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Abstract

We prove the equivalence of Hardy- and Sobolev-type inequalities, certain
uniform bounds on the heat kernel and some spectral regularity properties of the
Neumann Laplacian associated with an arbitrary region of finite measure in
Euclidean space. We also prove that if one perturbs the boundary of the region
within a uniform Hélder category, then the eigenvalues of the Neumann Laplacian
change by a small and explicitly estimated amount.
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1. Introduction

Let Q be an arbitrary region in R and let us define the Neumann
Laplacian to be the non-negative self-adjoint operator H = —Ay acting in
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L*(Q) and associated with the quadratic form

Jo IVfPdYx if feW2(Q),
+ o0 otherwise

Q(f)Z{ (1)

as described in [4, Section 4.4]. It is well known that if Q is bounded with
continuous boundary 0Q, then H has compact resolvent since the
embedding W'2(Q)<= L2(Q) is compact.! However, in general the spectrum
of H may be quite wild, even for bounded regions in R? [8]. These
phenomena are not well understood, with the result that the Neumann
Laplacian is far less studied than the Dirichlet Laplacian.

In this paper, we prove a number of general results concerning the
spectral behaviour of the Neumann Laplacian. We start by investigating the
relationship between Hardy- and Sobolev-type inequalities for arbitrary
regions of finite inradius. We then establish the equivalence of Sobolev-type
inequalities to some spectral properties of the Neumann Laplacian. The
results apply in particular to bounded regions with Hélder continuous
boundaries.

Even if one knows that the spectrum is discrete, the numerical
computation of the eigenvalues by the finite element or other methods
depends upon the assumption that if one replaces a very irregular
boundary by a suitable polygonal or piecewise smooth approximation,
then the eigenvalues are very little affected. This continuous dependence of
the spectrum on the boundary holds in great generality for Dirichlet
boundary conditions, but is much less obvious for Neumann boundary
conditions.

In the last part of the paper, we investigate the effect of perturbing
the boundary. We first prove a quasi-monotonicity property of the
eigenvalues when the region decreases, under suitable regularity hypotheses
on the larger region. We then apply a scaling trick to prove that the
eigenvalues vary continuously with the region provided the boundaries of
the regions concerned satisfy a uniform Hoélder condition. Moreover,
the change in the eigenvalues of the Neumann Laplacian is explicitly
estimated.

Many of the results of this paper apply not only to the Neumann
Laplacian but to general strictly elliptic second-order operators or
Schrédinger operators whose quadratic form domains are contained in
W'2(Q). The proofs need almost no alterations.

!'See for example [2]. The definition of a region with continuous boundary may be obtained
from the definition of a region with Lip y-boundary in Section 2 by replacing in part (ii) the
Lip y-condition for ¢; by the assumption that ¢; is continuous on W;. Necessary and sufficient
conditions for the compactness of this embedding in terms of capacities were obtained in [12].
See also recent paper [7] in which sufficient conditions for the compactness in geometric terms
have been established weaker than the assumption of the continuity of the boundary.
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2. Relationship between the Sobolev- and Hardy-type inequalities

Let Q< RY be a region, for xe Q, d(x) be the distance of the point x from
the boundary 02 of Q and, for ¢ >0,

Q = {xeRY : dist(x,Q)<e},

Q. ={xeQ : dx)>¢e}
and

0:Q2 = Q\Q, = {xeQ : d(x)<e¢}.
For a region with a finite measure |Q|, the Minkowski dimension of 0Q
relative to Q (briefly, the Minkowski dimension of 0Q) is the following
quantity:

M(@Q) = inf{l>0: M (6Q)< w0},
where

102
eN-4"

M*(@Q) = lim sup
e—0+
Obviously, M(6Q)<N. However, there exist Q such that M*(6Q) = oo for
all 2e(0, N) [5]. It can be proved that M(0Q2)=N — 1 [9]. If Q satisfies the
cone condition, then M(0Q) = N — 1 [9].
Recall that a Whitney covering %" of an open set Q2 is a family of closed
cubes O each having edge length Ly = 2% k=1,2,..., such that

(i Q= UQGW 0;
(i1) the interiors of distinct cubes are disjoint;

(ii1) diam(Q) <dist(Q, 02)<4 diam (Q);

(iv) 1diam(Q,)<diam(Q,)<4diam(Q,) if Q) N 0, #0;

(v) at most 12V other cubes in #  can touch a fixed Qe, and for a
fixed te(1,5/4) each xeQ lies in at most 12 of the dilated cubes 7Q,
Qe

It is known (see, for example, [14, Chapter VI]) that such a covering exists
for any Q. Note that condition (iii) implies that diam(Q)<d(x)< 5 diam(Q)
for any xe Q.

Let, for a positive integer k, n(k) denote the number of cubes in ¥ =
{QeW : Lo =27%}.1f Q has finite measure, then n(k) <12, where ¢; > 0
is independent of k. Moreover, M*(6Q)< oo if, and only if, n(k)<c,2*,
where ¢; > 0 is independent of k [10].

Let 0<y<I1,M,0>0,s>1 be an integer, and let {Vj};:l be a family of
bounded open cuboids and {)vj};:l be a family of rotations. We say that, for
a bounded region Q<R", its boundary 0Qe Lip(y, M, d,s, { V;}i_y, {4;}_)) if

() Q= Ui- (V)5 and (V));n Q#0;
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(i) forj=1,...,s
Li(V)y={xeR" : qy<x;<by, i=1,...,N},
RNV = {xeRY : ayj<xy<o(%),Xe W},
where X=(x1, ..., Xn-1), W = {xeRV" : q<xi<by, i=
1,....,N—1} and
lp(X) —o(MI<SM |x— ", x,5€W;

(i) if ¥;n0Q+#0, then
a/\g—&-&é(pj()'c)éb/vj—é, )_CGVVJ‘.

