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We obtain sufficient conditions for the oscillation of all solutions and existence
of positive solutions of the neutral difference equation

Ax,+cx,_ )+ PpXy_ =0, n=0,1,2,..,

where ¢ and p, are real numbers, m and k are integers, and p,, m and k are
nonnegative.  © 1991 Academic Press, Inc.

INTRODUCTION

In the past 10 years the oscillation and nonoscillation of solutions of
difference equations have been extensively investigated [3, 5-7]. It turns
out that many (but not all, see [6,7]) of the substantial criteria for
differential equations have discrete analogues. Further, criteria have also
been obtained for the oscillatory and nonoscillatory behavior of discrete
analogues of delay differential equations [3, 5]. Especially, the oscillations
of all solutions of the neutral difference equation

A(yn+pyn—k)+qyn—1=0’ n=07 1,2,... (ll)

have been investigated in [5], where 4 denotes the forward difference

operator 4y, =y, .| — V-
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A nontrivial solution {y,} of Eq.(1.1) is said to be oscillatory if for
every N> 0 there exists an »>= N such that y, y,  , <0. Otherwise it is
nonoscillatory.

In this paper we consider the first order neutral difference equation of the
form

A(xn+cxn—m)+pnxn— k:()v i’lZO,], 2’ RL] (]2)
and the forced equation of the form
A('xn+cxnfm)+pnxn——k=Fna nzoy 1,2, (13)

Equation (1.2) has also been considered in the numerical analysis of
functional differential equations (see [1]).

Let M =max{m, k}, where m and k are nonnegative integers. Then by
a solution of Eq.(1.2) we mean a sequence {x,} which is defined for
nz — M and which satisfies Eq. (1.2) for n=0, 1, 2, ... Clearly, if

x,=A, for n=-M,.., —1,0 (1.4)

are given, then Eq. (1.2) has a unique solution satisfying the initial condi-
tions (1.4). We assume throughout that p, cannot be eventually identically
Z€ro.

Our purpose in this paper is to obtain sufficient conditions for oscillation
an nonoscillation of Egs. (1.2) and (1.3). Some of the sufficient conditions
are sharp, and most of the results in [5] are special cases of our results.

It is obvious that the behavior of the solutions of Eq. (1.2) depends on
the parameter ¢. We establish results for Eq. (1.2) in Sections 2, 3, 4, and
5 according to the values of ¢. In Section 6 we present sufficient conditions
for the oscillations of solutions of Eq. (1.3).

The following lemmas will be needed for the study of Eq. (1.2).

Lemma 1.1 [3].  Assume that

liminf p,=a>0

n-» oC
and

liminf p,>1—a.

n— oc

Then

(i) x,,1—Xx,+D.%,_ <0 has no eventually positive solution;
(i) x,,1—X,+P,X, =0 has no eventually negative solution.
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LEMMA 1.2 [3]. Assume that

liminf p,> ————.
n—w P (m+1)'"+1

Then the conclusion of Lemma 1.1 holds.

LemMmA 1.3 [3]. Assume that p, =20 and
limsup Y pi>L
=% k=n-—m

Then the conclusion of Lemma 1.1 holds.

2. CASE WHEN ¢= — 1.

LEMMA 2.1.  Assume that ¢= —1 and p, >0 for n=1,2, ... Let {x,} be
an eventually positive solution of (1.2), setting

Zn= Xk Xy (2.1)

then z,>0 and Az,<0 eventually.

Proof. From (1.2) we have
AZ,, = —PaXn—t <0

eventually since p, # 0, so z, cannot be eventually identically zero. It
follows that {z,} is eventually positive or eventually negative.
If z, <0 eventually, then
z,<zy<0 for n=N.
Hence
xN+mn<ZN+xN+(n71)m< <nZN+XN'

By letting n — oo, we note that x, ., will be negative which is a contradic-
tion with x, > 0. The proof is complete.

THEOREM 2.1. Assume that

(i) c=-1
(i) p,=20 for n=1,2,.. and X_, p,= ©, where N is a positive
integer.

