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Abstract The ClC chloride channels and transporters constitute
a large family of membrane proteins that is involved in a variety
of physiological processes. All members share a conserved molec-
ular architecture that consists of a complex transmembrane
transport domain followed by a cytoplasmic domain. Despite
the strong conservation, the family shows an unusually broad
variety of functional behaviors as some members work as gated
chloride channels and others as secondary active chloride trans-
porters. The conservation in the structure and the functional
resemblance of gating and coupled transport suggests a strong
mechanistic relationship between these seemingly contradictory
transport modes. The cytoplasmic domains constitute putative
regulatory components that are ubiquitous in eukaryotic ClC
family members and that in certain cases interact with nucleo-
tides thus linking ion transport to nucleotide sensing by yet un-
known mechanisms.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Chloride (Cl�) is the most abundant anion in the extracellu-

lar environment of different organisms. Its transport across cel-

lular membranes contributes to diverse physiological

processes. Different families of membrane proteins have been

identified that selectively transport Cl� ions. These proteins in-

clude secondary active chloride transporters and chloride

channels that catalyze ion flow by two distinct mechanisms.

In transporters that function by ‘alternate access’ mechanisms

different conformational states of the protein are sequentially

occupied during the transport cycle and usually expose ion

binding sites alternately to either side of the membrane, there-

by preventing the formation of a continuous pore, which

would dissipate the gradient of the transported ion. Channels

on the other hand catalyze the specific downhill movement

of the transported ion at very high rates by forming such con-

tinuous pores that connect both sides of the membrane and

that usually contain selective ion binding sites in a narrow

selectivity filter. Whereas in most cases channels and transport-

ers are encoded by different protein families this strict division
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breaks down for the ClC family of Cl� channels and transport-

ers. The ClC proteins constitute a large family of transmem-

brane transporters that either function as Cl� channels or as

H+/Cl� exchangers [1]. Its members are ubiquitously expressed

in all kingdoms of life. The nine homologues in human are lo-

cated in the plasma membrane or in the membranes of intracel-

lular compartments and are involved in various processes,

ranging from electrical signalling in muscle to epithelial ion

transport and the acidification of intracellular compartments

[2]. Mutations in certain ClC proteins result in severe familial

diseases including myotonias, nephropathies and osteopetro-

sis. The family shows a diverse functional behavior that is in

many cases still poorly understood.

Despite this broad functional diversity all family members

share a conserved structural organization, which includes a

complex transmembrane transport domain that is usually fol-

lowed by a cytoplasmic component that is believed to play an

important role in transport regulation (Fig. 1a) [1]. Both struc-

tural components are essentially conserved between the func-

tional branches of channels and transporters, which makes

the distinction based on the sequence difficult. The aim of this

mini-review is to summarize the current understanding of ClC

protein structure and function and to outline major unsettled

questions.
2. A structural framework for Cl� selectivity

Our current insight into the architecture of the transmem-

brane component is provided by the structures of two bacterial

homologues from Salmonella typhimurium (StClC) and Esche-

richia coli (EcClC or ClC-ec1) [3,4]. Although the bacterial

proteins function as H+/Cl� exchangers, their structures are

representative for both branches of the ClC family. In contrast

to eukaryotic family members, however, the bacterial proteins

of known structure lack the cytoplasmic components.