However, if V;=Q, then ¢,(%) = by;.

We also say that, for a bounded region Q and 0<y<1, 0QeLipy
if there exist M, >0, an integer s>1, a family of bounded open
cuboids {Vj}jzl, and a family of rotations {/Ij};:l such that
0QeLip(y, M, 0,5, {V;}i_y, 14i}=1)-

If Q is a bounded region and Q€ Lip y, then M(0Q2)< N — y. Moreover, if
0QeLip(y, M, 9, s, {Vj};:l, {/lj};:l), there exist gy, ag > 0, depending only on
N,y,M.,J,s, {Vj}jzl, {/Ij};:l, such that for all 0 <e<g

|0:Q| < ape’. )

Theorem 1. Let Q<RY be a region with a finite inradius, i.e.,
SUPy e d(x)< o0, and let 1 <p< .

1. If for some a.>0,¢; >0

ld @y <all o (3)
for all f e W'(Q), then there exists c; > 0 such that

1/ 2oy < 2l f o) “4)
for all fe W'?(Q), where q = MLfP,M =N +a) if N>p and q is any

number such that p<q<p(l +%) if N<p.
2. If for some o >0

/ d(x)"°dVx< w0 (5)
Q

and for some q > p and c; > 0 inequality (4) holds, then there exists ¢; >0

such that inequality (3) holds with o = a(% ,é .

Proof. (1) First, we note that there exists ¢3 > 0 such that

Nd-1y
a7 "fllr@<call /e
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for all fe W'»(Q), where r:NN—il if N>p, and p<r<oo if N<p. This
inequality follows by scaling the standard Sobolev inequality for cubes and
by using the Whitney decomposition of Q. (It is contained in a more general
statement of such type proved by Brown [1, Theorem 3.1].)

Let 0<A<1 and ge(p,r) be such that

1 1-4 4

q p r

Bearing in mind that

N(*)

1= @ 5P @ P Y

we choose 4 so that N(f — —)1 = o. Then
TR A
T NW p 1)

IR RN N AN TR A
W p o N p r)] N r '

By applying Holder’s inequality with the exponents {25 and %, we have

nﬂmmfwwﬂvw*wm‘ﬂﬂﬂm@

< Il ey < Mooy

If N>p, then r:NN—f’p and hence ¢ = M”p. If N<p, then by passing
to the limit as r— oo we see that ¢ can be any real number satisfying
p<q<p(l+3).

(2) The second statement follows immediately by Holder’s inequality with
the exponents % and ¢:

11
_ _ _ P q
"M@ <lld™N e ||f||L‘/(Q)<</ d(x) "dNX) allfllwio)-
Q

LIP(Q)

O

Corollary 2. Let Q<R be a region of finite measure and 1 <p < co. Then the
following conditions are equivalent:

(a) For some a,c; > 0 inequality (3) holds for all f e W'?(Q).

(b) For some ¢ > 0 condition (5) is satisfied, and for some q > p and c; > 0
inequality (4) holds for all f € W'?(Q).

(¢) M(0Q2)< N and for some q > p and ¢, > 0 inequality (4) holds for all
feWw!r(Q).
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Proof. Inequality (3) implies, by putting f = 1, that
/ d(x)"? dVx< Q.
Q

Now it suffices to recall that, for regions Q of finite measure, the inequality
M@©@Q)<N is equivalent to the existence of ue(0,1) such that

[o dx) " d¥x<oo [1]. O

3. Equivalence of the Sobolev-type inequalities to some spectral properties of
Neumann Laplacian

In this section we assume that Q is a region in R" and suppose that
H = —Ay acts in L*(Q) subject to Neumann boundary conditions.

Proposition 3. Assume that N>2 and that Q<R" is any region.

1. Let 2<q<% if N23,2<gq<w if N=2 and M = quq Then the
following conditions are equivalent:

(a) There exists cq4 > 0 such that
1 Nl oy < call fllwnag) (6)
for all f e W(Q).
(b) There exists ¢s > 0 such that
He_HtfHL‘L(Q) <Cst_M/4||f||L2(g) (7

for all feL*(Q) and all 0<t<1.
(c) The semigroup e H' has a continuous integral kernel
K(t,x,y), t>0, x,yeQ and there exists c¢ > 0 such that

0<K(t, x,y)<cét’M/2 (8)
for all x,yeQ and 0<t<1.

2. Let 0<y<1, Q be bounded and 0Q € Lip y. If y = 1, then (a) is satisfied
with q = 25 for N=3 (hence in (7) and (8) M = N) and with any
2<g< oo for N =2 (hence in (7) and (8) any M > 2). If 0<y <1, then
(a) is satisfied with ¢ = 25\51'—'11:}) (hence in (7) and (8) M = ==,

The first statement is proved, for example, in [3, Corollary 2.4.3, Lemma
2.1.2]. (One needs to take into account that Quad(H) = W'2(Q).) The
second statement is proved in [6,11,13].

Remark 4. Each of the constants ¢, ¢s, ¢ can be estimated from any of the
others, given ¢, or equivalently M.
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Remark 5. If N = 1, then (a) is satisfied with ¢ = oo and (b) and (c) are
satisfied with M = 1.

If N>1, there exists a region, say a region with exponentially
degenerate boundary [13], such that (a) is not valid for any ¢ > 2. However,
if such ¢ > 2 exists, it must satisfy the assumptions of Proposition 3. The
appropriate range for M = % ISN<M< oo for N=3 and 2<M < oo for
N =2.

