
Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Sustainability constraints in determining European bioenergy potential: A
review of existing studies and steps forward

Ingeborg Klutsa,b,⁎, Birka Wickea, Rik Leemansb, André Faaijc

a Copernicus Institute of Sustainable Development, Energy & Resources Group, P.O. Box 80.115, 3508 TC Utrecht,The Netherlands
b Environmental Systems Analysis Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
c Energy and Sustainability Research Institute, University of Groningen, P.O. Box 72, 9700 AB Groningen, The Netherlands

A R T I C L E I N F O

Keywords:
Bioenergy
Biomass
Potential
Land use
Europe
Review

A B S T R A C T

This paper reviews European land and bioenergy potential studies to 1) identify shortcomings related to how
they account for agricultural intensification and its associated environmental effects, and sustainability
constraints, and 2) provide suggestions on how these shortcomings can be improved in future assessments.
The key shortcomings are:

The environmental impacts of intensification are nearly always ignored in the reviewed studies, while these
impacts should be accounted for if intensification is required to make land available for energy cropping.

Future productivity developments of crops and livestock, and the associated land-use and environmental
effects are currently limited to conventional intensification measures whereby the proportion between inputs
and outputs is fixed. Sustainable intensification measures, which increase land productivity with similar or
lower inputs, are ignored in the reviewed studies.

Livestock productivity developments, livestock specific intensification measures and their environmental
effects are poorly or not at all covered in the reviewed studies.

Most studies neglect sustainability constraints other than GHG emissions in the selection of energy crops.
This includes limitations to rainfed energy crop cultivation, a minimum number of crop species, the structural
diversity within cropping areas and the integration of energy crops in existing or new crop rotations, while
simultaneously considering the effects on subsequent crops.

These shortcomings suggest that the identification of sustainable pathways for European bioenergy
production requires a more integrative approach combining land demand for food, feed and energy crop
production, including different intensification pathways, and the consequent direct and indirect environmental
impacts. A better inclusion of management practices into such approach will improve the assessment of
intensification, its environmental consequences and the sustainable bioenergy potential from agricultural
feedstocks.

1. Introduction

Land is a finite and increasingly scarce resource. Competition for
land will increase to meet future food and fibre demand of a growing
population [1,2]. The expected increase in the use of bioenergy as a
renewable energy source requires an additional increase in total
agricultural output and thereby further increasing the competition for
land [1]. Producing additional agricultural output for bioenergy feed-
stock can be achieved by extending cropland and pastures into new
areas, thereby replacing natural ecosystems (i.e. expansion), and/or by
improving productivity of existing cultivated land through the in-
creased or more efficient use of inputs, improvement of agronomic

practices and crop varieties and other innovations (i.e. intensification)
[3,4]. Both options have positive and negative environmental effects.
Several studies suggest that increasing productivity rather than clear-
ing additional land is preferred to meet the expected increase in
demand for agricultural products [3–7]. If intensification is needed
to make land available for bioenergy feedstock production, its environ-
mental effects should be accounted for when quantifying the sustain-
ability of bioenergy [8]. The environmental effects of intensification
depend on geographic conditions and on how agriculture is organised
and managed. Sustainable intensification measures include precision
agriculture, multiple cropping systems using crop rotations, intercrop-
ping or agroforestry systems, zero or reduced tillage systems and the
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Table 1
General characteristics of the studies included in the review a.

Study labelb Main ref. Objective of study Spatial
coveragec

Spatial
resolution

Timeframe Approach -
methodology

Model(s)
used

Biomass categories Type of potential

Annual
arable
crops

Perennial
crops

Agricultural
residues

Allen14 [23] Estimation of
additional
production of
perennial energy
crops within
Europe.

EU-28 EU-28 Current
(2000–
2012)

Resource
focused –

statistical

n.a. ✓ Technical

Bentsen14 [24] Estimation of
agricultural
residues potential
potentially
available through
agricultural
intensification.

Global World
regions
(North,
South,
West
Europed)

2006–2008 Resource
focused –

statistical

n.a. ✓ Theoretical

Böttcher10 [25] Estimation of
bioenergy
potentials and
demonstration of
harmonised
approaches
developed within
the Biomass Energy
Europe (BEE)
project.

EU-27 Member
State, EU-
27

2010,
2020, 2030

Resource
focused –

statistical,
spatially
explicit and
modelling

EPIC,
EUFASOM

✓ ✓ ✓ Theoretical,
technical,
economic,
implementation

Böttcher13 [26,27] Transformation of
technical potentials
from Elbersen13
into economic
potentials.

Global Global,
EU-27

2000,
2010,
2020, 2030

Demand
driven – cost
supply

GLOBIOM ✓ ✓ Economic

Daioglou16 [28] Estimation of
residues availability
for energy and
material uses
considering
ecological and
current uses.

Global World
regions
(West,
Central
Europee)

1971–2100 Integrated
assessment

IMAGE ✓ Theoretical,
ecologically
sustainable

deWit10 [29] Estimation of
technical and cost
and supply
potential for
biomass resources.

EU-27
+CH+NO

NUTS-2 2010,
2020, 2030

Resource
focused –

spatially
explicit

n.a. ✓ ✓ ✓ Technical,
economic

EEA13 [8,11] Review of the
implications of
resource efficiency
principles for
developing EU
bioenergy
production.

EU-27 EU-27 2020 Demand
driven – cost
supply

CAPRI,
MITERRA,
PRIMES,
AGLINK-
COSIMO

✓ ✓ ✓ Economic

Elbersen13 [30,31] Quantification of
technically
constrained
biomass potentials
for different
scenarios
assumptions.

EU-27 NUTS-2 Current
(2006–
2008),
2020, 2030

Demand
driven –

modelling

CAPRI,
MITERRA,
GLOBIOM,
GEMIS

✓ ✓ ✓ Ecologically
sustainable

Fischer10 [32] Estimation of
available land for
bioenergy
production for
different scenarios
assumptions.

EU-27
+CH+NO

NUTS-2 2010,
2020, 2030

Resource
focused –

spatially
explicit

n.a. ✓ Technical land
potential,
ecologically
sustainable

Krasuska10 [33] Estimation of
surplus agricultural
land theoretically
available for non-
food crops.

EU-27 NUTS-2 Current
(2003–
2007),
2020, 2030

Resource
focused –

spatially
explicit

RENEW
land
allocation
model

Theoretical land
potential

Monforti13 [34] Geographical
assessment of
potential bioenergy
production from

EU-27 NUTS-2 2000–2009 Resource
focused –

spatially
explicit

n.a. ✓ Ecologically
sustainable

(continued on next page)
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improvement of animal feeding practices [4,9]. The effects of these
measures on productivity and the environment are complex and not
completely understood yet [4].

Sustainable agricultural intensification is an important prerequisite
to increase agricultural feedstock production for energy purposes
without converting high carbon-stock land [8]. Many studies assess
the potentials and impacts of energy crop cultivation and primary
agricultural residues for bioenergy [e.g. 9–13]. These studies consider a
limited number of sustainability constraints (e.g. exclusion of high
biodiverse areas and land for food production). In addition, most
studies exclude the effects of agricultural intensification on the
environmental profile of bioenergy. Only a few studies took a more
integrated approach on bioenergy, agricultural intensification and
environmental impacts [14–17]. However, their coverage is limited
to a single province [14] or country [15], or aggregated for Europe [16]
or the world [17]. De Wit et al. [16] and Melillo et al. [17] assess the net

greenhouse gas (GHG) emissions of agricultural intensification to
release land for energy crop production and bioenergy production.
Both studies ignore intensification of livestock production and only one
intensification pathway is considered for crop production.

The overall net impact of bioenergy production is, however, closely
related to land use and direct or indirect land-use change. The
sustainable bioenergy potential could be constrained through these
changes in land use, including both the conversion of natural ecosys-
tems to agricultural land and changes in agricultural management [7].
An integrated approach on both agricultural management and sustain-
ability constraints for bioenergy production is thus necessary to
estimate the sustainable land availability for feedstock production
and subsequent bioenergy potential. A better understanding of the
key factors influencing the potential and impacts of bioenergy produc-
tion in relation to agricultural intensification is needed to identify
pathways for sustainable bioenergy production within Europe.