The structure of the bacterial transporter EcClC is shown in

Fig. 1b. EcClC is a homodimeric protein whose two structur-

ally identical subunits each harbor an independent ion translo-

cation pore. The subunit exhibits a complex topology with two

structurally related halves spanning the membrane with oppo-

site orientations to form an ‘antiparallel architecture’ (Figs. 1a

and 2a) [3]. This ‘antiparallel architecture’ that was previously

only observed in the unrelated aquaporin superfamily [5] has

since then proven to become a versatile construction principle

for several transmembrane transport proteins [6,7]. The Cl�

translocation path is located at the interface between the two

halves and contains a Cl� selectivity filter in the neck of an

hourglass-like shaped pore. This narrow 15 Å long selectivity
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Topology and structure of ClC proteins. (a) Schematic
topology of eukaryotic members of the ClC family. The topology of
the transmembrane domain was inferred from the known structure of
the bacterial homologue EcClC. The 18 a-helices are labeled A–R, the
two similar halves within the transmembrane domain (a-helices B–I
and J–Q), which are oriented with opposite directions with respect to
the membrane, are colored in green and cyan, respectively. The
sequence regions, which contribute to the Cl� selectivity filter, are
marked (arrows) and the respective conserved sequences are shown.
The two CBS motifs of the cytoplasmic component of the protein are
shown as red and blue spheres. (b) Structure of EcClC viewed from the
extracellular side. The two subunits of the homodimeric protein are
colored in red and blue, bound ions in the selectivity filter of each
subunit are shown as green spheres.

Fig. 2. Structure of the EcClC selectivity filter. (a) View at the EcClC
subunit from the dimer interface. The two halves of the protein are
colored as in Fig. 1a, their orientation in the membrane is indicated by
arrows selected helices are labeled. Bound ions are shown as red
spheres, regions of the protein contributing to the ion selectivity filter
are colored red. (b) Blowup of the selectivity filters of the wt protein
and of a selectivity filter mutant. The protein backbone is shown as
ribbon with the N-termini of a-helices colored in blue. Selected side-
chains are shown as sticks, bound ions as red spheres. Interactions
between the ions and hydrogen bond donors in the protein (OH groups
of a Ser and a Tyr side-chain and amide NH groups of the protein
backbone) are indicated by dashed lines. Aqueous cavities approaching
the selectivity filter from both sides of the membrane are shown as blue
mesh. The ion binding sites are labeled. Left: the selectivity filter in a
‘closed conformation’ as seen in the structure of the wt-protein. Two
chloride ions are bound to the sites Sint and Scen, while the ion binding
site Sext is occupied by the side-chain of the conserved glutamate
residue E148 which acts as a tethered ion to block the filter. Right: the
selectivity filter of the mutant E148Q in an ‘open-like conformation’:
the mutated side-chain of the residue has moved out of the filter and
points towards the extracellular solution. An additional ion has taken
its place, binding to the site Sext. The filter is occupied by three ions
which bind in a single file and bridge the aqueous solutions on both
sides of the membrane.
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filter harbors three selective anion-binding sites which span the

filter to bridge the two aqueous vestibules on either side of the

membrane (Fig. 2b) [4]. The three binding sites that were

named Sint, Scen, and Sext according to their location in the fil-

ter allow insight into the chemistry underlying anion selectiv-

ity: The ions are stripped of their hydration shell to various

degrees and are interacting with partial charges of side-chains

and backbone residues, several of which are located at the N-

terminus of a-helices (Fig. 2b). In the wild-type (wt) protein

two of the binding sites (Sint and Scen) are occupied by Cl�

ions, while the third site at the extracellular end of the filter

is occupied by the side-chain of a conserved glutamate residue

(Glu 148 or Gluext, Fig. 2b) that binds to this site akin to a

tethered anion. When mutating this residue to glutamine, the

binding site is released and binds a Cl� ion instead, while leav-

ing the remainder of the filter unchanged [4]. Recent results
from an experimental investigation addressing the ion binding

properties of the selectivity filter showed that despite their

close mutual proximity, all three sites can bind Cl� ions at

the same time with mM affinity [8]. The binding properties

of this ion binding region appear to be conserved among the

two functional branches channels and transporters thus under-

lining the strong structural relationship within the family [8].

The multiple occupancy of the Cl� selectivity filter resembles

a similar situation found in K+ channels and strongly suggests
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that also in ClC channels ions permeate in a single file with

mutual electrostatic repulsion fostering rapid conduction [9].