On the other hand (b) and (c), which are always equivalent [2, Lemma
2.1.2], could be also invalid for some region Q for all M > 0. However, if
there exist M > 0 for which (b) and (c) are valid, then N <M < oo for any
N=1.

Hence, if N< M < oo for N>=3 and 2<M < oo for N = 2, then (b) and (c)
are equivalent to (a) where g = % However, if M =2 for N = 2, then (b)
and (c) are not equivalent to (a) for any ¢ > 2. (In this case (b) and (c) are
equivalent to a certain logarithmic Sobolev inequality or to a certain Nash
inequality [3, Example 2.3.1, Corollary 2.4.7].)

Example 6. Let N>3 and 0<y<1 or N =2 and O0<y<1. The following
well-known example shows that in this case, the exponents ¢ and M in the
second statement of Proposition 3 are the best possible, i.e., ¢ cannot be
replaced by a larger one and M cannot be replaced by a smaller one. Let
Q={(x,y): yeRY ! y|<1,y/'<x<1}. Then 6QeLipy. A direct compu-
tation shows that x~°e W'(Q) if, and only if, d< — 1 +3(1 +*=1) and
x~°eL4(Q) if, and only if, 5<$(1 + g) If (a) holds, then

1 N -1 1 N-1 204+N—-1)
- 1+)>—1+<1+>©q<.
q( Y 2 Y N—-1-»

Since in the case under consideration (b) and (c) are equivalent to (a) it
follows also that M Z'H}V—*l

Theorem 7. Assume that Q<R is a region of finite measure.

1. The following conditions are equivalent:
(a) For some q>?2 and c4 > 0, the inequality

1 2oy < all oy

is satisfied for all f € W (Q).

(b) H has discrete spectrum and if all its eigenvalues A,, n =
0,1,2, ..., which are non-negative and of finite multiplicity, are
written in increasing order and repeated according to multi-
plicity and f, is the corresponding orthonormal basis of
eigenvectors, then there exist oy, c7,00,c8 >0 and an integer
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no=1 such that
Inz ™, fullp= @) < cs /) ©)

for all n=ny.
2. If N=1or N=2, Q is bounded and 6Q¢eLipy where 0<y<1, then
conditions (a) and (b) are satisfied.

Remark 8. One could also assume that conditions (9) were valid for all n>1.
However, the first few eigenvalues may be extremely small if Q is nearly
disconnected and it is not easy to provide explicit bounds on the constants
¢7, cg which apply for all n>1.

Remark 9. The relationship between ¢ and («p, o) is not symmetrical and
we do not expect that a symmetrical relationship can be obtained.

The proof of this theorem will be based on the following lemmas
containing additional information.

Lemma 10. Let M,cs>0 and let Q<R be a region of finite measure such
that inequality (7) is satisfied for all 0<t<1. Then

1 if 0<i,<l,

WallLe @ <coq M (10)
;tn4 UF in > 1;

where c9g = ecs.

Proof. If 0<Z,<1 put r=1 in (7) to get e_ln||ﬁ1||L%(Q)<c5. So
||f,,||Lx(g)<cse)"” <cse. If A4,>1 put =1/, in (7) to get
e Al @<esiM?. O

Lemma 11. Let M, cg,c10 > 0 and let Q<R be a region such that inequality
(8) is satisfied for all x,yeQ,0<t<1 and |Q|<cy9. Then there exists an
integer ny= 1, depending only on cg, c19, such that

i
)V,,><£> , n=ng. (11)

1o
Proof. By integrating (8) with x = y over Q2 we get

N n :OC: M
nef/»,ltg E e*zkfg eiikt = / K(t, x, x) de<C6|Q|t77’
k=0 k=0 Q
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hence
M M
nt?2 nt?2
ehl > >—— 0<t<lI.
62| cscro

By putting here ¢ = 1 it follows that

n=z1l, nzng=lecscio] + 1.

Finally, for n=n, we put ¢t = 2;1 to get

2 2
n M n\M
)vn > 2 - . D
€C6C10 no

Lemma 12. Let M, co > 0 and let ng>1 be an integer. Moreover, let Q= RY
be a region of finite measure such that inequalities (10) and (11) are satisfied.
Then there exist cs,ce >0, depending only on M,cy and ny, such that the
inequalities (7) and (8) are satisfied with 2M replacing M.

Proof. If 0<¢<1 and x,yeQ, then

o0 o0
0<K(t,x,p) = > e /(LM< D e filll g
n=0 n=0

n=0 n=ny
Since
M M M M
e M) = ([) 2 entl? Ak (1)72 My=_ Cnf%
v, - ~ - 2
" 2 2 2e
it follows that
Z e M2 < et 2 e 2
n=ny n=ny
Ml & %
M t(n
< crhot 2—2 exp ——<—>
no = 2\ng
M [P r 2
< ¢ngt” 2 exp _EXM dx
0
m [ 12 -M
=c11not exp —ESM ds = cppt™ ™.
0

Hence

0

— ) _
§ e’ t”fn”Lm(Q)gCét M, (12)
n=0
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where ¢ = ¢§(ng + ¢12), and (8) follows with the exponent — replaced by
—M.
Furthermore,

le™ 11l = ”‘”%(xxf,fa)

L*(Q)
o0

Z A fullze @S
n=0

o0
—2 112 .
< (Z € 2 t||fn||L%(g)> ”f”LZ(Q)'

n=0

Hence by (12)