Then every solution of (1.2) is oscillatory.



216 LALLI, ZHANG, AND LI

Proof. Suppose the contrary. Without loss of generality let {x,} be an
eventually positive solution of (1.2). By Lemma2.1 z,>0 and 4z,<0
eventually, which implies that lim, _, ., z,=a >0 exists.

Summing (1.2) from N to n, we have

Zas1— EnF Z pix; =0 (2.2)
i=N
Letting n — oo, we get
INZ Y PiXi (2.3)
i=N

Setting miny <, < v+ m X;_r = 5> 0, we know that
Z,=X,— X, _m>0 for n=N.

Hence x,> s for n 2 N. From (2.2) we have

o@C e
O>Zy k2 ) DX, i ZS Y pa
i=N+k i=N+k

which contradicts condition (ii). The proof is complete.

ExampLE 2.1. Consider
AXy =Xy _ )+ PpXp— e =0, n=0,12, ., (2.4)

where m>0, m' >0, and

Pn= ” (nzm 1) - (2.5)

(n+D)(n—m+1)\ = i

It is obvious that > , p; < for N> m. Equation (2.4} does not satisfy
assumption (ii) in Theorem 2.1. In fact, (2.4) has a nonoscillatory solution
X,=27r_in=1,2 ..
ExaMpLE 2.2. Consider
Ax,—Xx,_,)+4dx, =0, n=0,1,2, ., (2.6)

where m is odd, k is even, and k, m are positive integers. Equation (2.6)
satisfies the assumptions of Theorem 2.1, therefore every solution of (2.6) is
oscillatory. In fact x,=(—1)"*!, n=1,2, ... is a solution of (2.6).

Remark 2.1. Theorem 2.1 includes Theorem 1 (i) in [5] as a special
case.
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3. CASE WHEN —1l<e¢<0

LEMMA 3.1. Assume that —1<c¢<0 and p,>0. Let {x,} be an even-
tually positive solution of (1.2). Then z,> 0 and Az, <0 eventually, where z,
is defined by (2.1).

The proof of this lemma is similar to that of Lemma 2.1 and hence is
omitted.
THEOREM 3.1.  Assume that
(1) —1<e<0, k>m;

(i) p,=p._,. for all large n;
(iii) (1/(1+¢))liminf, , . p,>k*/(k+ 1)+

Then every solution of (1.2) oscillates.

Proof. 1f not, we assume that {x,} is an eventually positive solution.
Set
2= X, Xy Wa=Z,+CZy
By Lemma 3.1, we know that z, >0, 4z, <0 and w, >0, 4w, <0. In fact,
Aw,=Az,+c A4z, _,
= —PnXn—k —CPrn-mXn—m—k

< _pn(xn7k+cxn7m7k)

VAN

—Pnin—k

0. (3.1)

N

Since lim,, , ., z,=1>0 exists, we get

lim w,=/+cl=(1+¢)/>0.

Therefore w, > 0 for all large »n. On the other hand,

W,,=Z,,+CZ,,,mS (1 +C)Z"
or
w

—. (3.2)

z, =
"14c

From (3.1) and (3.2), we have

Awng_pnzn—kg - Wy k- (33)

1+¢
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By Lemma 1.2 and under condition (iii) Eq.(3.3) has no eventually
positive solution, a contradiction.

Remark 3.1. Theorem 3.1 includes Theorem 2 (i) and (iii) in [5].

ExampLE 3.1. Consider

1 (n—2)3n—-1)
A x,—= LR ) =0, n=0,1,2,... (34
<x" 2x"‘>+2n(n+1)(n—1)"' . " (34)

where p,=(n—2)(3n—1)/2n(n+ 1)(n—1). It is easy to see that p,>p, ,
for all large » and that conditions (i) and (iii) are satisfied. Therefore by
Theorem 3.1 every solution of (3.4) oscillates. In fact, x,,=(—1)"1/n is such
a solution.