Table 1 (continued)

Study labelb Main ref. Objective of study Spatial
coveragec

Spatial
resolution

Timeframe Approach -
methodology

Model(s)
used

Biomass categories Type of potential

agricultural
residues.

Monforti15 [35] Estimation of
available
agricultural
residues obtainable
without impacting
the EU SOC stock.

EU-27 Member
State,
1×1 km

Current
(2012)

Resource
focused –

spatially
explicit

n.a. ✓ Ecologically
sustainable

Pudelko13 [36] Estimation of
biomass potentials
from agricultural
and forestry
residues and
municipal waste.

EU-27
+CH

NUTS-3 2008–2011 Resource
focused –

statistical

n.a. ✓ Theoretical,
ecologically
sustainable

Scarlat10 [37] Resource-based
assessment of the
available
agricultural crop
residues for
bioenergy
production.

EU-27 Member
State

1998–2007 Resource
focused –

statistical

n.a. ✓ Ecologically
sustainable

Scarlat13 [38] Quantification of
land use impacts of
EU's 2020
bioenergy targets
based on NREAP
projections.

EU-27 Member
State

2020 Demand
driven –

statistical

n.a. Technical land
potential

Schueler13 [39] Quantification of
the effect of EU
RED sustainability
criteria on the
theoretical biomass
potential.

Global World
regions
(OECD
Europef)

2000 Resource
focused –

spatially
explicit

LPJmL ✓ ✓ Ecologically
sustainable

Searle13 [40] Estimation of
sustainable
availability of
cellulosic wastes
and residues.

EU-27 EU-27 2011,
2020, 2030

Statistical n.a. ✓ Ecologically
sustainable

Spöttle13 [41] Assessment of
agricultural
residues potential
with low ILUC risk.

DK, DE,
ES, FR,
HU, IT,
NL, PL,
RO, UK

Country 2002–2011 Resource
focused –

statistical

n.a. ✓ Ecologically
sustainable

a A detailed characterisation of the studies is provided in the Online Supplementary Information.
b Study labels consist of first author's last name and year of publication.
c CH=Switzerland, DK=Denmark, DE=Germany, ES=Spain, FR=France, HU=Hungary, IT=Italy, NL=the Netherlands, NO=Norway, PL=Poland, RO=Romania, UK=United

Kingdom.
d North, South and West Europe in Bentsen14 include EU-15+ Albania, Andorra, Bosnia and Herzegovina, Croatia, Estonia, Faeroe Islands, Gibralta, Iceland, Latvia, Liechtenstein,

Lithuania, Macedonia FYR, Malta, Monaco, Montenegro, Norway, San Marino, Serbia, Slovenia, Switzerland.
e West and Central Europe in IMAGE include EU-27+ Albania, Andorra, Bosnia and Herzegovina, Croatia, Faeroe Islands, Gibraltar, Iceland, Liechtenstein, Macedonia FYR, Monaco,

Montenegro, Norway, San Marino, Serbia, Switzerland, Vatican City State.
f OECD Europe include Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Luxembourg, the Netherlands,

Norway, Poland, Portugal, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.
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Given the limitations described above, this paper aims at 1)
identifying shortcomings in land and bioenergy potential estimates
related to how they account for agricultural intensification, its asso-
ciated environmental effects and other sustainability constraints, and
2) providing suggestions on how these shortcomings crucial for
sustainable biomass production may be improved in future assess-
ments. Our review focuses on European land and bioenergy potential
studies given the region's interest in increasing the share of sustainable
bioenergy in the total energy mix.

The paper is structured as follows: Section 2 includes an overview of
the reviewed land and bioenergy potential studies and models, the
criteria on which the studies are reviewed and the bioenergy potential
types considered. Section 3 presents and discusses the findings of the
review. First, findings in terms of sustainability constraints and
intensification measures on the land available for energy crop cultiva-
tion are given and discussed (Section 3.1). Then, the land availability
for energy crop cultivation as estimated by the different studies is
compared (Section 3.2). Hereafter, sustainability constraints to deter-
mine the agricultural bioenergy potential and the associated environ-
mental impacts are presented and discussed (Section 3.3), followed by
a comparison of bioenergy potentials from agricultural feedstocks
(Section 3.4). These sections also consider the differences in modelling
approaches applied in the reviewed studies. Based on our findings, we
conclude (Section 4) on how to assess the environmental and land use
effects induced by agricultural biomass production and intensification
in Europe in a more integrated manner in future studies.

2. Approach

2.1. Overview of studies and models

The review included studies that cover global (including Europe as
a world region) and European land and bioenergy potentials up to 2030
and specifically consider environmental sustainability criteria.
Additional criteria for studies to be included in this review are that
they are 1) reported in English to ensure accessibility and 2) published
between 2009 and 2015. The ISI Web-of-Science and Google Scholar
were used to identify studies complying to these criteria. In addition,
the bibliographies of the selected studies were examined to find other
relevant studies. Table 1 lists the reviewed studies and their general
characteristics; a more detailed characterisation of the studies is
provided in the Online Supplementary Information. Because this
review aimed at identifying the included intensification measures and
sustainability constraints, potentials were not standardised on time
frame and area coverage.

The selected studies differ on approaches (i.e. refer to a generalized
concept followed in an assessment) and methodologies (i.e. translate
assumptions and datasets into land and bioenergy potentials)
(Table 1). Batidzirai et al. [18] comprehensively classifies approaches
and methodologies. Approaches include demand-driven approaches,
resource-focused approaches, integrated assessments, impact and
feasibility assessments, and reviews. Methodologies include statistical
analysis, spatially explicit analysis, cost supply analysis and energy- or
agriculture-system modelling [18]. Most studies included in our review
apply a resource-focused approach (Table 1), estimating the whole
resource base as opposed to a demand-driven approach in which the
amount of biomass required to meet a certain target is estimated.

Different models are applied in the reviewed studies (Tables 1, 2).
Agro-economic models and integrated assessment models are impor-
tant approaches to assess the bioenergy potential from agriculture.
These models cover agriculture production, including crop (food, feed,
fibre and energy crops) and livestock production, the land use and
availability for each activity, and the environmental impacts of the
projected agricultural activities. Biophysical process models are central
approaches to consider the environmental impacts of agricultural land
management. A description of the models and differences between the

models is provided in the Online Supplementary Information.

2.2. Sustainability constraints and intensification measures

The biomass potential studies were reviewed on the inclusion of
sustainability constraints and intensification measures. The sustain-
ability constraints to land and bioenergy potentials were divided into
the following principles (based on [19,20]): 1) secure food, feed and
bio-based material production; 2) prevent biodiversity loss; 3) sig-
nificantly contribute to GHG emission mitigation; and 4) minimise
negative impacts on soil, water and air. We evaluated whether
constraints and measures are considered in the reviewed studies,
how these are included, which assumptions are made and which
datasets are used.

The four principles are translated to sustainability constraints to
the land potential and subsequently the energy potential. The first
sustainability constraint to the land potential is the exclusion of land
area needed for food production to ensure food security. Assumptions
of future food demand and productivity increases in crop and livestock
production were reviewed. In addition, the differences in modelling the
impacts of intensification on land use and environment among the
reviewed studies were determined. A second constraint to the land
availability that is reviewed is the exclusion of high biodiverse areas
and high carbon stock areas as defined in the EU's Renewable Energy
Directive [21] to prevent biodiversity loss and high GHG emissions.

Three environmental sustainability constraints to the energy crop
potential were considered in this review, related to the avoidance of
negative impacts on soil, water and air, biodiversity conservation and
GHG emissions mitigation. Constraints related to the prevention of
negative impacts on soil, water and air include the adaptation of
management practices to local biophysical conditions (e.g. appropriate
crop selection and crop rotations), the exclusion of highly degraded
areas and steep areas for energy cropping, limited or no irrigation of
energy crops in certain areas and maximum extraction rates for
primary agricultural residues [19]. Biodiversity conservation requires
the adaptation of management practices in biodiversity sensitive areas
and in areas under agro-environmental support, extensive or organic
farming, the implementation of buffer zones in sensitive areas and
diversity within the cropping area (e.g. by a minimum number of crop
species and varieties and structural diversity) [19]. The amount of GHG
emissions of energy crop cultivation and harvesting and the GHG
emissions by indirect land use change (ILUC) also constraint the
sustainable energy potential.