1 M
||67H7||L%(Q)<(27M06)2t 21/ 2
1
and (7) follows with ¢s =(27¢)2 and the exponent —% replaced by
T
Proof of Theorem 7. As is well known, condition (a) implies that the
embedding W'2(Q) <= L*(Q) is compact. Hence H has compact resolvent, its
spectrum is discrete, and all its eigenvalues, which are non-negative, are of
finite multiplicity. Furthermore, by Proposition 3 and Lemmas 10, 11 (a)

implies (b) with a; = % and oy = 7 M \where M = —=L. Conversely by the proof

of Lemma 12, it follows that (b) implies mequahty (7) with M = 220 + ;)

which in its turn by Proposition 3 implies (a) with ¢ = 271142 O

4. Perturbations of the domain

In this section we compare the spectrum of H; = —Ay acting in L*(Q))
when Q; and 2, are very close to each other in a suitable sense. We will also
need to assume regularity, since it is known that even if ; has smooth
boundary and €, only differs from it in an arbitrarily small neighbourhood
of a single point of 0Q;, the spectrum of H, need not be discrete.

We start with the more general argument. Following [4, Chapter 4] we
define the variational quantities y,,; for all non-negative integers n by

foy = inf {u(L) : dim(L) = n + 1},
where pu(L) is defined for every finite-dimensional subspace L of L*(Q;) by
(L) = sup{ Q(N)/IIf 20 : O#f €L}
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and Q; are defined as in (1). Note that y,; = 0 since 0 is an eigenvalue of H;
for i =1,2. It is known that w,; are equal to the eigenvalues /4,; of H;
written in increasing order and repeated according to multiplicity in case H;
has compact resolvent.

Theorem 13. Let Q, cRY be a region of finite measure.
1. If for some q¢>2,c13>0
L/ 1 ooy < cisll fllwragoy (13)

for all fe W' (Q)), then for every integer n>1 there exist b, =
bn1(821), 01 = €,1(821) > 0 such that for all regions Q,cQ;, satisfying
|21\Q2| <61, the inequality

p <1+ byt [21\22) A1 (14)
holds.

2. If, in addition, M(0Q\)<N, then for every ae(0,N — M(0Q,)) and for
every integer n=1 there exist b,, = b,»(£21), €,2 = €,2(€21) > 0 such that
for all 0<e<e,y and for all regions Q», satisfying 21\0,Q2) = Q,<=Q, the
inequality

Hnp < (1 + bn,ZSG))Ln,l (1 5)
holds.

Proof. (1) Let L =lin{¢y, ..., ¢,} where ¢; are the eigenfunctions of H;
associated with 4;; and let M = PL where P is the restriction map from
L*(Q)) to L*(Q,). By Proposition 3 it follows that there exist M >2 and
¢s > 0 such that inequality (7) is satisfied with Q; and H; replacing Q and H
for all 0<s<1 and feL* Q). Hence if f =" ; oxdpeL, |[fll2q =1,
then by (7) where ¢ = 1 applied to e//'f we have
n
Z e by
k=0

. H .
W= < cslle™ fllrzq) = ¢s

LX(Q)

1
n 2
< ¢ E o P | <cesen
k=0

Furthermore,

1Pf 721 = 11200 = /122000 = W 12200100
> 1— 120\ /17 09 =1 — e |21\ 2.
Assume that |Q\Q,|<(2¢2e*+)~". Then
IPfll g, <1+ 2c2¥1(Q1\ Q).
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If g = Pf where fe L and || f1|;20,) = 1, then

D9 &)
9120, 1A 2201
Since dim(M)<dim(L) =n+ 1, the first statement of the theorem with
by = 2cke¥ and ¢, = b, | follows by using the variational definitions of
U2 and 4.
(2) If M(0Q;)<N, then for every oe(0, N — M(0Q)) there exist & =
¢1(0),a; = aj(o) > 0 such that for all 0<e<¢g

|61:Ql|<a180- (16)

<(1 4263”12\ QDOI ().

Hence the second statement of the theorem with b,, = b, a; and
1

O<e<enr = min{b;g,sl} follows from the first one. O

Remark 14. The size of b,,(2) and ¢,,(2) depends upon 4,;. An upper
bound to 4, can be given in terms of the inradius » = max{d(x) : xeQ} as
follows. If B(a,r)= €, then 4,1 <y, ,, where y, ,, is the nth eigenvalue of —4

in L*(B(a, r)) subject to Dirichlet boundary conditions. By scaling one also
has ’))n,a,r = q1)11,0,1’”72'

Remark 15. If for some o, ci4 >0
d ™11 20 < crall fll w2y

for all fe W'2(Q,), then both statements of Theorem 13 are valid by
Corollary 2.

The conditions of Theorem 13 are not sufficient to establish that H, has a
compact resolvent, since 02, may have arbitrarily bad local singularities
subject to the above conditions. In order to obtain an inequality in the
reverse direction we make further assumptions.

Corollary 16. Assume that Q) satisfies the conditions of the first part of
Theorem 13 and for some o > 0 inequality (16) holds. Moreover, let regions
23(¢),& >0, be such that

(1) Q3(e)=21\0:21,
(i) there exist &,ar > 0 such that for all 0<e<e;

121\Q23(e)| < aze”,

(i) for every integer n=1 there exist b,z = b,3(21),en3 = €,3(21) >0
such that for all 0<e<e,3

3 = A1 (1 — by 38%).
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Then for every integer n=1 there exist byg = b, a(21), en4 = €n4(Q1) >
0 such that for all 0<e<e,a and for every region Q,, for which
inequalities (13) and (16) holds with Q, replacing Q, (with the same
q,c13,0,a1,&) and 1\0,Q21 =2, =Qy, the inequality

(1 - bn,480)}~n,l <j~n,2 <(1 + bn,4gg)/1n,l (17)
holds.