The two conformations of the selectivity filter, the blocked

‘closed-like’ conformation in the wt structure and the ‘open-

like’ conformation in the mutant, have important implications

for both gating in the ion channels and for coupled transport

in the H+/Cl� exchangers.
3. Channel and transporter function

The EcClC structure allows the comprehension of important

aspects of the complex functional behavior within the ClC

family. The ‘double barreled’ architecture of ClC channels that

is reflected in the dimeric structure of EcClC was initially pro-

posed based on electrophysiological experiments on the Cl�

channel ClC-0 [10]. This member of a family of muscle type

channels (which includes the human proteins ClC-1 and ClC-

2) shows a complex gating behavior that is influenced by

voltage, Cl� and pH [11,12]. Different from voltage dependent

cation channels, however, the transmembrane voltage in ClC

channels is not sensed by a protein domain, instead it is the

permeating Cl� itself whose movement across the electric field

upon channel opening confers the voltage dependence to this

process [13]. Two distinct mechanisms regulate conduction in

muscle type channels: (1) Independent opening and closing

of each pore in the dimeric protein in a process called ‘proto-

pore gating’. (2) Concerted closing of both pores in a process

named ‘common gating’ [14]. The structure of the ion binding

region in EcClC immediately suggested a relation to the ‘pro-

topore gating’ process with the glutamate residue binding to

Sext being the likely candidate for a gate which opens and

closes the permeation path. Mutations of this residue essen-

tially abolish gating, thereby rendering the protein as a pre-

dominantly open Cl� conductor [4]. Interestingly the only

ClC family members that do not contain this conserved resi-

due, the ClC-K kidney channels lack the ‘protopore gating’

mechanism [15,16]. While it is generally accepted that the glu-

tamate side-chain binding to Sext serves as a gate whose pro-

tonation also confers the pH dependence of pore opening,

the mechanisms of voltage and Cl� dependence are currently

less well understood.

Since EcClC functions as a H+/Cl� exchanger with strict 1:2

stoichiometry, its structure is ideally suited to study the mech-

anisms of coupled transport in the ClC family [17]. This func-

tional branch includes next to many bacterial homologues,

also eukaryotic family members that reside in intracellular

organelles such as endosomes and lysosomes [18,19]. Although

the detailed transport mechanism is currently not understood,

results from several studies suggest a strong functional rela-

tionship between ClC channels and transporters. A mutation

of the glutamate residue occupying Sext in EcClC prevents

H+ transport and turns the protein into a passive Cl�conduc-

tor [17]. A similar behavior was also found for the eukaryotic

transporters ClC-5 and ClC-4 [18,19]. Those results point at a

mechanistic similarity between ‘protopore gating’ and H+

transport.

A prerequisite of the transporters is the presence of a defined

proton pathway across the protein. A glutamate residue lo-

cated on the intracellular surface of the protein that is ubiqui-

tous in the transporters but not in the channels was suggested

to serve as intracellular proton acceptor based on the fact that
a mutation of this residue abolishes proton transport [20].