2.3. Bioenergy potential types

First and second generation feedstocks are often distinguished.
First generation agricultural feedstock refers to conventional food
crops, including oil, starch and sugar crops. Second generation
agricultural feedstock includes crops cultivated for energy purposes,
grassy or herbaceous and woody crops, and agricultural residues. The
environmental impacts of these two feedstocks differ. Therefore, the
bioenergy potential was distinguished by feedstock type where possi-
ble.

Five types of biomass potentials (i.e. theoretical, technical, ecolo-
gically sustainable, economic and implementation potential) were
further distinguished, following Batidzirai et al. [18] and Chum et al.
[22]. Sustainability constraints are considered in the technical potential
by taking into account spatial restrictions due to competition with land
used for food, feed and fibre production. Sustainability constraints
related to protection of nature, biodiversity, soil, water and air are
considered in the ecologically sustainable potential. Sustainability
constraints could also be considered in the economic potential in
addition to the criteria of economic profitability. This study reviewed
technical, ecologically sustainable, economic and implementation
potentials with various sustainability constraints considered.
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3. Results and discussion

3.1. Sustainability constraints to land availability for energy
cropping

Constraints related to food security (Section 3.1.1) and biodiversity
and GHG emissions (Section 3.1.2) need to be considered in the
estimation of the land potential. Table 3 presents these constraints in
the reviewed studies.

3.1.1. Exclusion of areas dedicated to food, feed and fibre production
All studies, except the spatially explicit method by Böttcher10,1

restrict energy crop cultivation to surplus land (i.e. land not needed for
other purposes including food production) (Table 3). The amount of
land dedicated to food and feed production in Europe depends on 1)
the projected food demand, and 2) the projected level of agricultural
productivity for crops and livestock products, as further discussed
below. In addition, trade in agricultural products and Europe's self-
sufficiency ratio are determining factors in the land potential, but not
further discussed in this paper as the paper's scope is on agricultural
intensification measures and environmental sustainability constraints
only.

3.1.1.1. Projected food demand. Projections on future food demand
are based on projections on population, gross domestic production and
food consumption per capita. Projections by the FAO [54,55] on future
food demand are used by Beringer11 and Böttcher13, while EEA13 and
Elbersen13 use projections by the Royal Society [9]. Not all studies
explicitly mention the land area needed for food production (Table 3).
Biomass demand from sectors other than food and fibre (e.g. chemical

sector) is ignored in all the studies. The total land and biomass
potential should therefore be considered as the total land and
biomass available for both energy and material purposes.

3.1.1.2. Projected agricultural productivity and related
environmental impacts

3.1.1.2.1. Crop yield projections. Projections on future crop yields
are essential to estimate the future agricultural land dedicated to food
and feed crop production. Besides, such projections are also relevant to
estimate primary agricultural residue potential as the agricultural
residue yield is initially proportional to crop yield and then becomes
constant [24].

3.1.1.2.1.1. Crop yield projections in statistical and spatially explicit
studies

The reviewed studies applying a statistical or spatially explicit
methodology base crop yield changes on historical trends (Fischer10,
deWit10 and Krasuska10) or potential crop yields (Bentsen14).
Fischer10 and deWit10 extrapolate historical crop yield developments
for Western European countries (i.e. the 15 member states (MS) in the
EU from January 1995 to April 2004) and assume an annual increase
of 0.2–0.5% until 2030, while crop yields in Eastern European
countries (i.e. the 12 MS joining the EU in May 2004) are assumed
to increase faster (2.1–2.6% p.a.) to gradually close the existing yield
gap between the Western and Eastern European countries. Krasuska10
also apply two different yield growth rates for Western (0.25–0.5% per
year) and Eastern European MS (0.55–1.1% per year). These rates are
based on projections by the European Commission's Directorate-
General for Agriculture and Rural Development [56]. Bentsen14
estimate crop yield increases on potential crop yields based on the
global agro-ecological zoning approach [57]. They use the FAO/IIASA
database [58] which contains estimates of different land suitability
classes and associated crop yields for different levels of agronomic

Table 2
Models used by the studies included in this review.

Model Main ref. Model approach Principle objective Spatial coverage and resolutiona Time horizon and
resolution

CAPRI [42] Partial equilibirum
model

Simulation and comparison of impacts from different
sets of agricultural and trade policies on EU's
agriculture and the environment.

EU-27, NO, WB, TR (NUTS-2) 10-year intervals up
to 2030Global agricultural markets (country or

country block)
Production side: HSMU (138,000 units
in EU-27)

CENTURY [43] Biophysical process
model

Simulation of carbon, nitrogen, phosphorus and
sulphur dynamics in natural and cultivated soils.

Global Monthly time steps

EUFASOM [44] Partial equilibirum
model

Assessment of the economic and environmental impacts
of political, technological and environmental change on
European land use.

EU-25 (country) 5-year intervals up to
2150Rest of the World (continental regions)

Production side: HRU ( > 1,000 units
in EU-25)

GLOBIOM [45–47] Partial equilibirum
model

Providing policy analysis on global issues concerning
land use competition between the forestry and
agricultural sector as the major land-based production
sectors.

EU-28 (country) 10-year intervals up
to 2050Rest of the World (25 regions)

Production side: HRU intersected with
0.5×0.5⁰ grid and country boundaries (
> 10,000 units worldwide)

IMAGE [48] Integrated
assessment model

Analysis of large-scale and long-term human-
environment interactions to gain better insight into the
processes of global environmental change.

Global Annual or 5-year
intervals up to 2100Socio-economic processes: 26 regions

Land use and LUC: 5×5′ grid
Land-based processes: 30×30′ grid

LPJmL [49,50] Biophysical process
model

Simulation of vegetation composition and distribution,
and carbon and water stocks and flows for natural and
agricultural ecosystems.

Global (30×30′ grid) Daily, monthly or
annual time steps

EPIC [51] Biophysical process
model

Simulation of crop growth under varying natural
processes in agricultural land management and the
assessment on how land management affects the
environment.

Global (HRU) Daily time steps
spanning decades to
centuries

MITERRA-
Europe

[52,53] Biophysical process
model

Assessment of the effects and interactions of
agricultural policies and measures on nitrogen and
GHG emissions in the EU's agricultural sector.

EU-27 (country, NUTS-2) Annual time steps

a NO=Norway, TR=Turkey, WB=Western Balkan (Croatia, Macedonia, Montenegro, Albania, Bosnia and Herzegovina, Kosovo, Serbia).

1 Study labels consist of first author's last name and year of publication, main
references are given in Table 1.

I. Kluts et al. Renewable and Sustainable Energy Reviews 69 (2017) 719–734

723



input.
3.1.1.2.1.2. Crop yield projections in agricultural-system modelling

studies
The partial equilibrium models used by the studies all apply a

combination of exogenous and endogenous crop yield projections.
Exogenous projections are based on historical trends in EUFASOM
and GLOBIOM, and on historical trends in combination with expert
consultation, for example from the AGLINK modelling system, in
CAPRI. Exogenous yield projections in IMAGE are based on FAO
projections [59] in combination with biophysical yield effects due to
climate change and increased CO2 effects, and changes in agricultural
area calculated by the LPJmL model.

Endogenous yield changes could be caused by many different
factors, including land or crop prices, climate change and management
changes. In EUFASOM and GLOBIOM, endogenous yields are related
to management system changes and the crop distribution among the
land [60]. EUFASOM defines crop management system alternatives as
combinations of three tillage intensities, two irrigation alternatives and
different fertilisation levels. GLOBIOM defines four management
systems globally, namely subsistence, low input-rainfed, high input-
rainfed and high input-irrigated. For the EU, a set of technologies is
combined to define management system alternatives, including two
levels of fertiliser input, two levels of irrigation, three levels of tillage
and many combinations of crop rotations. The input structure for each
management system is fixed following a fixed proportions production
function (also referred to as Leontief production function) in both

EUFASOM and GLOBIOM. Crop yields, input requirements and
environmental impacts for each crop management system alternative
and simulation unit are simulated by EPIC. To serve as an input to
GLOBIOM, the crop yields derived from EPIC are rescaled to fit
FAOSTAT's average regional yields considering management factors
not included in EPIC [45]. GLOBIOM calibrates its production cost (i.e.
farmer margin and all input costs minus labour costs), for each system
using FAOSTAT national producer price data. EUOFASOM bases its
production costs (i.e. all input costs including labour) for the system
alternatives on farm surveys within the Farm Accountancy Data
Network. Costs for specific management options are then computed
through economic principles and engineering equations [60]. Each
management system thus has its own input requirements, production
costs and production efficiency. GLOBIOM computes for a given
agricultural demand the most cost-efficient production pattern con-
strained by land availability and the resources costs. This allows for
shifts in management system alternatives and changes in the allocation
across spatial units with different climatic and soil suitability. The sum
of all management systems and locations is used to obtain the regional
(NUTS-2) production pattern and average yields [45].