Proof. An application of Theorem 13 to the pair Q,, Q2; yields
In2 (1 4 by2e%) 1
for 0 <e<g,,. In particular,
In2 <L+ bpoeys)in-
An application of Theorem 13 to the pair Q3(¢), 2, yields
tn3 < (14 by 5e") n2
for 0<e<e,s, where b,s = 2c2e*2 and ¢,5 = min{b;gl/g),sl}. Note that
bys<bns and &,5>6,6 where b,s=2c2exp(2(l + bu2ey ) n1) and &, =

min{b;’g/ D e} depend only on n,¢ and Q. Together with assumption (iii)

this yields (17). O

The above theorem may be applied to regions with Lip y boundaries. We
start with the simplest example. Let 0<y<1, M,k >0 and let

Qi = {xeRY : 0<xy<¢y(X),XeG}, i=1,2,

where G is a bounded region in RV~! with a smooth boundary. We assume
that

9,(%) — ¢ (DI<M|x -3, %7eCG, i=1,2
and
kK'<p(x)<k, 3G, i=1,2,

We do not assume any relationship between the directions of normals of ©;
and ,, or even that these normal directions exist.

Lemma 17. Under the conditions of the last paragraph for every integer n>=1
there exist b,7 = b,7(21), en7 = €0,7(R21) > 0 such that for all 0<e<e,7 and
all ¢, satisfying

(1 - ) () <Py (¥) <9 (X), XeG,
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the inequality
(1 - bn,78);”n,1 Sin,Z <(1 + bn,78)/ln,l

holds.

Proof. Since 0Q; € Lip y it follows, as noted in Proposition 3, that inequality
(13) is valid for some ¢, c;3 > 0. Moreover, it also holds with €, replacing Q;
(with the same ¢, ¢;3 > 0). Since the operator H, has compact resolvent and
|21\Q2,| < ke| G|, inequality (14) yields

I <(1 4 b1 k|Gle) .
Similarly for
Q3(e) = {xeRY : 0<xy<(1 — £)¢,(%), € G},

where 0 <e<1/2 we have
)~n,3 < (1 + bn,lk|G|8))~n,2~

To derive the estimate below for 4,3 we transfer the quadratic form Qs to
L*(Q)) by means of the unitary map U, : L*(Q;)— L*(Q3(¢)) defined by

(US)E,xn) = (1 — &) 217, (1 — &) xy).
The inequality
01(f)< 03(Uyf)

valid for all fe W'2(Q)), yields the inequality 4, ;<A,3 by the variational
method. [

We now turn to the application of Theorem 13 to a general region of
Holder type. The proof of our main result, Theorem 21, depends upon the
construction of mappings 7, of Q into itself satisfying the properties (20),
(22) and (25) below.

Other definitions of regions of Holder type are possible but Theorem 21 is
still valid for such definitions provided similar mappings can be constructed.
The underlying idea of that theorem can also be applied to uniformly elliptic
operators of the form

Yoo 0
Hf = -3 a)ﬁ{aw)aj;}

ij=1
subject to Neumann boundary conditions provided the coefficients are
Holder continuous in some neighbourhood of the boundary.
Let a bounded region QcRY be such that 6QeLip(y, M,9,s,

{Vi}i—1» {4;};-1)- Then also 0QeLip(y, M, 2, {(Vj)g}jf:l, {%}}-1). Note that

(Vj)g = ﬂ;l((%)g(ﬁw, bNNj)) where dy; = ay; +g, bN]Vj =byj — g, and, in

addition to conditions (i)—(iii) of the appropriate definition in Section 2,
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also the following condition is satisfied:
- . o . .

Moreover, let functions ;e C*RY) satisfy 0<y;<1,supp
%C(Vj)%(y |V¢j|<§, where b > (0 is a constant, j = 1, ..., s, and Z;':l lpj(x) =
1 for xeQ.

Let ey =(0,...,0,1) and ¢; = Aj_](eN), j=1,...,s. For xeR" and
86(0,‘72] define

T(x)=x—¢ Y ). (19)
j=1

Lemma 18. Let a bounded region Q<R be such that 6QeLip(y, M, 9, s,
{Vj};:l, {)Lj}js-zl). Then there exist Ay, Ay, Az, e3> 0, depending only on
N,y, M, d,s, {Vj}j:l, {ij};:l, such that for all 0<e<ey

0Ty
8Xj

(x) = 95| <Ay, xeRY, (20)

in particular, the Jacobian determinant Jac(T,, x) satisfies the inequality

I<1— Are<Jac(T,,x)<1+ Are, xeR". (21)
Moreover,
Q\0,QcT(2)=Q\0 Q. (22)
Ase?

Proof. (1) Since the Jacobi matrix of the map 7 has the form I + ¢B where
I is the identity matrix and B is a matrix whose elements b;; are independent
of ¢ and bounded: || <%, it follows that there exists 4; > 0, depending only
on N, 0 and s such that inequality (20) is satisfied for all 0 <e< 1. Hence, for
all sufficiently small ¢>0 and for all xeRY inequality (21) is satisfied.
Consequently, for all those ¢ the map 7 : RY >R is one-to-one. Indeed,
it is locally one-to-one since Jac(T,g,x)}% and it is also globally one-to-one
since |x — y| > 2¢ implies T,(x)# Te(y). Also T,(Q) is a region and 7,(0Q2) =
0T:(Q).
(2) For xeR" let

Jx)={je{l,...,s} : xe(Vj)%é}.
The inclusion supp y/; =(V); 5 implies that Y (x) = 0 for j¢J(x) and
« 5 :
Ti(x)=x—¢ Z 6]‘/’](x)~

JjeJ(x)
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Let
C(x) = { Z &, o> 0}
jeI ()
and
C(x,8) = {8 Z &, o >0, Z O£j<l}.
JjeJ(x) jeJ(x)

We claim that

(x—C(x))m( N V_,)cQ, xeQ (23)
JjeJ(x)
and
(x—C(x,g))ch< N V,), xeQ, 0<e<l. (24)
JjeJ(x)
Also,
(x—C(x))m( N Vj>cg, xeQ (25)
jed(x)
and
(x—C(x,s))ch( N V,) xeQ, 0<s<g, (26)
jeJ(x)

which implies, in particular, that 7,(Q2)c Q.