THEOREM 3.2. Assume that
(1) —1<e<0;
(i) liminf,_  p,=4>0and imsup,,_, . p,>1—4 or
(iti) liminf, ,  p,>k*/(k+ 1)1,
Then every solution of Eq. (1.2) oscillates.

Proof. Suppose the contrary. Without loss of generality let {x,} be
an eventually positive solution of (1.2). By Lemma3.1 z,>0, 4z, <0
eventually. We note that 0<z,<x, for n=1,2,.... So Eq. (1.2) becomes

Azp+ Pz x <O, (3.5)

From Lemmas 1.1 and 1.2, condition (ii) or (iii) implies that (3.5) has no
eventually positive solution, a contradiction.
THEOREM 3.3. Assume that

(i) —1l<e<0, m>k;
(i) p,=20andp,=2p, .. for all large n.

Set
~ (=D +cl™)

tim inf p, > F() =" —, (3.6)
where [e (1, (—¢)'™) is a unique real root of the equation
L+l =(—1)(k+ke!™ — cmi™). 3.7)

Then every solution of (1.2) oscillates.
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Proof. Suppose the contrary, and let {x,} be an eventually positive
solution of (1.2). By Lemma 3.1. z,> 0 4z, <0 eventually. From (3.1), we

have

A(Zn+czn7m)+pnzn7k<0'

(3.8)

Set r,=z,_,/z,; then r, =1 for all large n. Dividing (3.8) by z,, we get

< 1 +C(Zn4m_znm+1>_pnznk
r

n+1 Zy Zn Zn

<l-ihc(rnfmﬂ-l"'rnflrn_rnhm+2"'rn—lrn)

“Putakw1
From (3.9), r, is bounded above. We set

liminfr,=1>1.

n— o

Then / is finite. From (3.9), we have

1
lim sup ! =-<1l+c™ (I—1)=Fliminf p,.
n— o rn+1 l n-—oc
Hence
L+cd™) (-1
i ind p, <G
Set

(I+c™)({-1)

lk+l

F(l)=

From F'(l)=0, we get the equation
L+l +(I—D[em!™ —k(1+cI™)]=0.

(3.10)

(3.11)

(*)

Equation (3.12) has a unique real root [on [1, oo ]. It is easy to see that

F(]) is a maximum value of F(/) on [1, o0). Thus we have

lim inf p, < F(/),

h— oC

which contradicts condition (3.6). The proof is complete.

Remark 3.2. Theorem 3.3 is a discrete analogue of a result in [9].
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THEOREM 3.4. Assume that

(i) —1l<e<O.

(i) p,=0, n=12,..,%7 p;=oc0 and for any subsequence
{n}y < {n}, 7 p,=o00. Then every nonoscillatory solution of (1.2) tends
to zero as n — 00.

Proof. 1f not, let {x,} be an eventually positive solution of (1.2). By
Lemma 3.1, z,>0 and 4z, <0 eventually. Then lim, _, . z,=/>0 exists.
Summing (1.2) from N to n, we have

n

Zny1l TEINT T Z PiXi «>
i=N

PiXi—p < 0.

It

i

On the other hand, if lim sup,, _, ., x,> 0, then there exists a subsequence
{n;} < {n} such that lim, , , x, =s>0.
Then we have

o« e

S
0 > Z pn,+kxn,>' Z Privk (3]2)

i=Nj 2i=N1

where N, is a sufficiently large number such that x, >s/2 for i> N,. The
inequality (3.12) contradicts condition (ii). The proof is complete.