CAPRI determines endogenous yield changes through a hybrid
approach combining a fixed proportions production function for
variable costs and a non-linear cost function that captures the effects
of labour and capital. Two technologies are available for most crop
activities: a low and high yielding variant, each covering half of the
activities observed in ex-post data. Economic indicators per crop,

Table 3
Incorporation of aspects in the quantification of surplus land in the studies included in the review (✓=included; ✗=not included; n.a.=not applicable because study does
not include projections on future potentials).

Study Exclusion of areas dedicated to food and feed production Exclusion of highly biodiverse
areas

Land area for food production Projected increase in crop
productivity

Projected increase in
livestock productivity

Allen14 ✓- Land needed for food and feed
production, arable land in rotation
and grassland under agricultural
management excluded.

n.a. n.a. ✓- Forest, non-forest semi-
natural habitats

Böttcher10_statistical ✓- Current land needed for food
and feed production excluded based
on grain equivalent: 86–100 Mha

n.a. n.a. ✓- Permanent meadows and
pasture

Böttcher10_spatially explicit ✗ n.a. n.a. ✗

Böttcher10_model ✓- Land area for food and feed
production is not explicitly
mentioned

✓- Crop yields are based on EPIC results.
Not specified.

✗ ✓- Forest, wetland

Böttcher13 ✓- Land area for food and feed
production is not explicitly
mentioned

✓- 0.5% annual crop yield increase plus
regional average yield changes are caused
by management systems changes and re-
allocation of crops to more productive
areas.

✓-Livestock production
system transitions

✓- HNV farmland

deWit10 and Fischer10 ✓- Land needed for food
production excluded: 105–107Mha
in 2030.

✓- Distinction between Western European
MS (0.2–0.5% p.a.) and Eastern European
MS (2.1–2.6% p.a.)

✓- Livestock feed
conversion efficiency
increases. Not specified.

✓- Forest, pasture (for annual
arable crops), set-aside
farmland

EEA13_market first ✓- Land needed for food and feed
production excluded based on
CAPRI reference run for 2020:
183 Mha [93]

✓- CAPRI reference run 2020 and 2030
results. Not specified.

✓- CAPRI reference run
2020 and 2030 results.
Not specified.

✗

EEA13_climate focus, ✓- Land needed for food and feed
production excluded based on
CAPRI reference run for 2020:
183 Mha [93]

✓- CAPRI reference run 2020 and 2030
results. Not specified.

✓- CAPRI reference run
2020 and 2030 results.
Not specified.

✓- HNV farmland
EEA13_resource efficiency

Elbersen13 ✓- Land needed for food and feed
production excluded based on
CAPRI reference run 2020 and
2030 results.

✓- CAPRI reference run 2020 and 2030
results. Not specified.

✓- CAPRI reference run
2020 and 2030 results.
Not specified.

✓- HNV farmland

Krasuska10 ✓- Land needed for food and feed
production excluded.

✓- Distinction between Western European
MS (0.25–0.5% p.a.) and Eastern European
MS (0.55–1.1% p.a.)

✓- Forage-to- grain ratio
increases. Not specified.

✓- Only current (2003–2007)
agricultural land considered

Schueler13 ✓- Areas for food, feed and fodder
production are excluded based on
HYDE grass- and cropland data
[94]

n.a. n.a. ✓- Nature reserves, wetland,
forest, highly biodiverse areas,
anthropogenic grassland
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including revenues, variable costs and gross-value added, are derived
from the crop yields on Homogenous Soil Mapping Units (HSMU)
level. Crop yields react to changes in output prices [42]. Certain
constraints to yield growth rates, such as an annual minimum yield
growth rate of 0.5% and specific upper limits to prevent unrealistic crop
yields, are implemented.

3.1.1.2.2. Livestock productivity projections. Projections on
livestock productivity are important to estimate surplus land since
one-third of total European agricultural land is pastureland [61], and
approximately 60% of total European cereal production is used for
animal feed [62]. Changes in pasture productivity are only relevant in
the studies estimating surplus pastureland considered to be used for
woody and grassy energy crop cultivation (Fischer10 and deWit10).
However, projections on the amount of feed needed to produce one
unit of livestock product are relevant for all studies estimating surplus
arable land.

3.1.1.2.2.1. Livestock productivity projections in statistical and
spatially explicit studies

Fischer10 distinguish between ruminants (e.g. cattle and sheep)
and monogastric animals (e.g. pigs and chicken) in the calculation of
feed input. A technological coefficient is used by Fischer10 to measure
livestock intensity (i.e. required energy input per unit of livestock
output). Feed input allocation is based on energy requirements. Protein
requirements are not included. The total energy requirements for
ruminants are partitioned into a share derived from feed crops and a
share from grazing on pastureland. The area of pastureland required
for ruminant production is estimated by applying an estimated energy
yield per hectare of grassland based on grassland productivity data
calculated with the agro-ecological zones methodology [57].

3.1.1.2.2.2. Livestock productivity projections in agricultural-sys-
tem modelling studies

Livestock productivity is included differently in the partial equili-
brium models. The livestock categories cattle, pigs, poultry, sheep and
goats are included in CAPRI and cover different activities for each
category. For several livestock activities (e.g. dairy cows, heifer fatten-
ing or male adult cattle fattening) high and low yielding variants are
grouped similar to CAPRI's crop production systems [42]. EUFASOM
classifies livestock production systems based on the Farm Accountancy
Data Network classification on economic size and farm specialty,
including dairy farms, grazing livestock, pigs and/or poultry, and
mixed farms [44]. Livestock production in GLOBIOM is characterised
by the number of animals by species, production system and type (i.e.
dairy, meat or other) in each Simulation Unit. Eight production
systems for ruminants are differentiated and six of these are based
on their agro-ecological zone (i.e. arid, humid, temperate) and feed
type (i.e. grazing, mixed). The other two are an urban and a remaining
system [47]. The spatial distribution and allocation between produc-
tion systems of ruminants is based on the Gridded Livestock of the
World database [63,64]. Two production systems for monogastrics are
defined, an industrial and a smallholder system. The spatial distribu-
tion of monogastrics is not included in GLOBIOM because monogas-
trics are not georeferenced to ecosystems like grasslands [47].
Livestock productivity for monogastric animals in GLOBIOM is based
on feed conversion efficiencies identified through literature review and
for ruminants on the basis of animal feed ratios using the digestibility
model RUMINANT. This model ensures consistency between feed
inputs and animal products output of the different production systems.
European grassland productivity is simulated with EPIC for different
fertiliser inputs and off-take rates [47]. Production costs for each
production system alternative are based on FAOSTAT producer prices
for animal product outputs and grain inputs. Changes in average
livestock productivity result from changes in feed composition and
subsequently changes in the relative distribution of animals across the
production systems as the profitability of each production system
varies with varying feed prices. CAPRI allocates feed input for each
livestock activity based on feed requirements of the animals, including

energy and crude protein requirements, fibre requirements and a
margin for dry matter content. The feed composition mix is determined
by feed requirements and minimal costs and is selected from five feed
concentrate categories and five fodder categories. CAPRI distinguishes
between intensively and extensively managed grasslands with different
yields. Changes in average livestock productivity in CAPRI result from
changes in feed composition due to changes in feed costs.