Indeed, let xeQ and jjeJ(x). Since xeV; nQ and A;,(V;,nQ) is a
subgraph it follows that {x—a;¢;,0; >0jnV; =Q. Next, let
h2€J(X), p#j1, and for some o; >0, x—a; & €V nV;. For similar
reasons it follows that {x — ; &; — @, &, 0 > 0f N V), =Q, hence

x - %y éjl - 0‘./2‘/:72’0(]1’0‘]2 >0} n V/l n ij cQ
and so on. Since for ye C(x,¢)

Ml=e Y wm&<e Y g<e<

JjeJ(x) JjeJ(x)

>

N SY

condition (18) implies that for all jeJ(x)
3
x — C(x, 6)C((W)a_a)4c Vi
Hence x — C(x,¢) < ﬂjej(x) V; and, by (23), (24) follows. If xe @, then in the

argument above one may assume that o; >0, jeJ(x), hence (25) and (26)
follow.
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(3) Assume that 0 <e¢<min {%, %} and xeo2. Then
P

DDRZEY

j=1

Given xe there exists ¢ >0 such that xe T,(Q2) for all 0<e<o and
xed(T,(Q)) = T,(0Q). Hence d(x)<o. So d(x)>e¢ implies xeT,(Q) and
Q8,2=T,(Q).

(4) Let dj(x) be the distance of xeQn V; from the boundary 0Q2 in the
direction of &;, i.e., di(x) = ¢,(4;(x)) — (4(x))y. Then it is known that there
exist A4 > 0 such that for all j =1,...,s and all xeQnV;

1
Aqdi(x)? <d(x) <dj(x).
(5) Let xeQ and jeJ(x). Then, for 0<s<§, Tl,.(x)eQm(Vj)g and
d(T(x)) = Aydi(Ty(x)).

By Step 2
(T2, To(x) + e, (0E1 = {To(x) + o0, () — )&, 0< 0y <Yy ()}

A(T:(x)<|Tex — x| =¢

<e Y P == (27)
j=1

— {xaocjfje DR 2N osocj@j(x)}cx C(x,0)cQ,

ieJ(x),i#j

hence

di(Ty(x)) = e ().
Thus for all jeJ(x)

d(T:(x))" = Aye(x)
and

sd(T,(x)) Z T )|d(Tx)) = Aje Y i(x) = Aje.

JjeJ(x)

Consequently,
11

d(T,(x)) = Aas 7e,
1
which implies that T,(2)=Q\0 1Q where A = Ass 7. O
AeV

Lemma 19. Under the conditions of Lemma 18 there exist As,eq >0,

depending only on N,y, M,J,s, { Vj}_/s-:l, {4 _le, such that for all 0<e<ey

|Q\T(Q)| < Ase. (28)

By (2) |2\0,Q2|< Age” and |2\0 1Q|< A7e. Therefore, the left inclusion of
AV
(22) immediately implies that |Q\T.(Q)|<A4se’” but (28) makes a stronger

claim: estimate (28) has the same order in ¢ as the estimate for |[Q\0 1Q)|.
AlE]Y
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In the proof of Lemma 19, the following property of regions satisfying the
cone condition will be used. We say that C is a cone of size ¢ > 0 if

C = {(x,xp)eR? : 0<xp<d, xexpK},

where K is an open convex set in R?~! such that 0e K < B(0, 1).

Lemma 20. Let 6>0, U,U' be bounded regions in RP~' and U’ < Us.
Moreover, let g,y : U-R, V = {(%,xp)eR? : e U, y(X)<xp<P(X)} and
let C<RP be a cone of size 5. If

(X, ¢(x)— C<V for all xeU',
then ¢ satisfies the Lipschitz condition on U'. Moreover, the Lipschitz

constant depends only on K.

The proof wuses that {(X,¢(X)+ C}nV =0 because otherwise
(X, p(x))eV.
Proof of Lemma 19. (1) For any subset J< {1, ...,s} put
V;={xeRY : J(x) = J},
so RY is the disjoint union of all V; : RY =, V,, and

QT,(Q) = (7, n(Q\TQ)). (29)
J

We will prove that

Vin@TA@) =@V VY, (30)
where

P = (V;n6Q — Ajeasy, 0<a<l), (31)
Ay is a certain positive number and &, is a certain unit vector in RY.