ExaMmpLE 3.2. Consider

1 1 1
A _ R O =0. 3.1
(x,, 2ex" 1>+2e2<1 e>x"'2 (313)

By Theorem 3.4, every solution of (3.13) tends to zero as n — co. In fact,
{x,} with x,=e " is such a solution.
THEOREM 3.5. Assume that
(1) —1<e<0andp,=2p>0

(it)

. 1
inf {——{-pnuk—c P um_l(ﬂ-—l)}>1. (3.14)
2N LK Pr-m

Then every solution of Eg. (1.2) oscillates.
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Proof. If not, assume that there is a solution {x,} of (1.2) with x,>0
for nz N —m, where N is a sufficiently large integer. Define

Z,=X,t X _ .
By Lemma 3.1, we have z, >0, 4z, <0 for n> N. Define

4
W,= — 22250, nxN. (3.15)
z

n

It is easy to see that w, <1 for n> N. From (1.2) we have

Azn+pnzn—k_c En pn—mxnkam'__O- (316)

n—m

Dividing (3.16) by z, we have

4 a4z
_ Zn_pnzngk_‘}_c Pn (_ nm)=0' (317)
Zn Zn n—m Zn
From (3.15), we have z,,,/z,=1-w, and z,/z,_,=T172) . (1—w).

Thus (3.17) becomes

p n—1
Wy m [] (1—w) '=0. (3.18)

n—1
wampn [ (1=w)™! tes

i=n-—k n—m i=n—m
Set
1
v;= , i=N, N+1,.., (3.19)
1—w,
or
v,—1 .
w,= , i=N, N+1,.. (3.20)
v,
Hence (3.18) becomes
v,—1 n! Pn Upm—1
. — nAom v, 3.21
Un pni:EIkaI Cpnfm Uy m ,-=1,—,-[_m’ ( )
or
. - p" -1 n
vn_1+pn l_[ v, —¢ (l_vn—m)ni:nfmvi
i=n—k n—m
=1+p, [] vimeL~ T[] w0, —1). (3.22)
i=n—k pn—m i=n—m+1

409/158/1-15
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Define sequence {/lﬁl’)}, n=N, N+1,....1/=1,2,.. as follows:

(A0 ={1}, n=NN+1, .,

n I

T+p, [ A= 1 A0G0, -1,
i=n -k Pr-m P=n—-m+1
{;“22)}: n=N+M

A, N<ng<N+M

Here M =max(m, k). In general,

n

t4p, [T al—cB [T 20080, -1,

i=n—k Prn—m i=n-—-m+1
=< nzN+M
Ay N<n<N+M.

Define a sequence {u'} as follows:

p=1
= ot {1t =L iy =)
nznN Pn-m
I=1,2,...

It is easy to see that

p=inf {1+p,}>p'=1
nzN

In general, by condition (3.14), we have

) 1
1< inf {;+pnuk——c P u’”‘(,u—l)}

nzN -
S n-m

. 1 P
< inf {—+ A — e == ()" (p' -1 }
P 1) P W)y (w-1

n= n—m

1. )

=— inf {1+pn(u’)"“—c—p——(u’)m (#’—1)}
W nz=N Pn/m
ul+1

i 2

ie., {u'} is increasing.
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For each n = N,
A== 1.
Assume that

Azu’ for nzN;

we see that
AT =14p, [] PICIp I [] APAY -1
i=n—k n—m j=p—m+1
> 14 p, (W) —c %(u’)'" W-1)
=i,
By induction, we get that
AD =l for =N, I=1,2, ...
Now we shall show that
v, =0 for n=N+ Ml (3.23)

In fact, v,>1=4", n> N+ M.
Assume that

0,24, n=N+Ml

Then

n

U"=1+Pn l—[ v,—¢ Pr n Ui(vnfm—l)

i=n—k n—m j=pn—m+1
n p n
Ixei n -~ I
21+p, [] AP—c—— ] AP@L,.—1)
i=n—k n—m j=p—m+1

=290 for n=N+(+1)M.

By induction we have proved (3.23).
Let u* =lim,_, , u’. We shall discuss two possible cases for u*.
First, we assume that p* is finite. It is obvious that u* > 1 and

u* = inf {1+pn(#*)k“—6pp—"(u*)'" (u*—l)} (3.24)
nz=N

n—-—m

by definition of {u'}.
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From (3.24) we obtain

. 1 : n -
inf {—-Fp,,ﬂk-c £ u '(u—l)}él,
nzN (H Prn—m

u>1
which contradicts condition (3.14).
Now in case pu*= +oo, then lim,_ . v,= +o0. Consequently,
bm, ,  w,=1
From Eq. (1.2} and the fact that x,>z,, we have

Azn +pzn —k SO

Hence
Zn —k

z

Zp41

il _14p

4
pA

<0. (3.25)

n n

Now lim,, _, ., w, = | implies thatlim, _, .. z,,, /z,=0andlim, , , z, ./z,=
+ oo. Therefore (3.25) is impossible and hence the proof of Theorem 3.5 is
complete.