Thus, the Cl� and H+ pathways appear to be separated on

the cytoplasmic side and converged at the extracellular end

of the Cl� selectivity filter. Two features distinguish transport

in EcClC from common alternate access transporters (e.g. lac-

tose permease [21]), which suggests a fundamentally different

transport mechanism: (1) The transported ions diffuse through

extended regions in the protein akin to situations found in ion

channels (Fig. 2b). (2) Proton transport appears to require the

presence of Cl� ions in specific binding sites [22,23]. Both

properties have so far not been observed in other coupled

transport proteins. Moreover, in accordance with the relatively

fast transport kinetics (which was estimated to occur on a high

microsecond time-scale [24]), presently no large conforma-

tional changes have been observed, that would change the ac-

cess of the binding sites to either side of the membrane other

than the movement of the side-chain in mutations of the gluta-

mate bound to Sext (Fig 2b). The specific roles of the two ob-

served conformations of the Cl� selectivity filter during

transport are still unclear. Although it has been suggested that

the conformations of two residues coordinating the ion in Scen

(S104 and Y445 Fig. 2b) would constitute an intracellular gate,

which prevents free exchange of the ion with the cytoplasm

[17], there is currently no experimental evidence supporting

this idea. A detailed understanding of coupled transport in

the ClC family clearly remains a challenging task for future

studies.
4. Transport regulation via cytoplasmic domains

Although the EcClC structure provides important insight

into the functional mechanisms of the individual subunits as

ion conduction and ‘protopore gating’ in the channels and

coupled transport in the transporters, the structure does not

reveal the mechanistic basis for concerted regulatory processes

as the ‘common gating’ mechanism in the muscle type channels

[14]. The structural basis of those mechanisms is currently still

not understood. Increasing experimental evidence, however,

suggest that concerted processes involve the cytoplasmic com-

ponents that are found in all eukaryotic members of the family

and that are absent in the bacterial proteins of known structure

[25,26]. Each cytoplasmic domain is directly attached to a helix

of the pore domain that contributes a residue to a Cl� binding

site (the R-helix) (Figs. 1a and 2b). It is therefore an attractive

but still unproven hypothesis that these components might be

involved in transport regulation by directly affecting the selec-

tivity filter via the R-helix [3].

All cytoplasmic ClC domains share a conserved structural

organization that contains a pair of CBS motifs. Similar motifs

are frequently found as building blocks for regulatory ligand

binding domains in a variety of protein families such as en-

zymes, kinases and transmembrane transporters [27]. The

structures of isolated domains of two different ClC family

members give insight into the architecture of these putative

regulatory units [28,29]. Fig. 3a shows the structure of the

cytoplasmic domain of the transporter ClC-5. Its overall orga-

nization resembles proteins that share a similar structural scaf-

fold. The two CBS motifs within one chain (CBS1 and CBS2)

are related by a pseudo twofold arrangement and are tightly

interacting via an extended interface formed by a pair of b-

strands. The overall size of the cytoplasmic domains within



Fig. 3. Structure of the cytoplasmic domain of ClC-5. (a) Ribbon representation of the ClC-5 cytoplasmic domain. The two CBS motifs are colored
in green and blue, respectively, residues of the ubiquitine ligase recognition sequence are colored in red. The bound ATP molecule is shown as CPK
model. (b) Dimeric organization of two cytoplasmic domains as observed in the crystal structure. The colors are according to a. The ATP molecule is
shown as CPK model. The twofold axis of symmetry is indicated. (c) View of the nucleotide binding site. The protein mainchain is shown as Ca-trace
with selected residues in the vicinity of the bound ATP molecule shown as sticks. Hydrogen bonds between the protein and the nucleotide are shown
as black dashed lines. Selected protein residues in contact with ATP are labeled. (d) Hypothetical model of the cytoplasmic domains relative to the
transmembrane domain viewed from within the membrane. The structure of the EcClC dimer (shown as ribbon with subunits colored in blue and
red, respectively) serves as a model for the transmembrane domains. The R-helix is colored in green. Bound ions are drawn as green spheres. The
dimeric cytoplasmic domains of ClC-5 are shown as ribbon and are colored in red and blue, respectively. The ATP molecules are shown as CPK
models.
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the family varies, ranging from about 150 residues in the kid-

ney channel ClC-Ka to more than 390 residues in the muscle

channel ClC-1. Two regions in the protein are responsible

for this variation, the linker region connecting the two CBS

motifs, and the C-peptide, a sequence stretch following CBS2

[28]. Those two regions can be extended as the case in the mus-

cle type channels (ClC-0, ClC-1 and ClC-2). Unlike the two

CBS motifs that form compact and well-folded structures,

the extended linker and C-peptide of the muscle type channels

lack tertiary structure [28]. This feature is predicted from the

sequences, it is manifested in the lack of electron density in

the crystal structure of the domain of ClC-0 and has recently

been confirmed in a NMR study that revealed the dynamic

nature of both regions (manuscript in preparation). The func-

tional role of these extended flexible regions is still unclear.