(2) First let J = {i}. Then for all xe ¥; we have J(x) = {i} and ,(x) =

> -1 ¥;(x) = 1. Hence for all xe v,

Ts(x) =X—- Séi
and for all ze T,(V;)

T;l(z) =z+ &k,
Assume that xe V; N (Q\T,(Q)). Since x ¢ T,(Q) and T,(x)e T,(Q), there is a
point zeoT,(Q) = T,(02) which lies in the interval (x — &;, x). Hence y =
T '(2) = 2+ 6;€0Q, xe(y,2) = (1, y — &)= P and (30) follows. (In this

case, the first entry of the union in the right-hand side of (30) can be
omitted.)
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(3) Next let J = {i,j}. Then, for all xe V;, J(x) = {i,j},
To(x) = x — e((20)&; + Y(x)E)).
Let
Cy = {oé; +afj, a0 >0},

Ci(e) = {e(on & + 2g)), oq,00 >0, o +op<1}
and let xe(Vi)zsn(Vj)s Q. Since J<J(x), by Step 2 of the proof of
4 4
Lemma 18 it follows that
VinVin(x—Cp)cVinVin(x — C(x))cQ (32)
and
x—Cix)cx = C(x,e)cVinV;nQ. (33)

(3.1) First assume that ¢; and ¢; are proportional. Let ¢ = —¢;. If
xeVinV;noQ, then x — aé;eQ for small «>0 and x — ag;eQ for small
a>0. So x+aé;e® and x —aé;eQ for small «>0 which contradicts
condition (ii) in the definition of a boundary of class Lip y. Thus &;# — &,
hence ¢; = ¢; and

To(x) = x — e (%) + ¥,(x)E; = x — &&;.
Similarly to Step 2 we obtain inclusion (30)—(31) where &; = &; and 4; = 1.
St
ICff+€'j-|'
Let 4, be a rotation such that 4;(¢;) = ey and the image of the plane spanned
by &; and ¢; is the plane spanned by ey, ey_1. Inclusion (32) implies that
VinVin{x —aé;, a>0}cQ. (34)

(3.3) Let
H;=4,(VinV;nQ), H,= iJ((Vi)%a‘ﬂ(Vj)%af\Q)

(3.2) Next assume that ¢; and ¢; are not proportional and set {; =

and G;,G), be the projections of H;, Hj, respectively, onto the
hyperplane xy = 0. Condition (34) implies that for all xe G; there exist
¢ 7(X), ¥ ;(%) such that (%, ¢ (X)) e Q, V(%)< ¢;(X)and the intersection of the
line, parallel to ey and passing through (x,0), and H; is (Y ;(X), ¢ ;(X)). Hence

Hy = {(x,xx)eRY : x€Gy, Y, (%) <xy<¢;(%)}.
Furthermore, by (33), for all xe G
(%, (X)) — 2,(Cy(e)) = H,.
(3.4) Next we apply, for fixed xy, ..., xy_2, Lemma 20 where D = 2,
C = 24(Cs(e)) <R = {(xy-1,xXn) : Xny_1,XN€ER]},

N-1,6N
0=¢K = {xy_1<sin%} (a; is the angle between &; and &), U and U’ are

the projections in Ri_ ~onto the line xy = 0 of the cross-sections of G;, G

1,6N

. by the line parallel to ey_; and passing through

----- EN—
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(x1, --0sXN=2,0), ¢ = ¢, = ;. It follows that, for fixed xi, ..., xy_2, the
function ¢, satisfies the Lipschitz condition in xy_;. Moreover, the Lipschitz
constant L; depends only on K, hence on oy, therefore is independent of

X1, ..., Xy—2. (In fact Ly = cot %) Thus, the function ¢, satisfies the Lipschitz
condition in xy_; uniformly with respect to xi, ..., xy_2:

[ (X1, ooy X2, XN—1) — D (X15 ooy XN—2, YN—DIS LylxXn-1 — yn—1]
for all X1y eees XN=2, XN—1,VYN—1 satisfying (xl, ...,XN,Q,XNfl),(Xl,...,

XN—2,yN-1)EG.

(3.5) Assume that xe(V)),, n(Q\T,(Q)). Since x ¢ T,(Q) and T,(x) e T,(RQ),
there is a point ze 07T,(Q) = T,(02) which lies in the interval [x, T;(x)). Let
y = T, (2), then y€oQ. If y¢ V;, then by (27)

d(x, 0V <lx = yI<|x = 2l + |z = yI<|x = Tu(x)| + |y — Tu(y)| <28,

which contradicts the assumption xe(V)),,. So ye V;noQ, hence zey —
C;(g) where Cy(e).

Let Z;(x) = p,4;(») =n,2s(z) = and let d;(x) denote the distance of
xe from 0Q2 in the direction of the vector &;, then

B=Br s By By-1:B8), 1= Brsoes ByasIy_15Mn)>
v = ¢g(ﬁ1, v Byostivot)s C= B s Byoas Cv-1:8w)s
di(xX)< ¢ By s Bn2s Bnv-1) — Bn-

Since also ze[x, T,(x))=x — Cy(e), it follows that

y_1 — vl Iy — vlsin = = |z = T(2)|<e,
v — Byl<lz — xI<|x — Tu(x)<e.

Also {y <fy. Therefore,

di(X)< y(Prs s Byos By-1) — s (Brs -y B2 iy—1)
+ &Py s By_asy—1) — By
S LylBy-y =yl +ny — Oy
< Ly(By-1 — Cvaal + vt — i) + &
< (2Lj + De.

Hence (30)—(31) holds where 4; = 2L; + 1.

(4) The argument for the cases in which the number of elements in J is
greater than 2 is similar. Let, for example, J={ijk}. If
dim Span{¢;, ¢, &b = 1, then & = ¢; = ¢, and we set {; = ¢; and argue
as in Step 3.1. If dim Span{¢;, ;, &} = 2, then we take any two linearly
Si
IS

independent vectors, say ¢;, &;, set & = iif‘ and argue as in Steps 3.2-3.5. If
S

. Eit&+E
dim Span{¢;, &;, &} = 3, then we set &y = ‘§l+§j+éz‘

3.2-3.5. In this case the appropriate function ¢; satisfies the Lipschitz

and argue as in Steps
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condition in xy_1, Xxy_» uniformly with respect to xy, ..., xy_3. In Lemma 20
one can take K to be the projection of C;(¢) onto xy =0 and J =
inf{xy : (xny—3,xy-2,xnv-1)€ Cy(e)}.