THEOREM 3.6. Assume that
(i) —1<c<0;

(i) p,>0 for all large n=z N—m;
(iil) there exists a constant u* > 1 such that

1
sup fot put) —e Lo oy - bt 20
nzN n—m
then Eq. (1.2) has a positive solution.
Proof. Let
UN~M='..=UN—1=q’ (327)

where ¢ is a constant and g € (1, u*). Define

n n

vo=1+p, [| vi—eL T[] ovlvam—11 n=N,N+1, ..

i=n—k n—m j=n—m+1

(3.28)

We see that, from (3.28),

J24

UN=1+pNUqu_C ong™(g—1)

N -m
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or

vN(l—quk+cpp” qm-%q—w))=1.

N—m

From (3.26), we know that

1
l—qu"+chN " Ng—-1)=-
N-—-m q
SO
1
vy-—< 1.
q
Hence

l<vy<g<pu®

By induction, we can prove that {v,} is well defined by (3.28).
Define

W, =—— i=N—-M,N—M+1, ...

From (3.28), we have

n

=ttp, 1 (mwytmefe ]

n i=n—k R—m j=p—m+1

N 1 1
l—wiw"f'" l—w,_,

n—1 n—1

wo=p, [] u—mrhwj@www 1 (=w)', (329)

i=n—k n—m i=n—m

or

where n=N,N+1,..and 1 >w,>0.
Define

Zv-m=1
and

Zn+l:Zn(l——Wn)7 n>N-—M.
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Hence
ki 1
in= [_I (1 _wi)v :n>0
i=N M
We see that
A“n =Zp+1 T En
=—w,z, <0,
ie.,
A4z,
w,= — .
z

Substituting (3.30) into (3.29), we have

_AZn p Zn—k c Pn (1._2"_m+l
Zn Zy Prn—m

Zn—m
SO
—Aznzpnznlk_c P (—-Azngm)
n-—-m
or
A4z,
- =2z,_«+ Azn,m.
Pn Pu—m
Now we define
_Azn+k

Yn=
Prn+k

From (3.31) and (3.32) we have

yn4k=2n7k~cyn7)n- k

or

Zn»k:yn—k+cyn~mfk'

>0, n=N-M,N-M+1, ..

(3.30)

(3.31)

(3.32)

(3.33)

Combining (3.33) and (3.32), we see that {y,} defined by (3.32) is a

solution of Eq. (1.2). The proof is complete.
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COROLLARY 3.1. If p,=p>0 in Eq.(12), then every solution of (1.2)
oscillates if and only if

1
inf {;+puk——cu'"”l(u—1)}> 1. (3.34)

u>1

Remarks 33. If m=0, k=1, then (3.34) is equivalent to

p k*

111 ket (3.33)

and hene (3.35) is a sufficient and necessary condition for every soluton of
(1.2) to be oscillatory.

Remark 34. If m>0, k>1, then (3.35) implies that (3.34) holds.
Therefore (3.35) is a sufficient condition for every solution of (1.2) to be
oscillatory. This is a known result (Theorem 2, (iii) in [5]).

Remark 35. If k=0, m=1, then (3.34) becomes

inf {1+p—c,/"1(u—1)}>1. (3.36)

u>1 ({d

It is sufficient to have

inf {1+p—c(y—1)}>1. (3.37)

u>1 (M
From (3.37) we get the sufficient condition
p>l—c-2./—c (3.38)

for every solution of (1.2) to be oscillatory, which is better than the condi-
tion

p=zl+c

(Theorem 2, (i) in [5]).

