigative Dermatology, Inc.

1310

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82301839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


temperature range at which the V126D CDKN2A mutation is
functionally impaired coincides with the range of normal
fluctuations of cutaneous temperature.

Our data demonstrate a statistically significant disparity
in the nevus distribution between mutation carriers and non-
carriers, suggesting that the V126D temperature-sensitive
mutation may influence the distribution of nevi in these
subjects. We considered other explanations for the dis-
crepancy observed in mutation carriers. Distribution of nevi
is known to correlate with UV exposure, sunburn history,
and phenotypic constitutional features (Kopf et al, 1985,
1986; Slade et al, 1995; Harrison et al, 1999; Autier et al,
2001; Carli et al, 2002). Significant differences between the
genotypic groups, however, were not identified with respect

to markers of chronic UV radiation (rhytides, poikiloderma,
actinic keratoses, solar lentigines, etc.), self-reported sun-
burn history, or phenotypic constitutional features (hair and
eye color, skin type) (Florell et al, 2004). We also considered
the possibility that nevogenic CDKN2A mutations might
induce nevus formation on the head, neck, and trunk
preferentially, unrelated to temperature sensitivity. Nevus
distribution data from a second Utah melanoma kindred
with a promoter region CDKN2A mutation (�34 G4T) over a
15-y interval, however, showed no significant differences in
nevus distribution between the genotypic groups.

In summary, we found that a temperature-sensitive
CDKN2A mutation is associated with an altered nevus
phenotype with increased rate of nevus development and

Figure 1
V126D mutation carriers develop
more nevi on warm regions of the
body. These plots of nevus number
at the initial (x coordinate) and fol-
low-up (y coordinate) examinations
demonstrate an increased number
of nevi on warm areas in V126D
CDKN2A mutation carriers with a
more pronounced increase in nevi
at the follow-up visit. The rate of
increase in the number of nevi is
significantly greater in the carriers
than non-carriers or spouse control
subjects, after adjusting for the in-
itial number of nevi (p¼ 0.004). A
significant difference in the rate
of nevus development on cold
regions was not identified among
the groups (p¼ 0.07) ((A, B), V126D
CDKN2A kindred). A second Utah
melanoma kindred with a promoter
region mutation (�34 G4T) fails to
demonstrate a significant differ-
ence in nevus distribution in the
warm or cold regions (C, D) over a
15-y interval (p¼0.62 for warm re-
gions; p¼0.55 for cold regions).

Table I. Mean change in nevus number and density in V126D CDKN2A mutation kindred

Regiona Groupb
TNNc mean change
initial versus F/U 95% CI pd

TNDe mean change
initial versus F/U 95% CI pd

Warm Carrier 10 2–25 0.002 61 15–138 0.005

Non-carrier �1 �6 to 0 0 �15 to 7

Spouse 0 �4 to 4 0 �14 to 24

Cold Carrier 2 0–11 0.36 15 1–50 0.26

Non-carrier 0 �2 to 3 1 �3 to 12

Spouse 0 �4 to 4 1 7–18

aWarm regions of the body were defined as the head, neck, and trunk, and cold regions were defined as the upper and lower extremities.
bSubject mutation status was verified by sequencing the promoter region and exons 1a–3 of CDKN2A and exon 1b (ARF). A total of 13 V126D mutation

carriers and 16 non-carriers were examined, with 11 spouses serving as a control group.
cChange in TNN represents difference in number of clinically detectable nevi � 2 mm in diameter (# nevi at follow-up–# nevi at initial visit).
dThe analysis used a square-root transformation to normalize the data, which were adjusted for age and sex. Statistical analysis was performed using

Statistica 6.0 (StatSoft Inc., Tulsa, Oklahoma).
eChange in TND calculated by dividing area of all nevi by estimated body surface area (nevus density at follow-up–nevus density at first visit) (Goldgar

et al, 1991; Meyer et al, 1992).
TNN, total nevus number; TND, total nevus density.
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density on warm body regions among mutation carriers.
Although there were slightly more melanomas on the warm
areas, the difference was not significant. These findings
provide the first in vivo evidence that a temperature-sensi-
tive CDKN2A mutation may confer a temperature-depend-
ent nevus distribution.
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