(5) By (29) and (30)

R\T@I< > (02:Vsl+ 77D
J{l,... s}
Since each summand does not exceed ¢ multiplied by a constant
depending only on N,y,M,é,s,{Vj}j:, and {/;} inequality (28)
follows. O

N
j:] B

The proof of the following theorem can be adapted to any situation in
which maps A, exist with properties (36)—(38).

Theorem 21. Let N>2,0<y<1, M, >0 and integer s=1. Moreover, let
{V,}j‘:] be a family of bounded open cuboids and {}v_,-}j:] a family of rotations.
Suppose that Q; <RY is a bounded region such that 6Q,eLip(y, M,J,s,
Vidjmis 4} j=1)-

Then for every integer n=1 there exist b,7 = b,7(21),8,7 = €,7(821) >0
such that for all 0<e<e,7 and for all bounded regions Q», for
which 0Q,€eLip(y, M, 9, s, {VJ-};ZI, {lj};zl) and \0,2,=Q,=Q,, the in-
equality

(1 - bn,7gy)j~n,l < ;W1,2 < (1 + bn,78y)in,l (35)
holds.

Proof. (1) Since 0Q, € Lip(y, M, 9, s, {Vj}jf:l, {}yj};:]) it follows that inequal-
ity (13) holds, where ¢ > 2 and ¢;3 > 0 depend only on N,y, M, 9, s, {Vj};f:l,
{/1_,»};:1 [6,11,13]. Since also 09, Lip(y, M,5,s,{1/j};:1,{)vj};:1) inequality
(13) holds with €, replacing Q; with the same ¢ and c¢;3. Furthermore, by (2)
there exist Asg,es >0, depending only on N,y, M,d,s, {V;} {/1,};:1 such

that for all 0<e<es

|62:QI |: |61292| <A857~

s
j:]:

() Let

AS:T(A%),.

Then by Lemmas 18 and 19 there exist Ag, 419, A11, & > 0, depending only
on N,y, M,9,s, {Vj}j:l, {/lj};:l, such that for 0<e<eg

23(e) = A,(Q21) = Q21\0:21, (36)

1Q1\Q3(e)| < Age’ (37)
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and

()_ ij

which 1mphes that

0/
‘ <A10F (38)

%<1 —A11£>’<Jac(/1£,x)<1 + Ap87, xey (39)
and the map A, : Q) — A4,(2)) is one-to-one. Denote U, = A;l.

(3) Next we obtain a lower bound for p, 3 by applying the idea used in the
proof of Lemma 17 based on the variational method.

If L is an (n+ 1)-dimensional subspace of L*(Q), then L =
{f(U/(x)), feL} is an (n+ 1)-dimensional subspace of L*(4,(Q;)), and
conversely, if L is an (n 4+ 1)-dimensional subspace of L>(A4,(®))), then L =
{g(A,(x)),ge L} is an (n + 1)-dimensional subspace of L?(Q;). Therefore,

2 4N

i Joyo IV9I7d%y
Hp3 = 0 SUp =" 3 N
Ldim L=n+1 gcf fQ3(s) |J| d y

Jiian IVEW0NIF Ny

= inf

Ldim Lont1 o rer [y U dYy
Note that
V(U

N N

_ Z < aaf ) . @))5(U (y))k
=1 |k=1 !

R af 2aU0))|*

N N Y
" Z Zz< f)(U(y))( f>(U(y)}5(U(:/))ka(%y(iV))/

where 3 means that summation is taken with respect to such k, / that either
k#ior [#i.
Recall that
AU:(n)k

5, = Ax(Jac(A,, U,(»)) ',

where (—1)*4,; is the determinant obtained by deleting kth row and ith
column in the Jacobian determinant Jac(A,, U.,(y))). The Jacobi matrix of
the map A, has the form 7 + (1)’ B, where I and B are defined in the proof
of Lemma 18. Hence (—l)k”Aki is the determinant of the matrix Ij; +
(Ail)"Bki, where [j; and By; are obtained by deleting kth rows and ith columns
in matrices I, B respectively. Since |I;] =1 and |I;] = 0 if k#i and the
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elements of the matrix B are uniformly bounded, there exists A4i,, &7 >0,
depending only on N, and s, such that for all 0 <e<e; and ye A,(2;)

_<1—A128'!<M<1+A128>’ 1:1,,N
2 oyi
and
‘a(ljg—)}o}))k <A128y, l,k: 1,7N> k?él
i

Consequently there exists 43 > 0, depending only on N, and s, such that
for all 0<e<ey and yeA.,(2))

(1 = A (VU0 SIVE UMD <A + Al (VHU0))E.

Therefore, by changing variables: y = A.(x) and taking into account
inequality (38), we have

VAU())* dY
Hn,3>(1 —Aynd) inf fA,,(Q,) IV (V)2)| - y
L:dim L=n+1 fe, fA,(Q])lf(l]‘(y)N d y
V) (x)Jac(A,, x)| d¥ x
(A inf pr(Dgﬂ ( NN
LaimLontl jer [y | f(0)PPac(4,, x) dVx

) ) T Jo, 197 dx
> (=)A= )1+ )l sup =P
. - J € Q L

Hence, finally, there exist bg,&9 >0, depending only on N,y, M,J,
8, {Vj}j—1» {%};-1, such that for 0<e<ey
M3 = (1 —&'bg) 1.

Now the theorem follows by taking into account (36) and (37), and applying
Corollary 16. O
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