4. CASE WHEN ¢ < —1

LemMa 4.1. Assume that p,=20and 3°_| p,= 0.

Let {x,} be an eventually positive solution of (1.2).
Set z,=x,+ cx,_,,. Then z,<0 and Az, <0 eventually.
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Proof. In fact, from (1.2), 4z, = —p,x, . . <0 for all large n. We shall
prove that z, <0 eventually.
If not, then
Z,=X,+cx, . ,,=20 for n=N;
Le.,

X, 2 —CX, for n=N,

which implies

1 1
0<me<<—‘C‘ x~<“'< —Z x/v+(j—l)ma

Jj=1,2,..,. Letting j — oo in (4.1), we get

X, — O as n— oc.

But
Az, = —p,X, . < —Mp, for large n,

where M is a positive number. Summing (4.2) we get that

n
Zyy1—InS —M Z Pi
=N

i=

which implies that

Z,—> — 0 as n— 0.

This contradicts the fact that z, >0, for n> N. The proof is complete.

THEOREM 4.1. Assume that
(i) e¢<—1
(i) m>k
(iil) p,<p,_,. for all large n
(iv) —(1/(1+c))liminf p,>(m—k—1)"~*"Yim—k)y"—*

Then every solution of Eq. (1.2) oscillates.

(4.1)

(4.2)

Proof. Otherwise, without loss of generality, let {x,} be an eventually

positive solution of Eq. (1.2). By Lemma 4.1, we have

z,<0, A4z, <0.
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Set w,=z,+c¢z,_,,; then we have w,>0, 4w, >0 eventually. Note that

wa S (1+¢)z, s

then
wn
z"l*""l< -
l+c¢
Hence
AW,,=AZ,,+CAZ,,\M= “PnXn kT PrnemXn—k+m
= —PnZn—k
=20
or
Pn
0<AW,,+pnzn_k<AW,,+l—+—EWn*k_,,m. (4.3)

Set y,=w, . /w, > 1. The inequality (4.3) implies that

y,,?l_ig_:_c'))n”'yn+(m\k)—l' (4’4)

From condition (iv), we know that y, is bounded above.
Taking limit inferior on both sides of (4.4) we have

lim inf p, ™~ *, (4.5)

1
21—
1+¢

where /=1lim inf, _, _ y,. From (4.5) we have

L fiminfp. < oL koD
T4 c oo PnSpr ST Ty

which contradicts condition (iv). The proof is complete.

If condition (iii) does not hold, then we have the following criterion.

THEOREM 4.2. Assume that the assumptions (i) and (ii) in Theorem 4.1
hold. Further, assume that

1. . (m—k—-1)""*1
i > e Ry

(4.6)

Then every solution of (1.2) oscillates.
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Proof. If not, let {x,} be an eventualy positive solution. Note that
Z,=X,+cx,_,,>cx, ,.From (1.2), we have

Pn
AZn: —PnXy /\’< ._.7:”7* (m k) (47)

The rest of the proof is similar to that of Theorem 4.1. We know that under
assumption (4.6) the inequality (4.7) has no eventualy negative solution.
But by Lemma 4.1, z, is eventually negative. This contradiction proves the
Theorem.

THEOREM 4.3.  Assume that the assumptions of Lemma 4.1 hold. Then
every nonoscillatory solution of (1.2) tends to +oc or — o0 as n— 0.

Proof. Let {x,} be an eventually positive solution of (1.2). By
Lemma 4.1 we have

z,<0, A4z,<0 eventually.