There are, however, various experiments that hint at an

involvement in regulatory processes: (1) as seen in splice vari-

ants of certain ClC channels, the disordered C-peptide appears

to have a large influence on channel behavior [30]. Moreover,

in ClC-1 point mutations in the same region give rise to severe

muscle diseases [31]. (2) The linker region in some family mem-

bers contains recognition sites for kinases, and channel func-

tion was shown to be altered in response to phosphorylation

[32,33]. (3) The shorter and structurally well-defined linker of

the transporter ClC-5 contains a recognition site for the pro-

tein ubiquitin ligase, which plays an important role in the cor-

rect targeting of the protein to intracellular compartments [34].

Analytical ultracentrifugation experiments revealed a di-

meric organization of the isolated domains in solution thus
suggesting that the twofold arrangement of the transmem-

brane pore is extended to the cytoplasmic components

[28,29]. Whereas the subunit structures of the ClC cytoplasmic

domains resemble similar regions in other proteins, their olig-

omeric assembly is unique. The quarternary structure found in

the crystal structure of the ClC-5 domain is distinct and has

not been observed in structurally related components of other

protein families (Fig. 3b). A similar assembly, however, was re-

cently also seen in the crystal structure of the equivalent do-

main of the channel ClC-Ka (manuscript in preparation).

While most CBS motif containing proteins dimerize via a flat

interface formed by the two a-helices in the respective subdo-

mains, thus resulting in a disk-shaped structure, the ClC do-

mains form V shaped dimers that interact via a conserved

interface that is predominantly formed by residues on the sur-

face of CBS2 in each chain of the homodimeric protein [29].

This interface is smaller than other interfaces, which might re-

flect the need of the domains to undergo conformational

changes upon channel regulation. Such conformational

changes have recently been reported for the channel ClC-0

[25]. The cytoplasmic domains of this voltage dependent

channel were observed to move about 20 Å during ‘common

gating’ thus suggesting an important role in this concerted pro-

cess.

A different regulatory mechanism of certain ClC proteins

that involves their cytoplasmic domains concerns the interac-

tion with adenosine nucleotides. CBS motifs frequently consti-

tute regulatory nucleotide binding domains in different protein

families [35]. For example, in the ATP dependent protein
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kinase a domain consisting of four consecutive CBS motifs has

been proposed to be involved in the regulation of catalysis in

response to changes in the metabolic state of the cell [36]. A

similar regulation in response to changing nucleotide concen-

trations was observed for certain ClC family members [37].

ATP binding to the cytoplasmic domains of the muscle chan-

nel ClC-1 has recently been shown to influence the voltage

dependence of ‘common gating’ by stabilizing the closed state

of the channel [38]. The basis for nucleotide recognition was

clarified in the structure of the cytoplasmic domain of the hu-

man transporter ClC-5 [29]. Each protein chain contains a spe-

cific nucleotide binding site in the interface between the two

CBS motifs (Fig. 3a). The site does not have catalytic activity

and does not discriminate between ATP, ADP and AMP

which bind in a Mg2+ independent manner with about

100 lM affinity (Fig. 3c). Although the structural basis for

nucleotide recognition by the cytoplasmic domains of certain

ClC proteins is resolved, there remain many open questions

concerning the structural organization of the full length pro-

tein, effects of nucleotide binding on the transmembrane trans-

port domains and the nature of the regulatory stimulus

(Fig. 3d). The clarification of these open questions requires

the structure determination of full-length ClC proteins in the

absence and presence of nucleotides and the study of the pro-

teins in their native cellular environment.
5. Outlook

The ClC proteins constitute an important family of chloride

transport proteins that either function as gated chloride chan-

nels or as coupled chloride transporters with closely related

transport mechanisms. The increasing amount of structural

information has changed our understanding of the diverse

and complex mechanisms underlying transport and regulation.

However, even with first structures in hand many mechanistic

questions are still not well understood and require experimen-

tal clarification. With continuous inputs from different areas

including structure function and physiology we expect a pic-

ture to emerge which clarifies the role of these proteins in hu-

man physiology and pathophysiology.
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