Crop yield growth rates and livestock productivity changes are not
explicitly given in the studies and comparing between the projected
rates among the different studies is therefore impossible. Changes in
crop yield and livestock productivity are driven by several factors
reflecting changes of economic, ecological, technological and policy-
related origin [65]. These factors affect productivity changes and differ
temporally and spatially. Endogenous productivity changes in agro-
economic models are often only driven by few factors, mainly related to
economics. This disconnect both the actual origins of yield develop-
ments and the different roles that influencing factors have among
regions [66].

3.1.1.2.3. Environmental impacts of agricultural production. The
environmental impacts of the agricultural sector and changes in activity
and intensity levels of its production are calculated by agricultural
partial equilibrium models, IMAGE and biophysical models, such as
MITERRA-Europe. All models calculate GHG emissions. EUFASOM,
CAPRI, IMAGE and MITERRA-Europe also assess nutrient leaching
leading to eutrophication. Biodiversity effects are only assessed by
CAPRI and IMAGE.

The partial equilibrium models use an emission factor approach to
quantify GHG emissions. GHG emissions in CAPRI are calculated per
agricultural production activity and include all emissions from involved
activities up to the farm-gate and emissions from land use change.
Nitrogen balances are calculated with a mass balance approach
developed for MITERRA-Europe [52]. The gross balance is defined
as the difference between the different nitrogen inputs (i.e. from
mineral fertiliser, manure, crop residues, biological fixation and atmo-
spheric deposition) and nitrogen export by harvested crop material.
EUFASOM includes emission impact factors calculated by EPIC to
quantify GHG emissions, soil organic carbon (SOC), soil erosion and
nutrient leaching specific for each Homogenous Response Units
(HRU), land use and management alternative. The total environmental
impact of agricultural production is calculated by summing the
agricultural activity levels multiplied by the impact factors.
GLOBIOM quantifies GHG emissions from synthetic and organic
fertiliser application based on fertilisation rates as calculated by EPIC
for the different management systems alternatives. Emissions from
livestock production include CH4 emissions from enteric fermentation
and manure management, and N2O emissions from manure manage-
ment and manure left on pastureland. These emissions are based on
outputs from the RUMINANT model for the different countries and
livestock production systems. Land use change emissions are only
partially included. Changes in SOC are only calculated for Europe and
are based on data from the Joint Research Centre [45].

Changes in agricultural production could also affect biodiversity.
EUFASOM and GLOBIOM do not assess biodiversity effects of changes
in agricultural production other than the loss of grasslands as
important habitats for biodiversity. CAPRI calculates crop diversity of
annual crops on regional level in three ways, the simplest indicator is
the number of crops per reference unit, while two more elaborated
indicators are the Simpson's diversity index and the Shannon's
diversity index [42]. In the IMAGE modelling framework, changes in
biodiversity are assessed by GLOBIO, modelling species richness and
habitat intactness [48].

The total environmental impact from the agricultural sectors is
altered by measures that increase agricultural productivity. The extent
and direction of the change in environmental impacts depend on the
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type of intensification measures. Sustainable intensification measures
increase land productivity without necessarily increasing the level of
inputs [9]. EUFASOM and GLOBIOM both use yield estimations from
EPIC derived from optimised crop rotations. In addition, production
technologies are defined for different levels of tillage, fertiliser input
and irrigation. These factors are, however, not reflecting the whole
range of possible sustainable intensification measures, excluding for
example intercropping, cover crops and precision farming. In addition,
intensification measures for pastures are poorly covered in all models.
GLOBIOM is the most comprehensive model concerning livestock
production systems defining ten livestock production systems, allowing
for shifts from grazed to mixed management alternatives, and includ-
ing grassland productivity changes based on EPIC. More sustainable
intensification measures and the associated effect on land use and
environment could be included in the models by adding sustainable
management alternatives and related production functions or including
pathways of increased productivity. Intensification pathways are for
example defined by Valin et al. [46]. They used GLOBIOM to assess the
effects of different agricultural intensification pathways on GHG
emissions in developing countries. The emission savings from the
sustainable intensification pathways (i.e. higher productivity achieved
through optimised rotation, crop–livestock system integration, and
precision farming) are one-third higher than for the high-input path-
way (i.e. higher productivity through higher synthetic fertiliser inputs)
[46].

3.1.2. Exclusion of high biodiverse and high carbon stock areas
The EU Renewable Energy Directive [21] prohibits the use of raw

materials from high biodiverse areas (i.e. primary forests, legally
protected areas and highly biodiverse grasslands) and high carbon
stock areas (i.e. wetlands and forests). Although all studies exclude
certain of these areas from the land available for energy cropping, the
definitions and datasets used to exclude areas vary among studies
(Table 3).

Forests were excluded in all studies, except in the statistical and
spatially explicit methods applied by Böttcher10. The datasets used to
quantify the European forest area differ among the studies: FRA2000
[67] is used by deWit10 and Fischer10, GEO-BENE [68] is used by
Böttcher13, and the Global Forest Map [69] is used by Schueler13.
GEO-BENE and the Global Forest Map are both based on the Global
Land Cover 2000 dataset produced by the Joint Research Centre [70].
Legally protected areas are excluded by Schueler13 based on the World
Database on Protected Areas [71]. The exclusion of wetlands is based
on Schleupner [72] in EUFASOM used by Böttcher10 and on the
GLWD database [73] by Schueler13. In addition, Scheuler13 exclude
high carbon stock areas by restricting feedstock production to areas
where compensation time for GHG emissions is less than five years.
These areas are identified through the application of a GHG layer to the
LPJmL model. DeWit10 and Fischer10 are the only studies considering
pastures not used for food production or nature protection, to be
available for the production of woody and grassy energy crops. The
reviewed studies do not identify agricultural land areas with high
biodiversity other than described above, such as biodiverse sensitive
areas or areas under agro-environmental support, extensive or organic
farming (see also Section 3.3.2).

Böttcher13, Elbersen13 and EEA13 use a different approach to
determine high biodiverse and high carbon stock areas. High nature
value (HNV) farmland area is used in these studies as a proxy for both
areas to be excluded. HNV-farmland are areas where agriculture is a
major land use and where this agriculture maintains or contributes to
high biodiversity [74]. A HNV-farmland spatial distribution map
developed by Paracchini et al. [75] is used to quantify the land area
to be excluded. This is done by estimating the probability of HNV-
farmland in a grid cell [76]. In addition, Böttcher13 identified high
biodiverse areas outside of Europe based on the Carbon and
Biodiversity Report [77].

All studies thus ignore nature conservation areas for energy
cropping, focusing on agricultural land only. Nature conservation areas

Fig. 1. : Land area available for energy crop cultivation in Europe estimated by the studies included in the review.
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could, however, add a vast amount of biomass to the biomass potential
[78]. Many European conservation areas are managed to prevent
ecological succession and maintain high species richness [e.g. 79].
Although the main goal of this management should be conservation,
the cultivation of woody and grassy energy crops in such areas might
reconcile renewable energy and biodiversity conservation targets [78].
Management of energy crop cultivation in such areas, or other areas
with high biodiversity, should be adapted to local conditions (see also
Section 3.3.2).

3.2. Land availability for energy cropping

Fig. 1 shows the estimated arable and pastureland area available for
energy crop cultivation. This area ranges from 0 to 30 Mha currently, 7
to 42 Mha in 2020 and 7 to 52 Mha in 2030. This is the equivalent of
7–39% of current (2012) arable land in the EU-27 and 7–48% in 2030.
In addition, deWit10 and Fischer10 estimate the amount of pasture-
land available for the cultivation of woody and grassy energy crops at
approximately 10 Mha in 2020 and 15 to 19 Mha in 2030, correspond-
ing to a share of around 15% of current (2012) pastureland in the EU-
27 in 2020 and 23–28% in 2030.

An increase in land availability until 2020 is observed in all studies.
DeWit10, Fischer10 and Krasuska10 project a further increase in land
availability between 2020 and 2030, while Elbersen13 project a decline
in land availability in this period due to an expected increase in land
demand for food and feed production. The land availability projections
of Böttcher10 (modelling approach) remain constant between 2020
and 2030.