Therefore 0 >lim,, _, ., z, =12 —c0. We shall show that /= —cc.
Assume that — oo </< 0. Summing (1.2) from N to n we get

Zop1—Znt+ Y, DX =0, (4.8)
= N

1

which implies that

M8

PiXi k< 0. (4.9)

i=N

Since >/  p;= 0, we have

lim inf x,=0,

n-> o0

i.e, there exists a subsequence {n;} such that

lim n;,= and lim x,,j,,,,=0.

z— 00 j— o

On the other hand, z, > cx, _,,; thus

0<%’1<x (4.10)

ni—ms

which implies that lim; _, , z, =0, a contradiction. Therefore lim,,_, . z, =
—o0. From (4.10) we have lim x,= +00. The proof of eventually
negative solution is similar.

n— 0



NEUTRAL DIFFERENCE EQUATIONS 231
5. CASE WHEN ¢>0

THEOREM 5.1. Assume that
(1) ¢>0,k>m
(i) p.=p,_mand

L fiminf p, > kM "
Ttc mow D7 k—mr 1yt

Then every solution of (1.2) oscillates.

Proof. The proof of this theorem is essentially the same as the proof of
Theorem 4.1, and hence is omitted.

Remark 5.1. Theorem 5.1 includes a part of Theorem 3 in [5].

6. NONHOMOGENEOUS DIFFERENCE EQUATIONS

Consider
A(xn+cnxn—m)+pnxn—k:Fn' (61)

THEOREM 6.1. Assume the following:

(1) c¢=c,=0, ¢ is a positive number, m and k are positive integers.

(ii) p,=0 and there exists a constant number M >0 such that
PaSMp,_ . (6.2)
(iii) Set Af,=F, and denote

and

Y pasifE=c0. (6.3)

Then every solution of (1.3) oscillates.

Proof. 1If not, without loss of generality, assume that {x,} is an even-
tually positive solution. Then

A(Zn_fn)zpnxnfks()’ (64)

where z,=x,+ ¢, X, _,,> 0 eventuaily.
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From (6.4), (z,,— f,) is nonincreasing eventually. If z, — f, <0 for n 2 N,
then z,<f, for n= N, which contradicts the positiveness of z,. Therefore
z,—f,>0 for all n= N. Hence

. z2f for n=N. (6.5)

“n

On the other hand, from (6.4) lim, , , (z,—/,)=[20 exists. Conse-
quently, > . pix;_, <oc. We see that

A .

pn+kzn= Z pn+kxn+ Z pi1+k(‘nxnfm<w (66)

N n=N n=N

18

n

because of condition (6.2). Combining (6.6) and (6.5) we have

oL

t 4
pn+kfn <0
N

n=

which contradicts (6.3). The proof is complete.

THEOREM 6.2. Assume that
(i) ¢,=20,p,20,n=1,2,..;
(i1) there exists f, such that Af,=F, and

lim sup £, = + o0, lim inf £, = — c0. (6.7)

P n— oo

Then every solution of Eq. (1.3) oscillates.

Proof. Suppose the contrary; without loss of generality, let {x,} be an
eventually positive solution of Eq. (1.3). As in the proof of Theorem 6.1, we
have

z,—f, =20 for n=N

and

A(z,—f,)<0,  so lim (z,—f,)=a>0.
From (6.7) there exists a sequence {n,} such that lim, , , f,, = — . We
see that

lim (an _fnk) = >Oa

n— o

which implies that {z,, } cannot be eventualy positive, a contradiction. The
proof is complete.
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ExaMmpLE 6.1. Consider

4n® —6n*—2n+2 (n—2)(2n+l):|
AntDn—1)  nn+1) |2
2n+1
n(n+1)

A(x,,-+-x,,2)+|:

=F =(__1)n+l

td

(6.8)
It is easy to see that f,=(—1)" (1/n), p, —»2 as n— o0, and

Z pn+k‘fni = 0.

Therefore every solution of (6.8) oscillates by Theorem 6.1. In fact,
x,=(—1)"(1/n) is a solution of (6.8).

ExaMPLE 6.2. Consider

2n—3
A(xn+xn—2)+—nn—_

—5 Xa2= (=1 a4 1), (6.9)

We see that F,=(—1)""' (2n+ 1), f,=(—1)"n. Hence all assumptions of
Theorem 6.2 are satisfied. Therefore every solution of (6.9) oscillates. In
fact, x,=(—1)"n is such a solution.
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