Applying stricter sustainability criteria lead to a lower estimated
land area available for energy cropping. This is mainly caused by a
higher share of land reserved for nature reservation. For example,
Elbersen13 show that the land available for energy crop cultivation is

smaller in their ‘sustainability scenario’ compared to their ‘reference
scenario’ in countries with a large share of HNV-farmland. Similar, the
land availability in Fischer10's scenario with stricter environmental
sustainability criteria (i.e. ‘Land use-Environment scenario’) is lower
since set-aside areas are reserved for future nature. In addition, stricter
sustainability criteria on GHG emissions lead to fewer regions where
the GHG mitigation requirements are reached (EEA13, Elbersen13).

Scarlat13 estimate that approximately 18 Mha of agricultural land
is needed to comply to EU's 2020 bioenergy target as proposed in the
national renewable energy action plans. Accounting for the use of co-
products from biofuel production for animal feed, thereby substituting
conventional fodder, such as grain crops, reduces the required land
area to 10 Mha. This is still higher than the lowest estimates of land
available in EU-27 in 2020.

Different types of land are considered suitable for energy crop
production. Two main categories can be distinguished, namely unused
agricultural land and low productive land that is not suitable for
conventional crop production [18]. Allen10 estimates an additional
1.35 Mha of cropland and pastureland available for energy crop
cultivation in the future, of which the main part (0.8 Mha) is recently
abandoned agricultural land. Fallow land could also be considered
unused land, although agricultural land that is left fallow for a certain
period may be part of crop rotation and is therefore not necessarily
available for energy crop cultivation. In addition, the use of fallow land
and recently abandoned pastures for energy crop cultivation should be
considered carefully as these are important agricultural habitats for
biodiversity. The cultivation of annual energy crops on surplus pasture-
land emits many GHGs due to soil disturbances by tillage. This possibly
offsets the emission reduction of bioenergy use [29]. DeWit10
and Fischer10 consider surplus pastureland therefore only to be
available for the cultivation of perennial crops as no regular tillage is
required.

Table 4
Consideration of ecological sustainability constraints in the estimation of the bioenergy potential (✓=included; ✗=not included).

Soil, water and air Biodiversity GHG emissions

Adaptation of management practices
to local biophysical conditions

Limitations on
irrigation

Adaptation of
management practices in
specific areas and to local
biophysical conditions

Buffer zones
in sensitive
areas

Diversity
within
cropping
area

GHG emission mitigation
targeta

Böttcher10 ✗ ✗ ✗ ✗ ✗ ✗

Böttcher13_reference ✗ ✗ ✗ ✗ ✗ ✓- 50% for biofuels only
Böttcher13_sustainability ✗ ✗ ✗ ✗ ✗ ✓- 70% and 80% for all

bioenergy in 2020, and
2030, respectively
(including ILUC)

deWit10 ✓- Only perennial crops on released
grassland.

✗ ✓ - Organic farming
yields 20% lower than
standard

✗ ✗ ✗

EEA13_market first ✗ ✗ ✗ ✗ ✗ ✗

EEA13_climate focus ✓- Only perennial crops and no-till
on fallow land, released land in
vineyards and olive orchards and
recently abandoned agricultural
land.

✗ ✗ ✗ ✗ ✓- 50% for biofuels only
(including ILUC)

EEA13_resource efficiency ✓- Only perennial crops and no-till
on fallow land, released land in
vineyards and olive orchards and
recently abandoned agricultural
land. Apt selection of energy crop
mixes and rotations to local
conditions.

✓- No irrigation
for dedicated
energy crop
cultivation

✗ ✗ ✗ ✓- 50% for all bioenergy
(including ILUC)

Elbersen13_reference ✗ ✗ ✗ ✗ ✗ ✓- 50% for biofuels only
Elbersen13_sustainability ✗ ✗ ✗ ✗ ✗ ✓- 80% for all bioenergy

(including ILUC)
Schueler13 ✗ ✓- No irrigation

for energy cop
cultivation

✗ ✗ ✗ ✓- restricted to areas
where compensation time
for C-emissions is < 5
years

a Mitigation of GHG emissions as compared to fossil comparators.
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3.3. Environmental sustainability constraints to bioenergy potential

Constraints related to impacts on soil, water and air (Section 3.3.1),
biodiversity (Section 3.3.2) and GHG emissions (Section 3.3.3) must be
considered to estimate the sustainable bioenergy potential. Table 4
presents an overview of the inclusion of environmental sustainability
criteria in the studies included in this review.

3.3.1. Soil, water and air
The consideration of management practices adapted to local

biophysical conditions is necessary to avoid negative impacts on soil,
water and air, such as soil erosion, water shortages and pollution
through volatilisation and deposition of nitrogen and other substances
from the production and use of fertilisers [19].

3.3.1.1. Selection of energy crops. Energy crop selection should be
adapted to local bio-physical conditions to reduce the need for
fertilisers, pesticides, tillage and irrigation [19]. An appropriate
selection includes the choice between annual and perennial crops,
the crop species and crop rotations. For example, perennial crops are
favoured on sites susceptible to soil erosion since no tillage is required
and root and SOC formation is higher for perennial crops compared to
annual crops. This results in less erosion and increased soil quality
[8,80]. In addition, nitrate leaching is lower on land cropped with
perennial crops than annual crops [81]. The introduction of energy
crops in existing cropping systems could lead to both negative and
positive effects on yield, both the yield of the energy crop and the
subsequent crop when in rotation, and environmental impacts (e.g. soil
carbon, GHG emissions, nutrient losses and water consumption) [82],
and should therefore be carefully assessed.

The selection of energy crops in studies using partial equilibrium
models (Böttcher10, Böttcher13, EEA13 and Elbersen13) is deter-
mined by production price levels. These are partially determined by
yields, which in turn are influenced by regional soil and climate
characteristics and management (see Section 3.1.1). EEA13 assess
different levels of management requirements to energy cropping in one
of the three scenarios (Storyline 3 ‘Resource efficiency’). The selection
of energy crops and their management has to follow certain environ-
mental guidance in the resource efficiency scenario. This includes the
adaptation to regional biophysical constraints and ecological values,
and the selection of an appropriate crop mix and rotation [8]. How this
is implemented is, however, not explicitly stated in EEA13's documen-
tation. Elbersen13 determine the crop mix per region as the cheapest
mix in terms of lowest production costs in their ‘reference scenario’,
while in their ‘sustainability scenario’ the crop mix with the highest
GHG emission mitigation potential is selected with cost level as the
secondary selection criterion. Water limitations influencing biomass
yields are included in the different models or separately calculated in
the attainable yield (Elbersen13). However, irrigation of energy crops is
prohibited in only one scenario in the EEA13 study (Storyline 3
‘Resource efficiency’).

Both Böttcher10 (spatially explicit method) and deWit10 assess the
total supply potential if the whole area of surplus land is cultivated with
one crop only. Böttcher10's statistical method considers four crops
(reed canary grass, miscanthus, rapeseed and sunflower) with
European average yields. DeWit10 include five crop types (i.e. starch,
sugar, oil, grassy and woody crops) with average regional (NUTS-2)
yields. Crop selection is based on the highest regional yield within each
crop group.

Selection of the appropriate energy crops and management based
on local biophysical conditions to limit fertiliser input and tillage is
thus considered in varying extent. EEA13's resource efficiency scenario
and Schueler13 consider an additional criterion to select energy crops,
namely that only rainfed cultivation is allowed. None of the studies

consider the integration of energy crops in existing or new crop
rotations, or intercropping possibilities in the selection of energy crops.

3.3.1.2. Maximum slope limits for areas under cultivation. Energy
crop cultivation on areas with steep slopes increases the risk of soil
erosion and should therefore be excluded from the sustainable
bioenergy potential. Slope classes are defined in the HRU and HSMU
concepts used in EPIC and agro-economic models [42,83], and slope is
one of the variables determining land suitability for agricultural
production and therefore production costs. Since steep slopes
increase production costs, less of this land is allocated to agriculture.
No additional constraints on slope limits specific for energy crops are
applied in the studies.

3.3.1.3. Maximum extraction rates for primary agricultural
residues. The primary agricultural residues availability is constrained
by the amount of residues to be left on the field to maintain soil quality.
Agricultural harvest residue incorporation into the soil has several
ecological soil-quality functions, namely maintaining and improving
soil organic matter, providing organic nutrients, protecting from soil
erosion and improving water retention [41]. The removal of all residues
from the field could jeopardize these ecological functions. Therefore, a
maximum sustainable extraction rate for harvest residues should be
considered. The sustainable removal rate is location specific and
affected by management practices, harvesting equipment and local
site and climate conditions [35,37]. Certain management practices,
such as no-tillage and crop rotations, might limit soil erosion and SOC
loss [84], thereby also affecting the amount of residues to be removed
from the field while maintaining soil functions. Besides, higher crop
yields might enable, to a certain extent, more residues to be removed
when a constant residue cover is assumed. However, general
sustainable residue removal rates are assumed in all studies, except
Monforti15 (Table 5), since location specific removal rates are not
available from field experiments yet [41]. Monforti15 estimate site-
specific sustainable removal rates with a simulation platform, including
a biophysical process model (CENTURY) considering SOC dynamics
influenced by soil texture, soil moisture and soil temperature [85]. A
better understanding of the effect of site-specific conditions and
management practices on the sustainable removal rate improves the
residue availability assessments, as is shown by Monforti15 [35] and
Haase et al. [86].

Scarlat10 estimate sustainable removal rates of 40% for cereal
crops and 50% for maize, rice, rapeseed and sunflower based on
literature review. These removal rates are also used by Elbersen13,
Monforti13, Pudelko13 and Searle13. Spöttle13 adjust these rates to
country-specific conditions in ten selected countries based on literature
and consultation with several national experts. Spöttle13 assume lower
removal rates for cereal crops for Germany (34%) and Hungary (33%),

Table 5
Sustainable removal rates applied in studies included in the review.

Cereals Maize, rice, rapeseed,
sunflower

Daioglou16 50–60%
deWit10 and Fischer10 50%
Elbersen13 40% 50%
Monforti13 40% 50%
Monforti15 0–100% (site-specific)
Pudelko13 max. 70% 50% (maize); 60% (rice)
Scarlat10 40% 50%
Searle13 66%
Spöttle13 33–50% (country-

specific)
30% (maize)
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while a removal rate of 50% is assumed for France [41]. Sustainable
removal rates as estimated by Monforti15 range from 0–100% collec-
tion depending on local conditions. Their assessment shows that, in
general, the optimal removal rate in for example Denmark, northern
part of France and the United Kingdom is higher than the assumed
default rates (i.e. 40–50%), while optimal removal rates in Estonia,
Romania and Hungary should be lower than the default rate to sustain
SOC levels. Daioglou16 assume a constant residue cover of 2.5 t ha-1,
independent of crop type, location and time, corresponding to a
removal rate of around 50–60%. Removal rates up to 70% for cereal
crops and 60% for rice straw are assumed by Pudelko13. Pudelko13
further assume that all rapeseed straw is left on the field to be
incorporated into the soil due to low suitability of rapeseed straw for
combustion. Böttcher10 use an availability factor of 30% for all crops,
as defined in the BEE Best Practices and Methods Handbook [19],
considering both a sustainable removal rate and competitive uses for
straw.

3.3.2. Biodiversity
Biodiversity conservation puts several additional constraints on the

cultivation of energy crops. First, management practices need to be
adapted in biodiverse sensitive areas or areas under agro-environ-
mental support, extensive or organic farming, and to local biophysical
conditions [19]. This leads to specific requirements in the selection of
energy crops (as described in Section 3.3.1) and to yield adjustments
for energy crops cultivated on areas under agro-environmental sup-
port, extensive or organic farming. No study considers such yield
adjustment. Also, organic and conventional agricultural systems are
not specifically distinguished in CAPRI, EPIC, EUFASOM and
GLOBIOM. Second, buffer zones need to be created between biodiverse
sensitive areas and land used for energy crop cultivation. The im-
plementation of buffer zones between cultivated land and areas of high
biodiversity value is only considered by Allen14 through the exclusion
of these zones from the land available for energy crop cultivation.
Third, a minimum number of crop species and structural diversity
within cropping areas should be considered according to Vis et al. [19].
Crop diversity is available to include as a landscape indicator in CAPRI
but only for annual crops.

Immerzeel et al. [87] review the biodiversity impacts of energy crop
cultivation and conclude that the reported impacts of perennial energy
crops on biodiversity are less negative compared to annual arable crops
and sometimes even positive, in particular for grassy energy crops and
short rotation coppice crops. The benefits of perennial crops include
the creation of more suitable habitats for specific species, enhancement
of connectivity and the restoration of marginal lands [8]. The extent of
the impacts also depends on the initial land use. Different indicators
are used to assess the change in biodiversity due to energy crop
cultivation. For example, farmland bird assemblage [EEA13; 8] and
HNV as a qualitative indicator and mean species abundance as a
quantitative indicator [88]. Changes in biodiversity as a result of energy
crop cultivation could thus also be positive. For example, the cultiva-
tion of multiple species, in agroforestry or intercropping systems
combining energy-energy or energy-food crops, increases local biodi-
versity [89,90]. As mentioned before in Section 3.3.1, the studies do
not include intercropping systems in the resource assessment. In
addition, the indirect effects from land use change on biodiversity are
not taken into account in the studies.

3.3.3. GHG emissions
The amount of GHGs emitted during the cultivation and harvesting

phase is specific to crop, soil type, climatic conditions and management
practices. The impact of bioenergy on land use change and the resulting
GHG emissions from carbon stock changes can either be direct or
indirect [7,91]. In general, these effects are lowest for woody and grassy
crops, followed by sugar, starch and oil crops [92]. However, large
ranges are found in land use change related GHG emission for these

crops [91].
GLOBIOM quantifies GHG emissions from the cultivation and

harvesting phases based on fertiliser requirements as defined by
EPIC. EEA13 and Elbersen13 quantify GHG emissions through the
linkage of the biophysical model MITERRA-Europe with CAPRI. De
Wit et al. [16] also use MITERRA-Europe to quantify cumulative GHG
mitigation balances for different energy crops (i.e. oil, starch, sugar,
woody and grassy crops) and explicitly also include GHG emissions
from the intensification of agricultural land to release land for energy
crops. They find significantly higher GHG emission mitigation from the
cultivation of perennial crops on released land compared to the
cultivation of annual crops. Perennial crops generate more soil organic
matter compared to annual crops due to the deeper rooting systems
and lower tillage requirements. In addition, fertiliser requirements are
lower for perennials thereby reducing N2O emissions. This combined
with higher yields than annual crops, lead to higher GHG mitigation
potential per unit land [16]. De Wit et al. [16] show that the mitigation
potential of agricultural intensification through sustainable measures
(reduced tillage, soil carbon enhancement and more efficient fertilisa-
tion) is further increased by perennial energy cropping on the released
land.

GHG emission mitigation targets can only be examined in studies
applying a demand-driven approach, since the whole supply chain
should be considered. Böttcher13, Elbersen13 and EEA13 apply a
minimum GHG emission savings. These studies follow the same
method: direct land use emissions from energy cropping are calculated
with MITERRA-Europe, while the GEMIS database is used for the
calculation of downstream emissions of the feedstock conversion
routes. EEA13, Böttcher13 and Elbersen13 present median land use
change related GHG emission factors based on literature review.
CAPRI results are used to project agricultural land use and land use
implications of energy crop cultivation for the different scenarios in
these studies. Land use change emission factors are applied if these
CAPRI results show land use displacement.

3.4. European bioenergy potentials

Fig. 2 summarises the bioenergy potentials from energy crops as
estimated by all reviewed studies. Böttcher10 and deWit10 estimate
the technical potential of energy crops without any other sustainability
constraints than food security and the exclusion of nature conservation
areas. This technical potential varies between 0.7 and 5.7 EJ yr-1 now,
to 2.7 and 12.1 EJ yr-1 in 2020 and 3.3 and 15.8 EJ yr-1 in 2030,
depending on the energy crop cultivated and which land is considered
for production. Elbersen13 estimate an ecologically sustainable poten-
tial varying between 2.2 and 3.2 EJ yr-1 in 2020 and 1.5 and 2.7 EJ yr-1

in 2030. The high technical potentials found by deWit10 are explained
by the cultivation of all land with one specific crop group, and assumed
high yield increases in Eastern European countries. DeWit10's results
show the importance of crop selection on the potential. The highest
potential is from grassy crops, followed by woody crops. Grassy and
woody crops reach high yields with relative extensive agriculture
management practices. This lowers costs and GHG emissions [29].
The cultivation of only one crop type (e.g. only miscanthus, switch-
grasss and reed canary grass or only poplar, willow and eucalyptus), is
not desirable for biodiversity reasons.

Woody and grassy crops are expected to play a key role in the future
bioenergy potential, in particular in scenarios which apply stricter
sustainability criteria. The estimated potential derived from arable
crops is reduced to zero in the scenarios considering stricter sustain-
ability criteria in Böttcher13, EEA13 and Elbersen13, due to the
avoidance of bioenergy production with high ILUC impacts in these
scenarios (Fig. 2).

Primary agricultural residues are also expected to play a key role in
the future bioenergy potential. The annual amount of straw and stover
that is available in the EU-27 and that includes environmental
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constraints, is estimated to range from 45 to 215 Mt dry matter
currently, 115 to 185 Mt dry matter in 2020 and 110 to 165 Mt dry
matter in 2030. The annual ecologically sustainable energy potential
from these residues ranges from 0.7 to 3.6 EJ currently, 1.9 to 3.1 EJ in
2020 and 1.9 to 2.8 EJ in 2030 (based on a lower heating value of

17.0 MJ kg−1 dry matter) (Fig. 3). DeWit10 and Fischer10 do not
account for competitive uses in their residue potential while the other
studies do (see the Online Supplementary Information). When also the
non-EU Member States are included, the annual ecologically sustain-
able potential is estimated to be 3.5 EJ currently [24,28], 3.7 EJ in

Fig. 2. : Bioenergy potential from energy crops as estimated by different studies. TP: Technical potential; ESP: Ecologically sustainable potential; EP: Economic potential; IP:
Implementation potential. Potentials from deWit10 are estimations of the whole land area cropped with one specific crop type. EEA13 calculated the economic potentials with the
following feedstock prices: EEA13_market focus < 3 €/GJ; EEA13_climate focus and EEA13_resource efficiency < 6 €/GJ. Böttcher10_modelling approach and Böttcher13 did not
state the feedstock prices.
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2020 and 3.9 EJ in 2030 [28] (based on a lower heating value of
17.0 MJ kg-1 dry matter). However, large temporal variation in residue
availability is caused by weather influences. Scarlat et al. [37], for
example, estimated this yearly variation to be in the range of +23% to
−28% compared to average residue availability.

Most studies included in this review (Bentsen14, Daioglou16,
deWit10, Fischer10, Monforti13, Monforti15, Scarlat10) only estimate
potentials from straw and maize stover, while Elbersen13 and
Pudelko13 also include cuttings and pruning residues. The current
total contribution of straw to primary agricultural residues is estimated
to be 93% [36]. Overall, wheat straw contributes most to these primary
agricultural residues (c. 35%), followed by barley and maize (both c.
15%) [36,37].

An increase in crop yield likely leads to a decrease in the residue to
product ratio of crops as the share of the harvestable component of the
crop has been increased through crop breeding over the last decades
[24]. DeWit10 and Fischer10 consequently project a decrease of
approximately 9–14% per decade in agricultural residue availability
(Fig. 3). However, Bentsen14, Daioglou16 and Monforti15 estimate
more residue availability with increased yields because the use of crop
residues for soil protection is proportional to the amount of land used.
Bentsen14 estimates a 12% increase in agricultural residues which are
theoretically available through agricultural intensification in Western,
Northern and Southern Europe (from 204 to 229 Mt dry matter yr−1).
This increase in crop residues through agricultural intensification is
relatively low in these regions, since high input agriculture is already
commonplace here.

To summarise, whereas some studies project an increase in the
bioenergy potential from energy crops, other studies project a slight
decrease. All studies show a shift in shares from annual crops to
perennial crops. The larger shares of perennial crops occur with stricter
sustainability constraints. Projections of primary residue availability
remain equal between now and 2030. Future estimates on the share of
energy crops and primary agricultural residues in the total agricultural
feedstock vary between studies. But the share of energy crops is
expected to decrease by including stricter sustainability constraints
on biodiversity conservation and GHG emissions.

Although the bioenergy potentials from the studies are compared to
each other, separate model potentials are based on different assump-
tions. A detailed comparison of biomass potential studies is only
possible if studies precisely state their key assumptions, such as
projections on food demand, productivity increases, and energy crop
selection and yields [18]. Some of these key assumptions are, however,
not explicitly discussed in the reviewed studies thereby lowering the
comparability of these studies. The review, however, clearly shows that
identifying sustainable pathways for European bioenergy production
requires an integrative modelling approach. Land demand for food,
feed and energy crop production should be combined and the
consequent environmental impacts, including GHG emissions, nature
and biodiversity conservation, and soil, water and air protection,

should be determined. The environmental effects of agricultural
intensification, in particular livestock intensification and sustainable
intensification measures, need to parameterised and included in
studies and models to enable a comprehensive assessment of the
sustainability of bioenergy.

4. Conclusions

This study identified shortcomings in bioenergy potential estimates
by reviewing how studies include agricultural intensification measures
and environmental sustainability constraints, and subsequently how
the associated environmental and land use effects are modelled.

One of the key factors in bioenergy potential studies is the rate and
nature of intensification of existing agriculture land to release more
land for energy crops while simultaneously securing food supply. Our
review shows that the biomass potential studies partly include the
effects of agricultural intensification on the extent of surplus land to
cultivate energy crops and on straw availability. Crop and livestock
productivity developments are included in all the studies projecting
future energy potential. Different methodologies are applied, which
vary in completeness, level of parametric detail and representativeness
of future developments. However, the environmental impacts of
intensification are nearly always ignored, while these impacts should
be accounted for if intensification is required to make land available for
energy cropping.

In particular, livestock productivity developments are less detailed
in their parameterisation included in most studies and models.
Livestock production requires a large extent of both arable land and
pastures. A detailed representation of agricultural developments is
therefore essential to estimate land availability for energy crops. In
particular, pasture productivity is ignored in most studies while
pastures occupy the largest share of agricultural land, while they only
provide a small share of food and its intensification potential is large.
The effects of changes in pasture productivity on biodiversity, GHG
emissions and nutrient leaching should also be carefully considered.
Data on pasture productivity and the effects of intensification of
pastures is, however, limited. Livestock productivity developments
should also be considered in estimating future straw potentials,
because the demand for straw for animal feed and bedding varies
between livestock systems. Agro-economic models and biophysical
models are able to assess the environmental effects of changes in crop
and livestock productivity, although often limited to GHG emissions,
and nutrient leaching and runoff. All environmental effects (also on
biodiversity, soil, water and air) should be recognised in future studies
to assess the sustainability of bioenergy. This could be done through
the better coupling of comprehensive agro-economic models (that
estimate the demand for agricultural land) and biophysical models
(that estimate the environmental effects of crop and livestock produc-
tion and land use).

Our review further shows that all studies incorporate sustainability
criteria on biodiversity conservation and GHG emissions by excluding
certain areas (primarily forests and wetlands). Most studies, however,
neglect sustainability constraints other than GHG emissions on the
crop type selected and rather select crops on basis of highest yield,
highest GHG abatement or lowest production costs. Sustainability
constraints on crop selection considered are mostly limited to rainfed
agriculture and perennial crops only on pastureland, while constraints
to diversity (e.g. minimum number of crop species and structural
diversity within cropping areas) are not considered. In addition,
management practices leading to possible positive environmental
effects of energy crops, for example intercropping food-energy or
energy-energy crops or integrating energy crops in existing crop
rotations, are missing in the reviewed studies.

Future productivity developments of crops and livestock in models
are currently limited to conventional intensification whereby the
proportion between inputs and outputs is fixed. Sustainable manage-

Fig. 3. : Ecologically sustainable potentials from straw in the EU-27 as estimated by
different studies. The energy potentials from the different studies are calculated with
lower heating value of 17 MJ kg−1 for this comparison. DeWit10 and Fischer10 do not
exclude competitive uses from their potential.
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ment practices, such as intercropping, precision farming and optimis-
ing feed efficiencies, increase yields with similar or lower inputs. In
general, the environmental effects of such advanced practices are lower
than conventional intensification measures. A better inclusion of such
sustainable practices into the model-based analyses will thus improve
the assessment of intensification and its environmental consequences.
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